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A The Energy Matrix Model

A.1 Translating between an Energy Matrix with Base Pair Resolution and
Promoter Element Resolution

In this section, we discuss how an energy matrix model with base-pair resolution can be translated into
an equivalent model with the resolution of promoter elements. The former model purports that the
RNAP-promoter binding energy is composed of independent and linearly additive contributions from
each base pair. More precisely, if at position j the base bj (either A, T, C, or G) contributes a free energy

E
(bj)
j to RNAP binding, then the total free energy of binding is given by

∑
j E

(bj)
j as shown in Fig. S1.

By breaking this sum up over the positions j demarking the -35 (−35 ≤ j ≤ −30), spacer (−29 ≤
j ≤ −13), -10 (−12 ≤ j ≤ −7), UP (−59 ≤ j ≤ −38; where “no UP” used a random sequence that did
not enhance gene expression), and background (all the remaining base pairs between −120 ≤ j < 30)
elements, we achieve an energy matrix model where the free energies EBG, E-35, ESpacer, and E-10

represent the sum of all base pair contributions of the particular sequence considered. For simplicity, the
UP element is not explicitly drawn in the figure.

As shown for two sample sequences in Fig. S1, modifying the -35 sequence while keeping the rest
of the promoter unchanged leads to a different E-35 but keeps EBG, ESpacer, and E-10 unchanged. The
expression of the full suite of 12,288 promoters studied in this work can be determined from the free
energies of the three UP elements and the eight backgrounds, spacers, -35s, and -10s.
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Figure S1. An energy matrix model with base pair resolution translates into an energy
matrix model with promoter element resolution. Each promoter element contributes to RNAP
binding with free energy given by the sum of its free energies from its base pairs. The two sample
sequences shown only differ in their -35 sequence (highlighted blue in Sequence 1), resulting in different

values of E
(1)
-35 and E

(2)
-35 but the same free energies for the remaining promoter elements.
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A.2 Characterizing the Dependence of Gene Expression on RNAP Copy
Number

In this section, we explicitly write the dependence of RNAP copy number embedded within the free
energies of RNAP binding in Eqs. 1 and 2, thereby making contact with previous models of gene
regulation (1). To that end, we consider P RNAP molecules that are free to bind anywhere along a
bacterial genome with NNS non-specific base pairs (i.e., potential RNAP binding sites outside of our
promoter of interest). Let ∆ε be the average energy difference between RNAP bound to the specific
promoter versus at any other location along the genome. By definition, the free energy of RNAP binding
considered in this work is given by both the entropic and energetic contributions of this binding, namely,

e−β(EBG+ESpacer+E-35+E-10) ≡ P

NNS
e−β∆ε = e−β(∆ε−kBT log(P/NNS)). (S1)

Because the gene expression for each promoter generated by Urtecho et al. was measured under the
same experimental condition, the RNAP copy number is consistent across all constructs, and hence
the constant kBT log (P/NNS) can be absorbed into the free energies. If these measurements were
repeated under experimental conditions where the RNAP copy number is halved (P → P

2 ), the total
free energy of RNAP binding considered in this work would need to be correspondingly modified from
(EBG + ESpacer + E-35 + E-10)→ (EBG + ESpacer + E-35 + E-10 + kBT log 2).
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B Model Fitting and Parameter Values

The energy matrix model (Eq. 1) was solved as a least-squares problem that only fit the promoters
in Fig. 2A with no UP element. The multivalent model (Eq. 5) was fit using nonlinear regression on
promoter sequences with and without an UP element in order to obtain a single, self-consistent set of
parameters capable of capturing the data in Fig. 2B and Fig. 3B. The fitting of both models is presented
in a supplementary Mathematica notebook available online (doi: 10.22002/D1.1242).

The coefficient of determination R2 was calculated for ydata = log10(gene expression) to prevent the
largest gene expression values from dominating the result. We trained both the energy matrix and
multivalent models on 75% of the data and characterized the predictive power on the remaining 25%,
repeating the procedure 10 times. The exact form used was

R2 = 1−

∑N
j=1

(
y

(j)
data − y

(j)
predicted

)2

∑N
j=1

(
y

(j)
data − ȳdata

)2 (S2)

where ypredicted is the vector of the N measurements of log10(gene expression) predicted by the model

and ȳdata = 1
N

∑N
j=1 y

(j)
data is the average of the logarithmic gene expression data. In this form, the R2

represents the fraction of variance in the measured gene expression data that arises from the variance in
the predicted gene expression data. To test the predictive power of each model, we also trained both
models on only 10% of the data and used it to predict the gene expression of the remaining 90% of
promoters. We found that the coefficient of determination R2 only slightly decreased from 0.57→ 0.54
for the energy matrix model and from 0.91→ 0.86 for the multivalent model when fitting on this much
smaller training set, demonstrating that these models require no more than a thousand promoters to
reach their full predictive power.

Table S1 shows the parameter values inferred by the energy matrix (Fig. 2A) and multivalent (Figs.
2B and 3B) models. Due to the large number of parameters involved, both models exhibit parameter
degeneracy (2) where disparate sets of parameters yield nearly identical results. For example, all of the
free energies of the spacer elements can be increased by an arbitrary amount provided that the free
energies of all background elements are decreased by this same amount (with similar degeneracy holding
between other pairs of promoter elements). To circumvent this degeneracy, one -35, one spacer, one -10,
one UP, and one background element (denoted by asterisks in Table S1) were fixed to their corresponding
value in the energy matrix model, and as such, the parameters below may not represent the binding
energies of the promoter elements, but rather only one possible embodiment of these values.

We point out that our model coarse-grains kinetic details of transcription (e.g., transcription initiation,
elongation, transcriptional bursting) into the levels of gene expression rj shown in Fig. 1B. Modifying
the promoter sequence (i.e., considering different spacers or backgrounds) may well change these rates,
although our model assumes that such changes only affect the RNAP-promoter binding affinity. If
experiments measure the changes in these kinetic rates, they could either be incorporated into the rj or
into an expanded model that explicitly takes these steps of transcription into account (3).

The small but nonzero r0 term in our model (Fig. 1B) represents the background level of gene
expression arising from promoters that lack an RNAP-binding site. Urtecho et al. measured 500 negative
controls, sequences from the E. coli genome that have no promoter or RNA-seq activity, whose expression
was nonzero and centered around 0.15 (see Fig. 2E of Ref. (4)), comparable to our inferred r0 = 0.18
value. This nonzero expression may arise from instrumental noise or spurious transcription, and we
elected to model it using a nonzero r0 rather than background subtracting it in order to present the data
on a log-scale (upon background subtraction, some gene expression measurements would be negative due
to experimental noise which would have precluded log-plots). We note that log-fitting is likely to more
accurately portray how gene expression proceeds in the cell, since most endogenous promoters exhibit
low gene expression while synergistic effects between promoter elements can play a significant role; in
contrast, linear fitting would downplay the importance of all but the strongest promoters.

Lastly, we note from Urtecho et al. that the UP elements were named because they increased
transcription by 136-fold and 326-fold in vivo relative to the physiological rrnb P1 UP element. Thus, it
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follows that the free energy of the 326-fold UP should be smaller than that of the 136-fold UP which
should be smaller than the free energy of having no UP element, as seen in Table S1. Additionally, we
point out that all spacer elements are 17 bp long; RNAP binding is highly dependent on this length, and
promoters with longer or shorter spacers may influence the -35 and -10 binding free energies. Lastly, the
sequence composition of all spacers and backgrounds is given in Ref. (4).

Description Parameter Energy Matrix Model Multivalent Model

Level of rmax 0.42 8.6
gene expression r0 — 0.18

Interaction energy Eint — −6.3
-35 motif TTGACA −1.3 −1.3*

(E-35) TTTACA −0.2 3.3
ATTACA 0.6 8.3
TTTACC 0.3 5.7
TTAAGA 0.6 8.8
TTGCAA −0.4 2.5
CTCAGA 0.7 9.5
CTTAGA 0.6 9.5

-10 motif TATAAT −0.9 −0.9*
(E-10) AATAAT −0.1 3.6

GATAAT −0.1 3.2
TATAAA 0.0 4.4
GATAAC 0.6 9.8
TATGTT 0.1 4.6
GTTAAA 0.6 >10
GTTGTA 0.6 >10

Spacer P1-6 0.0 0.0*
(ESpacer) lac 0.4 3.9

ECK125136938 0.0 1.0
ECK125137104 0.1 1.5
ECK125137108 0.1 0.7
ECK125137405 0.1 1.2
ECK125137640 0.4 3.8
ECK125137726 −0.1 −0.8

Background bg463205:463355 0.0 0.0*
(EBG) bg977040:977190 0.1 2.3

bg991964:992114 0.3 4.2
bg1163421:1163571 0.1 1.5
bg3514590:3514740 0.1 1.9
bg4323949:4324099 0.1 2.5
bg4427287:4427437 0.2 3.1
bg4471352:4471502 −0.1 1.6

UP No UP 0.0 0.0*
(EUP) 136-fold UP — −2.6

326-fold UP — −3.2

Table S1. Parameter values for the models of transcriptional regulation considered in
this work. The levels of gene expression (r0 and rmax) are in the same arbitrary units as the
experimental measurements (4) while the energies are all in kBT units (energies that are more negative
indicate tighter binding). The original nomenclature from Table S1 in Ref. (4) is used for each promoter
element. Parameter denoted by an asterisk (*) represent values that were fixed to their corresponding
value in the energy matrix model to prevent parameter degeneracy.
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C Comparing the Energy Matrix and Multivalent Models of
Gene Expression

C.1 An Epistasis-Free Energy Matrix Model with Saturation does not Cap-
ture the Trends in Gene Expression Exhibited by the Data

As shown in Fig. 2A, the simplest model where gene expression is proportional to e−β(EBG+ESpacer+E-35+E-10)

(in the absence of an UP element) fails to characterize the data (R2 = 0.57). In contrast, the multivalent
model in Fig. 2B quantitatively matches the behavior of the spectrum of promoters (R2 = 0.91). Thus,
it behooves us to examine what properties of the latter model are necessary to achieve this concordance
with the data.

To that end, we consider an intermediate model where gene expression is given by

GE =
r0 + r̃maxe

−β(EBG+ESpacer+E-35+E-10)

1 + e−β(EBG+ESpacer+E-35+E-10)
(S3)

where r0 represents the minimum level of gene expression in the absence of RNAP binding, r̃max denotes
the amount of gene expression when RNAP is fully bound to the promoter, and the Ej represent the free
energy contribution of the promoter element j. Note that this model represents the limit of a very strong
interaction energy in Eq. 3 (e−βEint � 1 with r̃max = rmaxe

−βEint) where RNAP is either unbound or
fully bound to the promoter.

Fig. S2A demonstrates that the data is well characterized by Eq. S3 (R2 = 0.91). Therefore, one
key feature missing from the simplest energy matrix model description Eq. 1 was that gene expression
will saturate once RNAP binding becomes sufficiently strong (or, mathematically, that the denominator
1 + e−β(EBG+ESpacer+E-35+E-10) must include the RNAP binding term). Note that the results of this
energy matrix model with saturation are nearly identical to the results of the multivalent model in Fig.
2B. Indeed, since the inferred interaction energy Eint = −6.3 kBT between the -35 and -10 sites is large
and negative (see Table S1), it is not surprising that the two models produce similar results for the
majority of promoters.

Intuitively, the difference between these two models will emerge in their predictions for promoters
with weak expression. As we will show below, the energy matrix model with saturation (Eq. S3) is
epistasis-free: given the gene expression of any initial promoter and two mutants of that promoter, we
can predict the expression of the double mutant. If, for example, the initial promoter exhibits weak
gene expression and the two mutants exhibit a medium level of gene expression, then the double mutant
would be predicted to exhibit a large amount gene expression. As will be explained below, the resulting
predictions shown in Fig. S2B are highly damning. On the other hand the multivalent model (Eq.
3) predicts a more complex relationship between these four promoters, and in the Appendix C.2 we
examine an analytically tractable limit to show that this model better recapitulates the gene expression
measurements.

We proceed by utilizing the epistasis-free nature of Eq. S3. A key feature of the following analysis is
that it will not require any model fitting, and hence for the remainder of this Appendix we proceed as
if we have no knowledge of the parameter values in Table S1. To begin, we approximate the values of
r0 ≈ 0.2 and r̃max ≈ 10 from the gene expression data (the minimum and maximum y-values in Fig. S2A,
averaging by eye to account for noise). These two values, together with the gene expression measurements
for every construct, will be sufficient to make our epistasis-free predictions without explicitly determining
any of the Ej .

As in the main text, denote the gene expression GE(0,0) of a promoter with the consensus -35 and
-10 sequences (and any background or spacer sequence). Let GE(1,0), GE(0,1), and GE(1,1) represent
promoters (with this same background and spacer) whose -35/-10 sequences are mutated/consensus,
consensus/mutated, and mutated/mutated, respectively. Eq. S3 can be inverted to determine

e−β(EBG+ESpacer+E-35+E-10) =
GE− r0

r̃max −GE
≡ f(GE) (S4)
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Figure S2. Gene expression represented by an energy matrix model with saturation. (A)
Characterization of the same promoters as in Fig. 2 using the energy matrix model with saturation
(Eq. S3) with essentially identical fit quality as the multivalent model. (B) Since this model assumes
that the RNAP-promoter binding energy is epistasis-free (with the -35 and -10 binding sites contributing
additively and independently to the RNAP binding energy), the gene expression of double mutants can
be predicted from the expression of single mutants without resorting to fitting (Eqs. S4 and S5). The
large deviations demonstrate that the energy matrix with saturation cannot characterize the gene
expression of these constructs.

for the double mutant with GE(1,1) as well as the two singly mutated promoters with GE(1,0) and GE(0,1),
where we have defined the function f for convenience. Importantly, since the -35 and -10 binding energies
additively and independently contribute to the RNAP-promoter free energy, the left-hand side of Eq. S4

for the unmutated construct is given by f(GE(1,1)) f(GE(0,1))

f(GE(1,1))

f(GE(1,0))

f(GE(1,1))
(exactly analogous to Eq. 4 for

the simple energy matrix model). Therefore, its gene expression is predicted to be

GE(0,0) =
r0 + r̃maxf(GE(1,1)) f(GE(0,1))

f(GE(1,1))

f(GE(1,0))

f(GE(1,1))

1 + f(GE(1,1)) f(GE(0,1))

f(GE(1,1))

f(GE(1,0))

f(GE(1,1))

. (S5)

Fig. S2B shows the results of these epistasis-free predictions. Because Eq. S5 applies to any pairs of
-35 and -10 elements with the same BG and spacer, there is a combinatorial explosion of predictions,
providing a solid test for this model. As can be seen, aside from the plethora of data points with
correctly-predicted low gene expression in the bottom-left corner of the plot, there are large swathes of
data points that do not fall on the expected diagonal line, indicating that the epistasis-free prediction
in Eq. S3 cannot accurately capture the gene expression of the constructs considered here. In the next
section, we show that the multivalent model is better equipped to characterize these cases. Notably,
these results indicate that although a model may fit the majority of data on average (as in Fig. S2A), it
may nevertheless make spurious predictions. Such hidden gems may go unnoticed when a pure-fitting
mentality is applied to the wealth of data that is becoming increasingly easy to generate.
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C.2 A Multivalent Model outperforms the Energy Matrix Model in the
Limit of a Weak -35 or Weak -10 RNAP Binding Site

In section C.1, we showed that an energy matrix model with saturation Eq. S3 is epistasis-free and hence
makes sharp predictions that are inconsistent with the data (Fig. S2B). In this section, we consider the
multivalent model Eq. 3 where binding to the -35 and -10 sites is no longer independent. Because this
latter model exhibits epistasis, we will restrict our analysis to the limit of weak promoters with no UP
element where we can approximate the multivalent model and compare its results to the energy matrix
model with saturation. As before, we proceed without referencing the parameter values in Table S1 to
emphasize that this analysis can be done without recourse to fitting.

We define GE(1,1), GE(1,0), GE(0,1), and GE(0,0) as in section C.1, but we will restrict our attention
to promoters where the original sequence exhibits low gene expression (GE(1,1) . 0.25) and the two

mutants exhibit medium gene expression (0.25 . GE(1,0),GE(0,1) . 1.0). For such cases, we expect that

the predicted gene expression GE(0,0) of the double mutant will be larger in the multivalent model (Eq.
3) than the energy matrix model with saturation (Eq. S3) due to the avidity between the -35 and -10
sites. In other words, the multivalent model acknowledges that the -35 and -10 sites bolster each other
and consequently predicts larger gene expression when both sites exhibit even a moderate capability of
binding.

As discussed in section C.1, GE(0,0) is exactly given by Eq. S5 in the energy matrix model with
saturation. Applying that result to the present case of weak promoters (GE(1,1) . 0.25) with medium-

strength singly mutants (0.25 . GE(1,0),GE(0,1) . 1.0), Fig. S3A shows that this model generally
underestimates the gene expression of these promoters. This serves as a promising indicator that the
avidity of RNAP binding is missing from such an approach.

We next turn to the more complex multivalent model. Because RNAP exhibits epistasis within
this framework, the relationship between gene expression is more complex and hence we only roughly
approximate GE(0,0). To that end, it behooves us to generalize the levels of gene expression in Fig. 1(B)
so that RNAP bound only at the -35 site leads to a gene expression level of r-35 while RNAP bound only
at the -10 site elicits r-10 gene expression (satisfying r0 < r-35, r-10 ≤ rmax), leading to

GE =
r0 + e−β(EBG+ESpacer)

(
r-35e

−βE-35 + r-10e
−βE-10 + rmaxe

−β(E-35+E-10+Eint)
)

1 + e−β(EBG+ESpacer)
(
e−βE-35 + e−βE-10 + e−β(E-35+E-10+Eint)

) . (S6)

In the main text, we assumed that r-35 = r-10 = r0 for simplicity (and because relaxing this assumption
does not qualitatively change any of our results). Here, we will keep these more general rates, as it will
aid in the following analysis.

Using Eq. S6, we can approximate gene expression for our four promoters of interest,

GE(1,1) ≈ r0 (S7)

GE(0,1) ≈ r0 + r-35e
−β(EBG+ESpacer)e−βE-35

1 + e−β(EBG+ESpacer)e−βE-35
(S8)

GE(1,0) ≈ r0 + r-10e
−β(EBG+ESpacer)e−βE-10

1 + e−β(EBG+ESpacer)e−βE-10
(S9)

GE(0,0) ≈ r0 + rmaxe
−β(EBG+ESpacer)e−β(E-35+E-10+Eint)

1 + e−β(EBG+ESpacer)e−β(E-35+E-10+Eint)
. (S10)

In Eq. S7, we used the fact that the promoter is very weak (GE(1,1) . 0.25) to infer that RNAP is unable
to bind at either the -35 or -10 sites (e−βE-35 , e−βE-10 � 1). Since replacing the -35 site slightly improves

gene expression (0.25 . GE(0,1) . 1.0), we only keep the -35 binding term in Eq. S8 but continue to
neglect the -10 terms (assuming that binding to the -10 is sufficiently unfavored that it overwhelms the

avidity term, e−β(E-10+Eint) � 1). Analogous statements hold for GE(1,0) and the -10 site in Eq. S9.
Lastly, when both the -35 and -10 sites are replaced (Eq. S10), the fully bound RNAP state will dominate
over the two partially bound states due to avidity.
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For every set of four promoters satisfying our criteria, we can use Eq. S7 to infer r0, Eq. S8 to solve
for e−β(EBG+ESpacer)e−βE-35 (in terms of r-35), and Eq. S9 to solve for e−β(EBG+ESpacer)e−βE-10 (in terms
of r-10). In addition, we can directly estimate rmax ≈ 10 directly from the maximum gene expression of
all promoters. Combining these statements, we can rewrite Eq. S10 as

GE(0,0) ≈ r0 + rmaxAe
−β(EBG+ESpacer)e−βE-35e−β(EBG+ESpacer)e−βE-10

1 +Ae−β(EBG+ESpacer)e−βE-35e−β(EBG+ESpacer)e−βE-10
(S11)

with the unknown quantity A = eβ(EBG+ESpacer−Eint). Therefore, the three unknown constants r-35, r-10,
and A would permit us to predict GE(0,0) using single and double mutant data within the multivalent
model. To facilitate this, we coarsely approximate that the partially bound RNAP states give rise to
intermediate expression levels r-35 = r-10 ≈

√
r0rmax ≈ 1 and that the average energy of a background

and spacer sequence is negligible compared to the favorable interaction energy which is on the order of
several kBT leading to A ≈ e−βEint ≈ 100. Fig. S3B demonstrates that the multivalent model predicts
larger gene expression often closer to rmax ≈ 10. Although this approximate result for the multivalent
model exhibits scatter about the predicted diagonal line, it nevertheless show a marked improvement
over the energy matrix model, supporting the notion that avidity is a key concept when predicting the
gene expression of mutations that greatly weaken or greatly strengthen the -35 and -10 sites.
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Figure S3. Relating gene expression measurements with minimal fitting. Using gene
expression measurements for a weak promoter and two single mutants with higher gene expression, we
can predict the expression of the double mutant and compare it to data. (A) The epistasis-free energy
matrix model with saturation (Eq. S3) underestimates the gene expression, suggesting that the avidity
between the -35 and -10 sites is missing from this analysis. (B) The multivalent model Eq. 3 predicts
higher gene expression levels that better characterize the data.
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D Interactions Between the Different Promoter Elements

In this section, we extend the analysis shown in the Fig. 2A inset to determine the strength of interactions
between every pair of promoter elements as shown in Fig. S5A. As an example, Fig. S4 considers the
combinations of a promoter with two possible -35 motifs (−35(1) or −35(2)) and two possible spacers

(Spacer(1) or Spacer(2)) with the same UP, -10, and background sequences.
Suppose that the -35 and spacer elements contribute independently to gene expression (GE) so that

we can write GE = f1(E−35)f2(ESpacer) as the product of two functions f1 and f2 (in the standard energy
matrix model, f1(E) = f2(E) = e−βE). This independence implies that the system has no epistasis,
namely,

GE(0,0) = GE(1,1) GE(0,1)

GE(1,1)

GE(1,0)

GE(1,1)
. (S12)

Thus, for all possible pairs of -35 and spacer elements, we can compare the predicted gene expression
given by Eq. S12 with the experimental measurements to discern whether these two segments of the
promoter contribute independently to gene expression. In the following analysis, we will also restrict
ourselves to promoters where GE > 10−0.5 for all four mutants to ensure that the measurements are
within the dynamic range of the experiment (so that we can be certain we are analyzing gene expression
measurements and not noise).

D.1 Characterizing Promoters with no UP Element

We first carry out this analysis on the 4,096 promoters with no UP elements as shown in Fig. S5. In
each plot, we compare the epistasis-free predicted GE (x-axis) with the measured value (y-axis). If two
promoter elements independently contribute to gene expression, their data should fall onto the straight
line y = x. We can quantify all deviations from such lines using the coefficient of determination R2, with
smaller R2 values signifying that the promoter elements are not multiplicatively independent.

This analysis shows that while the -35 and -10 elements interact in a fashion discordant with an energy
matrix formulation (leading to a negative R2), the remaining promoter elements interact approximately
independently of each other and can be approximated using an energy matrix model. This rigorously
justified our sole consideration of the -35 and -10 binding sites in Fig. 1B, allowing us to avoid, for
example, enumerating states where the RNAP is solely bound to the spacer or the background. Instead,
the promoter is well approximated by treating the -35 and -10 motifs as cooperative binding sites while
the spacer and background contribute independently to RNAP binding (as per Eq. 3).

–35(1) Spacer(1) –35(1) Spacer(0)

–35(0) Spacer(1) –35(0) Spacer(0)

Epistasis-Free Predicted

Figure S4. Quantifying the interactions between promoter elements. If the -35 and spacer
promoter elements independently contribute to gene expression, then an epistasis-free prediction of gene
expression for the double mutant (bottom right) can be predicted using the gene expression of the other
three promoters.
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–35
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Figure S5. Interactions between the promoter elements with no UP binding site. (A) For
every pair of elements (brown labels on the left and bottom), the measured gene expression (y-axis) is
compared to the epistasis-free prediction (x-axis, Eq. S12) assuming that the two promoter elements are
independent. Deviations between the predictions and measurements indicate that the two promoter
elements interact. Data is plotted with low opacity to better show the general trend across the
promoters. (B) The resulting schematic of a promoter with no UP element is that RNAP can bind to
either the -35 or -10 sites independently with an avidity interaction when both are bound; the spacer
and background (BG) contribute independently to the RNAP binding energy provided RNAP is bound
to either the -35 or -10 element.

Lastly, we note that the multivalent model (Eq. 3) does not strictly exhibit the multiplicative inde-
pendence between the -35 and spacer elements (or any of the other weakly interacting promoter elements)
that would lead to an R2 = 1 expectation, but as we now show it closely approximates multiplicative
independence. First, note that using the parameter values from Table S1, the denominator in the
multivalent model is approximately 1 because e−β(EBG+ESpacer)

(
e−βE-35 + e−βE-10 + e−β(E-35+E-10+Eint)

)
is . 1 for approximately 90% of the promoters. Additionally, the numerator in the model may be
dominated by either of its terms: For weak promoters that exhibit low levels of gene expression,

r0 � r0e
−β(EBG+ESpacer)

(
e−βE-35 + e−βE-10 + rmax

r0
e−β(E-35+E-10+Eint)

)
and GE ≈ r0. In the opposite

limit where expression is large, r0 � r0e
−β(EBG+ESpacer)

(
e−βE-35 + e−βE-10 + rmax

r0
e−β(E-35+E-10+Eint)

)
and we can approximate Eq. 5 as

GE ≈ r0e
−β(EBG+ESpacer)

(
e−βE-35 + e−βE-10 +

rmax

r0
e−β(E-35+E-10+Eint)

)
, (S13)

which exhibits the multiplicative independence implied by Eq. S12 between the weakly interacting
promoter elements. Practically speaking, this means that in creating Fig. S5, we only considered data
points where gene expression was above the background level that we inferred to be 10−0.5 based on
the gene expression measurements in Fig. 2. In summation, Eq. 5 exhibits approximate independence
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between the weakly interacting promoter elements which can be identified as the plots for which R2 > 0
in Fig. S5.

D.2 Characterizing Promoters with an UP Element

Here, we extend the analysis in the previous section to a promoter that includes an UP element. As before,
we seek to understand whether the UP, -35, spacer, -10, and background elements act independently of
each other or whether they interact with avidity to facilitate RNAP binding.

Fig. S6 carries out this analysis using all 12,288 sequences from Urtecho et al. for every pair of
promoter elements (4). As in the previous section, we find that the -35 and -10 sites do not interact
independently (as shown by a negative R2). We acknowledge that several additional pairs of elements
(i.e., -10/BG, -35/BG, and -10/Spacer) exhibit low R2 values which may arise because: (i) Our model
only approximately obeys multiplicative independence as discussed in Appendix D.1 (so that R2 ≈ 1
even in the absence of experimental noise) or (ii) there may be additional interactions between promoter
elements that we neglect, such as the importance of the discriminator (5) or weak RNAP binding sites in
the background sequences (6). We proceed by only considering interactions sufficiently strong to induce
a negative R2 value, namely, the avidity between the -35 and -10 motifs, with our eyes wide open to the
possibility that more complex models could attempt to capture the full suite of higher-order interactions.

We end this section by analyzing which of the three schematics shown in Fig. 3A best characterizes
the binding of the UP element. We note that the UP element appears to be particularly independent
(0.6 . R2) compared all other pairings of elements (0.1 . R2 . 0.6), suggesting that the RNAP
C-terminal binds weakly provided that either the -35 or -10 motifs are bound (Fig. S6B). This supports
the bottom schematic in Fig. 3 and gives rise to the form of gene expression Eq. 5 used in the main text.

To complete this argument, we further note that the middle schematic in Fig. 3A would imply that
the UP element only binds when the -35 element is bound, which would result in gene expression of the
form

GE = r0

1 + e−β(EBG+ESpacer)
(
e−β(E-35+EUP) + e−βE-10 + rmax

r0
e−β(E-35+EUP+E-10+Eint)

)
1 + e−β(EBG+ESpacer)

(
e−β(E-35+EUP) + e−βE-10 + e−β(E-35+EUP+E-10+Eint)

) . (S14)

In this case, we would expect a low R2 between the -35 and -10 elements as well as between the UP and
-10 elements, but we would have an R2 ≈ 1 between UP and -35 since binding of one forces the binding
of the other in this model. Given the larger-than-expected R2 = 0.56 value between the UP and -10
elements and the smaller-than-expected R2 = 0.62 value between the UP and -35 elements, this model is
unlikely to be correct.

Finally, the top schematic in Fig. 3A implies a low R2 value between the -35 and -10, the UP and -35,
and the UP and -10 elements. In this case, all three elements bind strongly and in a highly dependent
manner, so that eight RNAP states would need to be considered (with avidity terms between every pair
of elements). Because the R2 values between the UP/-35 and UP/-10 are larger than expected, this
model does not appear to properly characterize RNAP binding, leading us to favor the bottom schematic
in Fig. 3A.
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Figure S6. Interactions between the promoter elements with an UP binding site. (A) For
every pair of elements (brown labels on the left and bottom), the measured gene expression (y-axis) is
compared to the epistasis-free prediction (x-axis, Eq. S12) assuming that the two promoter elements are
independent. (B) The resulting schematic of gene expression where RNAP can bind to either the -35 or
-10 sites independently with an avidity interaction when both are bound; the UP, spacer, and
background (BG) contribute independently to the RNAP binding energy provided RNAP is bound to
either the -35 or -10 element.
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E RNAP Binding Too Tightly Decreases Gene Expression

All of the gene expression models examined in this work assert that gene expression monotonically
increases with the RNAP-promoter binding affinity. In contrast, Urtecho et al. found that this monotonic
relationship did not hold for the strongest promoters. In other words, gene expression increased as the
-35 and -10 motifs approached their consensus sequences (which bind the tightest to RNAP) except
that promoters with both a consensus -35 and consensus -10 sequence exhibited lower gene expression
than the corresponding sequences with one mutation in either motif (4). This suggests that past a
certain point, increasing the RNAP-promoter binding energy causes RNA polymerase to bind top tightly,
thereby inhibiting gene expression (7).

In this Appendix, we explore this phenomenon and develop a model to account for it. More specifically,
our model will posit that the state of transcription initiation can be characterized by a free energy so
that the probability of initiating transcription versus remaining bound on the promoter is given by the
Boltzmann weight of the two states.

To start our analysis, Fig. S7A shows the predicted versus measured gene expression of the multivalent
model (Eq. 5) for promoters with an UP element, where all data is plotted with low opacity except the
promoters with the lowest or highest levels of predicted gene expression. The sharp left edge of the data
is set by the background level of gene expression r0 = 0.18 in the absence of RNAP, while the right edge
represents the maximal expression rmax = 8.6 of very strong promoters. Note that if the scatter in data
on the left edge is attributable to noise, then the outliers on the right edge cannot simply arise from
noise, since there are 10x fewer data points and hence we expect 10x fewer outliers (although there are
roughly the same number of outliers 2σ, 3σ, and 4σ away from the predicted values on both edges of
the plot). This suggests that there is a mechanistic explanation for why the promoters that our model
predicts should bind very tightly to RNAP exhibit low gene expression.

We next analyzed whether any promoters increased expression when their -35 or -10 sites were
replaced by the consensus sequences, but exhibited decreased gene expression when both the -35 and
-10 sites became the consensus sequences. Out of the 12,000 constructs, 850 exhibited this pattern
of expression. One possible explanation is that although strong binding helps recruit RNAP to the
promoter, overly strong binding could inhibit transcription initiation and decrease gene expression.
We note, however, that this is a coarse-grained effective model that neglects molecular details of the
transition from the closed to open complex, transcription initiation, and other critical steps of RNAP
functioning (8). Nevertheless, in the multivalent model, the effect of overly strong RNAP-promoter
binding must be to decrease the single parameter rmax (which represents the level of gene expression
when RNAP is fully bound to the promoter), since no other parameters should depend upon the total
RNAP-promoter binding strength.

To proceed, we assume that fully bound RNAP with free energy

∆ERNAP = EBG + ESpacer + EUP + E-35 + E-10 + Eint (S15)

relative to the unbound state can initiate transcription by moving into a transcription initiation state
with free energy ∆Etrans relative to the unbound state as shown schematically in Fig. S7B. Intuitively,
bound RNAP will always immediately transcribe when ∆Etrans −∆ERNAP is large and negative, but
when the affinity between the RNAP and promoter becomes sufficiently strong (the case depicted in
Fig. S7B), RNAP will prefer to stay bound to the promoter and not transcribe immediately. We posit
that the rate of entering the transcribing state (8), and hence the rate of gene expression rmax in Fig.
1B, should be modified to

r̃max ≡
rmax + r0e

−β(∆ERNAP−∆Etrans)

1 + e−β(∆ERNAP−∆Etrans)
, (S16)

similar to recently proposed scrunching models of transcription initiation (9). For promoters whose
RNAP binding is far weaker than transcription initiation (e−β(∆ERNAP−∆Etrans) � 1), this rate reduces
to the constant value rmax. Increasing the RNAP-promoter affinity decreases ∆ERNAP which leads to a
decrease in the level of gene expression. In the limit of an infinitely strong promoter (∆ERNAP → −∞),
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Figure S7. Gene expression is reduced for promoters that bind RNAP too tightly. (A) In
the multivalent model (Eq. 5), although there are 10x fewer points on the right edge of the plot than the
left edge, there are the same number of outliers, suggesting a biophysical mechanism for the reduction in
gene expression of the strongest promoters. (B) The average level of transcription modeled as a two state
system where the bound RNAP state (with free energy ∆ERNAP relative to the unbound state) can
enter a transcription initiation state with free energy ∆Etrans. (C) Gene expression characterized using
the modified maximum level of gene expression using Eq. S16 with ∆Etrans = −6.2 kBT . (D) Measured
gene expression versus the promoter strength ∆ERNAP (stronger promoters on the right because of the
minus sign). The dashed line shows the prediction of the multivalent model modified using Eq. S16.

RNAP is glued in place and unable to transcribe, thereby reducing the level of gene expression to the
background level r0.

Fig. S7C shows the gene expression data refit to the multivalent model with the maximal level of
gene expression given by Eq. S16 (using ∆Etrans = −6.2 kBT inferred by nonlinear regression). We note
that using this model eliminates the sharp right edge of the data (red ellipse in Panel A), signifying
that the promoters with extremely tight RNAP binding have shifted left, moving closer to the level of
gene expression predicted by the model. Fig. S7D compares the predicted −∆Etrans for each promoter
(using the best fit parameter in Table S1) against the measured level of gene expression. To facilitate a
comparison with the multivalent model, we overlay this data with the approximate predicted level of
gene expression

GE ≈ r0 + r̃maxe
−β∆ERNAP

1 + e−β∆ERNAP
, (S17)

where we have ignored the two partially bound RNAP states and used the maximum level of gene
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expression in Eq. S16. Although only a small number of promoters exhibits sufficiently strong binding
that diminishes their gene expression, the data exhibits a clear downwards trend in this limit.

F Dynamics of RNAP with Avidity

F.1 Probability of the RNAP States at Equilibrium

In this section, we derive the probabilities of the four RNAP states shown in Fig. 1C in equilibrium.
RNAP may be unbound (concentration U), singly bound at the -35 site (B-35), singly bound at the -10
site (B-10), or bound to both sites (B-35,-10). These concentrations must obey detailed balance,

B-35 =
[RNAP]kon

koff,-35
U (S18)

B-10 =
[RNAP]kon

koff,-10
U (S19)

B-35,-10 =
k̃on

koff,-10
B-35, (S20)

as well as the normalization condition

[RNAP] = U +B-35 +B-10 +B-35,-10. (S21)

In writing Eqs. S18 and S19, we have assumed a sufficiently large reservoir of RNAP so that binding to
the promoter of interest does not appreciably decrease the concentration of free RNAP (a reasonable
assumption in E. coli where there are ≈ 2000 RNAP molecules (10)).

Eqs. S18-S21 can be solved to obtain the concentration of each RNAP state, namely,

U =
K-35K-10

K-35K-10 +K-35[RNAP] +K-10[RNAP] + c0[RNAP]
[RNAP] (S22)

B-35 =
K-35[RNAP]

K-35K-10 +K-35[RNAP] +K-10[RNAP] + c0[RNAP]
[RNAP] (S23)

B-10 =
K-10[RNAP]

K-35K-10 +K-35[RNAP] +K-10[RNAP] + c0[RNAP]
[RNAP] (S24)

B-35,-10 =
c0[RNAP]

K-35K-10 +K-35[RNAP] +K-10[RNAP] + c0[RNAP]
[RNAP], (S25)

where we have defined the dissociation constants Kj =
koff,j
kon

of free RNAP binding to the site j as well

as the effective concentration c0 = k̃on
kon

of singly bound RNAP binding to the remaining promoter site. If
we further define the effective dissociation constant

Keff
D =

K-35K-10

c0 +K-35 +K-10
, (S26)

we can rewrite the probability of the unbound state as

U =
Keff
D

Keff
D + [RNAP]

[RNAP]. (S27)

From this equation, we see that the promoter is bound 50% of the time (U = [RNAP]
2 ) when [RNAP] = Keff

D ,
as stated in the main text.

S15



Unbound -35/-10 Bound
(B-35,-10)(U )

-10 Bound
(B-10)

-35 Bound
(B-35)

Figure S8. Dynamics of RNAP unbinding from the -35 and -10 sites. The avidity between
the -35 and -10 sites will prolong the time before RNAP unbinds from the promoter.

F.2 Dynamics of RNAP Unbinding with Avidity

Here, we rederive the results from the previous section by analyzing the dynamics of RNAP binding
rather than its equilibrium configuration. This calculation highlights the intimate connection between
the effective dissociation constant in Eq. S26 and the kinetics of RNAP binding.

To that end, we first compute the probability that a bound RNAP will remain bound after a time t.
Since we are only interested in the unbinding process, we consider the rates diagram in Fig. S8 where
the on-rates from the unbound state have been removed. Following Ref. (11), we assume that the three
bound states – RNAP bound to only the -35 site (concentration B-35), only the -10 site (B-10), or to
both sites (B-35,-10) – quickly equilibrate and compute the effective off-rate from these bound states
to the RNAP unbound state (U). If the three bound states are in equilibrium, then there is no flux
between any two states, namely,

k̃onB-35 = koff,-10B-35,-10 (S28)

and
k̃onB-10 = koff,-35B-35,-10. (S29)

The total concentration of bound RNAP is given by

[RNAP]bound = B-35 +B-10 +B-35,-10 = B-35,-10

(
1 +

koff,-35

k̃on

+
koff,-10

k̃on

)
. (S30)

The loss of bound RNAP is caused by unbinding from the two singly bound forms, leading to the effective
off-rate

d

dt
[RNAP]bound ≡ −keff

off[RNAP]bound (S31)

= −koff,-35B-35 − koff,-10B-10 (S32)

= − 2koff,-35koff,-10

k̃on + koff,-35 + koff,-10

[RNAP]bound. (S33)

Hence, the dynamics of RNAP unbinding are characterized by

[RNAP]bound,t = [RNAP]bound,0e
−keffofft (S34)

where the likelihood of remaining bound decreases exponentially according to the timescale τ = 1
keffoff

.

Lastly, to connect this result to the calculations in the previous section, we return to the full model in
Fig. 1C where unbound RNAP can associate onto the promoter. As in simple monovalent ligand-receptor
systems, the effective dissociation constant Eq. S26 is related to the off-rate from the bound to unbound
states (keff

off) divided by the on-rate from the unbound to bound states (2kon), namely,

Keff
D =

keff
off

2kon
. (S35)
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