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Microbial metabolism is impressively flexible, enabling growth even when available
nutrients differ greatly from biomass in redox state. Escherichia coli, for example,
rearranges its physiology to grow on reduced and oxidized carbon sources through
several forms of fermentation and respiration. To understand the limits on and
evolutionary consequences of this metabolic flexibility, we developed a coarse-grained
mathematical framework coupling redox chemistry with principles of cellular resource
allocation. Our models inherit key qualities from both of their antecedents: i) describing
diverse metabolic chemistries and ii) enforcing the simultaneous balancing of atom
(e.g., carbon), electron, and energy (adenosine triphosphate) flows, as in redox models,
while iii) treating biomass as both the product and catalyst of the growth process, as in
resource allocation models. Assembling integrated models of respiration, fermentation,
and photosynthesis clarified key microbiological phenomena, including demonstrating
that autotrophs grow more slowly than heterotrophs because of constraints imposed
by the intracellular production of reduced carbon. Our model further predicted that
heterotrophic growth is improved by matching the redox state of biomass to the
nutrient environment. Through analysis of ≈60,000 genomes and diverse proteomic
datasets, we found evidence that proteins indeed accumulate amino acid substitutions
promoting redox matching. We therefore propose an unexpected mode of genome
evolution where substitutions neutral or even deleterious to the individual biochemical
or structural functions of proteins can nonetheless be selected due to a redox-chemical
benefit to the population.

microbial physiology | redox chemistry | metabolism | environmental science | protein evolution

Many microbes have a remarkable capacity for metabolic chemistry, growing on a
diversity of environmentally supplied nutrients (e.g., various forms of carbon, nitrogen,
and sulfur) in both oxic and anoxic settings. Escherichia coli strains, for example, can grow
on relatively reduced (e.g., lipids) and oxidized carbon (C) sources (e.g., small organic
acids) through several forms of fermentation and respiration (Fig. 1A). Some microbes can
even switch their fundamental metabolic mode (1), eating organic molecules in some con-
ditions (i.e., performing heterotrophy) while fixing CO2 into organics to build biomass in
others (i.e., performing autotrophy). Not all microbes are so flexible, yet this widespread
metabolic flexibility is noteworthy because it is essentially absent from animals.

The language of redox chemistry—intermolecular electron (e−) transfers—is often
used to describe metabolic flexibility. Redox logic is useful because all organisms extract
energy from their environments by coupling thermodynamically favorable e− transfers to
the synthesis of energy carriers like adenosine triphosphate (ATP). Using redox chemistry
to “coarse-grain” metabolism is advantageous because it can describe any metabolism,
enforces the simultaneous conservation of atoms and e−, and provides an opportunity
to incorporate thermodynamic limits via redox potentials (2, 3), as detailed in Fig. 2A,
Box 1 and SI Appendix, section S2. Yet redox chemistry is not a sufficient description
of microbial physiology. For example, microbes have intrinsic maximum growth rates
that arise in nutrient surplus (�max, Fig. 1B), but conservation of atoms and e− only
requires that fluxes of production and consumption balance—the fluxes, and, therefore,
the growth rate, can be arbitrarily large.

In recent years, several groups have developed a theory of cellular resource allocation to
explain how microbes rearrange their internal machinery to achieve different growth rates
(4–9). These models treat microbes as self-replicating catalysts whose growth rate, �, is
determined by the manner in which they apportion nutrients (e.g., carbon) and catalytic
activity (e.g., protein synthesis by ribosomes) to produce the enzymes that perform core
cellular tasks like catabolism and biosynthesis (Box 1 and Fig. 2B).

Considering cells as resource-allocating self-replicators can explain the existence of
an intrinsic maximum growth rate, �max, which arises when resources are optimally
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A B C

Fig. 1. E. coli exemplifies aspects of microbial growth that motivate integration of redox and resource allocation perspectives on metabolism. (A) Many
heterotrophic microbes are metabolically flexible, able to grow on a diversity of carbon sources (Y axis) and terminal e− acceptors (X axis); “other” denotes
trimethylamine N-oxide or dimethyl sulfoxide and “ferm.” fermentation. Purple rectangles indicate growth of E. coli strains, blue indicates growth predictions
from a metabolic model, and white denotes no growth (SI Appendix, section S1.3). Such diversity of donor-acceptor pairs motivates a redox description of
metabolism. (B) Microbes have intrinsic maximum growth rates, �max, that arises in nutrient surplus. Further, cells can grow at any growth rate � < �max.
This capacity is illustrated here with E. coli grown on various C sources (21) but also observed with variable nutrient concentrations in continuous culture.
Cell-intrinsic limits on growth and metabolic rates emerge naturally from resource allocation models (Box 1). (C) The chemical composition of cells is coupled
to the growth rate, �. As ribosomes are ≈2/3 RNA, faster-growing cells typically contain more RNA and less protein, as shown here for E. coli with data from
(14). While compositional shift is due to the role of ribosomes in translation, it has chemical consequences—RNA (C redox state ZC ≈ +0.9) is more oxidized
than protein (ZC ≈ −0.1) and so faster growth entails the relative oxidation of biomass (15).

divided between catabolism and biosynthesis so that influxes
of precursors are matched by the anabolic processes consuming
them (4–9). Furthermore, because biological macromolecules
play different cellular roles—metabolic reactions are catalyzed by
proteins, but ribosomes are 60 to 70% RNA by mass (10, 11)—
resource allocation can also explain observed changes in biomass
composition that accompany increases in � (4–9), including
increases in the RNA:protein ratio (5, 12–14).

In addition to its central role in ribosomes, RNA is also fairly
oxidized (e− poor), with a formal carbon redox state of ZC ≈
+0.9 charge units per carbon. In contrast, values for proteins
are about 1 e−/C more reduced (e− rich), ranging from −0.1
to −0.3 (3, 15). As such, increasing RNA:protein ratios entail
the oxidation of biomass carbon during faster growth (Fig. 1C ).
To understand how concerted changes in biomass redox state
should affect growth, we developed an integrated redox chemical
model of microbial resource allocation to study intrinsic limits
on growth and metabolic rates in coarse-grained, yet chemically
specific language (Box 1 and Fig. 2C ). As microbial communities
are pivotal contributors to global recycling of carbon, nitrogen,
phosphorus, and sulfur (16), theories describing limits on the
chemical activities of microbes offer a conceptual framework
for reasoning about the history and future of biogeochemical
cycles (17–20). Here, we describe such a theory, draw lessons
and predictions from it, and offer empirical support for those
predictions from the genomes and proteomes of diverse microbes.

Results

A Redox Chemical Model of Microbial Self-Replication. To
merge redox and resource-economic descriptions, we track the
redox state of carbon (ZC) in growth substrates (e.g., an organic C
source like glucose) and products (e.g., CO2, biomass).ZC counts
the average number of valence e− associated with C atoms in a
molecule (3). Electrons are counted by their charge, with negative
ZC denoting excess e− compared to neutrally charged C atoms
(4 valence e−) and positive ZC denoting paucity. See the Box 1
and SI Appendix, section S2 for detail on redox calculations.

Consider heterotrophic respiration—the net transfer of e−
from organic molecules to a terminal acceptor like O2 as
depicted in Fig. 2. This metabolism couples three redox reactions

i) oxidation, ii) reduction, and iii) anabolism. Oxidation extracts
e− from the reduced C source (Cred) while reduction drives
respiratory ATP production by harnessing the flow of e− to
O2 to generate a proton-motive force driving an ATP synthase
(2, 23). Not all C atoms can be oxidized to make ATP, however,
or there will be no growth or maintenance of biomass. Rather,
some organic C is used in anabolism to make new biomass, with
a mass-specific flux of

1
M

dM
dt

= � = mC · Jana. [1]

Here, M is the carbon mass of cells, � is the growth rate (C mass
doublings per hour), Jana the anabolic flux (mol C/g C/h), and
mC is the molar mass of C. In cells, e− are carried between these
processes by soluble molecules like nicotinamides, flavins, and
quinones which we represent as a single generic redox couple
ECH/EC+ for “electron carrier,” ECH being the reduced form
carrying two e−. Reduction of the terminal acceptor exchanges
−�ered ECH for �ared ATP, where stoichiometric coefficients ��
are marked in Fig. 2C. Coefficients �� adopt negative values
for reactions consuming a molecule of interest, e.g., anabolism
typically consumes ATP and so �aana < 0. As C sources can differ
from biomass in ZC, anabolism is not necessarily redox neutral,
producing �eana ECH per C atom.

Conservation of mass requires conservation of electrons, which
occurs when

d [ECH]
dt

= �eoxJox + �eredJred + �eanaJana − �[ECH] = 0, [2]

where �[ECH] accounts for dilution of the e− carrier due to
growth. �eox = 1

2 (ZC,ox − ZC,red) and �eana = 1
2 (ZC,B − ZC,red)

are calculated from ZC values for biomass (ZC,B), the C source
(Cred with ZC,red), and the oxidized product (e.g., ZC,ox = +4
for CO2). So a model tracking ZC conserves e− in addition to C
atoms and biosynthetic activity.

In addition to balancing redox reactions, cells must also extract
sufficient ATP for maintenance (b) and biosynthesis (�aanaJana),
implying that

d [ATP]
dt

= �aoxJox + �aredJred + �aanaJana− �[ATP]− b = 0. [3]
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A

C

B

Fig. 2. Redox chemistry and cellular resource allocation are complementary frameworks describing the coupling of metabolism and growth. (A) A redox
framing of metabolism treats growth as a electrochemical process converting nutrients into energy (ATP) and biomass. The chemical composition of nutrients,
biomass, and secretions are enumerated so that conservation of atoms and electrons (e−) can be verified. (B) A resource allocation perspective, in contrast,
considers the subdivision of cellular biosynthetic activity to a variety of tasks like translation, precursor biosynthesis, and nutrient transport. Proteins are
the dominant catalysts of cellular activities, so this allocation is typically represented as a pie chart subdividing total ribosome activity. These models have
complementary strengths. Redox models like (A) are chemically specific, expressing differences between sugar and fatty acid nutrients, O2 and sulfate as e−
acceptors. Allocation frameworks like (B), in contrast, lack chemical specificity, but recapitulate cell-intrinsic limits on growth and metabolic rates, as explained
in Box 1. (C) We integrated these two frameworks to construct a unified model of microbial metabolism. Reactions are written per C atom with electron (�e� )
and ATP (�a� ) stoichiometries as labeled. Notice that the pie chart here subdivides total biosynthetic capacity, not just protein translation. The unlabeled gray
sector indicates that more processes can be modeled, as discussed in the text. The anabolic flux Jana equals the growth rate � in appropriate units (Eq. 1). Key
terms are defined in the glossary; model equations are described in the text and SI Appendix, sections S3–S6.

PNAS 2025 Vol. 122 No. 1 e2404048121 https://doi.org/10.1073/pnas.2404048121 3 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 2
4.

20
5.

15
5.

22
7 

on
 J

an
ua

ry
 3

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
24

.2
05

.1
55

.2
27

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2404048121#supplementary-materials


Box 1.

Redox chemical and resource allocation approaches to microbial physiology.

Cells are made of a collection of small and macro-molecules called biomass. The anabolic reactions forming biomass
require energy because the product is an ordered assemblage that maintains structural integrity, senses external
changes, and catalyzes reactions. To repair biomass or grow, cells must also draw atoms and bonding e− from the
outside world. These form the covalent bonds—e.g., C-C, C-N, and Fe-S—found in all biological molecules.

To sustain life, therefore, metabolism must extract energy, atoms, and e− in the correct proportions. Coordinating,
or “balancing” these flows in a changing environment is a nontrivial challenge—one met by regulatory control
systems collectively termed “physiology.”

The challenge of balancing energy, atoms, and e− is emphasized by writing reduction-oxidation (redox) reactions
describing a metabolism, in this case, aerobic respiration of reduced organic matter (Cred) as in Fig. 2A. Respiring cells
withdraw e− from Cred, i.e., oxidize it. Those e− are either donated to O2 (“reduction,” fraction f ) forming an “energy
circuit” that generates ATP, or reacted with ATP and Cred to form biomass (fraction f̄ = 1 − f ). These reactions are
summarized as

Here, �e� and �a� are stoichiometric coefficients for e− and ATP, respectively. These redox reactions—oxidation,
reduction, and anabolism—sum up to a full metabolism (“net”). Conservation of mass demands zero net production
of e−, meaning 0 = �eox − f �ered − f̄ �eana as underlined above. Similarly, ATP mass-balance requires 0 = �aox + f �ared −

f̄ �aana.
Considering glucose oxidation to CO2, �eox = 4 e−/C can be calculated from formal C oxidation states (ZC) of

substrates and products, as elaborated in SI Appendix, section S2. Movement of e− toward more positive reduction
potentials, E ′◦, is favorable, and so cells can extract energy as ATP by transferring e− from Cred to O2—here, O2 is
the “terminal e− acceptor.” The standard free energy of this reaction—the sum of two half-reactions—is ΔrG′◦ =

−nFΔE ′◦ = −nF(E ′◦red−E
′◦
ox), where n is the number of e− transferred and F the Faraday constant. After accounting for

reactant concentrations (SI Appendix, section S2) we arrive at a reaction energy ΔrG′ that is constrained by the second
law as follows

ΔrG′︸ ︷︷ ︸
oxidation + reduction energy

+(�aox + �ared)︸ ︷︷ ︸
ATP yield

ΔrG′ATP︸ ︷︷ ︸
ATP energy

≤ 0.

This example highlights two merits of a redox framing of metabolism. First, by enumerating the chemistry of e−
donors (e.g., Cred), acceptors (e.g., O2), and biomass, redox models enforce conservation of elements (here C) and
e−. Formal oxidation states (e.g., ZC) aid in verifying conservation of e−—redox formalism used for counting. Second,
tables of E ′◦ values are used to ensure that ATP yields are consistent with the second law—redox formalism for
energetics.

Redox descriptions of metabolism are also chemically specific—preserving distinctions between glucose, and
pyruvate, for instance, and distinguishing respiration from fermentation or photosynthesis (SI Appendix, Figs. S1,
S3, and S4). However, redox principles fail to explain key facets of growth, especially intrinsic limits on growth and
metabolic rates. In Fig. 2A, rates are limited by the supply of key nutrients (e.g., O2), but have no biological limits.

Maximum rates arise because of the limited activities of biological catalysts. Proteins are made by ribosomes, for
example, at maximum elongation rates of ≈10 amino acids/s (AA/s). Growth can proceed no faster than ribosomes
reproduce the proteome, so a simple estimate of the ribosome-limited growth rate is given by

�rib ≈
Nrib

ribosomes
cell · 4× 104 AA

h·rib.
109 AA

cell
= 4× 10−5

· Nrib h−1.

Here, �rib ≈ 1 h−1 when cells contain ≈2 × 104 active ribosomes, in rough agreement with measurements (7, 22).
So the fact of autocatalysis—that biomass is both the product and catalyst of anabolism—sets finite limits on

growth. Ribosomes are of special interest because proteins perform the catalytic work in cells. Models can encode
these constraints by expressing the allocation of a finite ribosome activity to the production of proteins with different
activities (4–9). This division of labor is often presented as a pie chart, as in Fig. 2B.

(see Box 1, continued)
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Box 1, (continued).

Resource allocation models recapitulate cell-intrinsic limits on growth, yet lack chemical specificity. This motivated
our integration of redox principles. As redox framings treat the whole of biomass as a product, a key step was draw-
ing pie charts subdividing all of biomass rather than protein, as in Fig. 2C. To sustain growth in this unified model,
cells must allocate resources to synthesis of oxidative (C mass fraction �ox), reductive (�red), and anabolic (�ana)
enzymes so that fluxes Jox, Jred, and Jana balance, extracting sufficient ATP while conserving atoms, cofactors, e−, and
total biosynthetic activity. �O denotes the remaining noncatalytic mass, encompassing structural components like
lipids. Equations are described in the text and derived in SI Appendix, sections S3–S6.

One fundamental aspect of growth absent from these equations
is autocatalysis: Biomass is both the product and the catalyst
of growth (4–9). As such, each of the mass-specific fluxes Jox,
Jred, and Jana (generically J�), depend on the amount of cellular
catalyst (C mass ��M ) and its mass-specific activity (� , mol/g
C/h)

J� = ��� f�(c). [4]

Cells manipulate �� by regulating the synthesis and activity of
enzymes. Here, f�(c) is relative catalytic activity as a function
of reactant concentrations (via the concentration vector c),
accounting for substrate saturation, product inhibition, and
concentration-dependent regulation, as described in SI Appendix,
section S4.

Recognizing the autocatalytic constraint on growth, we sub-
divide biomass into its catalytic (�ox, �red, and �ana) and
noncatalytic (�O) C mass fractions so that a proportionality
between, for example, Jred and�red can be enforced. An allocation
constraint then requires that all of biomass is accounted for, as
given by

�ox + �red + �ana︸ ︷︷ ︸
catalytic C mass fractions

= 1− �O. [5]

As a result of this constraint, and in contrast with purely
redox descriptions of metabolism, our unified model displays a
maximum growth rate �max because allocation of more biomass
to one process (e.g., increasing �red) displaces another (e.g., �ana,
Fig. 3A).

Chemical Limits on Growth and Metabolic Rates. While fluxes
J� are potentially nonlinear functions of substrate and product
concentrations, the above model can be simplified by assuming
reactions are irreversible and substrate-saturated, i.e., f�(c) =
1. We study this simplified model to gain intuition about the
chemical requirements of growth, exploring nonlinear models in
supplement (SI Appendix, section S7).

Since cells must apportion finite catalytic capacity (i.e., enzyme
mass) between C source oxidation, acceptor reduction, and
biosynthesis, a maximum growth rate �max arises when increasing
the anabolic allocation �ana no longer increases the biosynthetic
flux mC · Jana = �. This occurs because increasing �ana further
displaces oxidation or reduction, lowering production of ATP or
ECH beneath the level needed to support Jana and, therefore, �.

Given a set of parameter values and limits on �O, one can
calculate�max and J∗red, a flux beyond which additional respiratory
CO2 production no longer increases � (Fig. 3A and SI Appendix,
Fig. S6). These values depend on biochemical kinetics (�),
stoichiometries (e.g., �ared ATP produced per O2 reduced), and
the redox states of nutrients and biomass (ZC,red and ZC,B). As

such, our model permits principled calculation of carbon use
efficiencies—values representing the fraction of C taken up from
the environment that is incorporated into biomass—which are
widely used to understand and predict microbial carbon cycling
in natural settings (24, 25).

Understanding the Role of Noncatalytic Compounds in Het-
erotrophic Growth. Presuming ATP and e− carrier concentra-
tions are constrained to typical physiological values [≈1 to 10
mM, (22)], our model involves three equations and four free
variables �ox, �red, �ana, �O (Fig. 2C ). When the growth rate
is maximized, i.e., when � = �max, the noncatalytic biomass
fraction, �O, must reach the minimum allowed value �O,min
(Fig. 3B). Otherwise cells could grow faster by decreasing �O
and redistributing that mass to catalytic tasks. It follows that
�O > �O,min when � < �max, i.e., that cells make more
noncatalytic biomass when forced to grow at submaximal rates
due to nutrient limitation, for example. In the linearized model,
therefore, accepting variable �O > �O,min permits a continuum
of submaximal growth rates � < �max, with �O increasing as �
decreases (5). This observation reveals how noncatalytic C storage
molecules like glycogen (26) and lipid bodies (27, 28) can serve
as a means of balancing fluxes of carbon, energy, and reductant to

A B

Fig. 3. The integrated model has a maximum growth rate. Panels give
results from optimization of the linearized model described in the text. (A)
A maximum growth rate, �max (yellow circle), arises because �� trade-off
with each other, as shown by pie charts giving the biomass composition
at marked points. When �red is small (red sector), for example, increasing
�red increases � by providing ATP for anabolism (green sector). When �red is
large, increasing �red decreases � by displacing �ana. The exact value of �max
depends on model parameters (SI Appendix, Fig. S15). (B) Our model tracks
carbon, but omits nitrogen, phosphorus, and other key nutrients. We can
nonetheless simulate nutrient limitation by setting a maximum growth rate.
This enables us to plot C mass fractions �� as a function of �, analogous to
chemostat experiments (14). The green line gives �ana; dashed red and blue
give �ox and �red, respectively. �max arises when �O (dark green) achieves its
minimum allowed value (dotted-dashed line). The vertical dashed line (black)
gives a simple estimate of �max ≈ ana(1 − �O,min) made by assuming all
catalytic mass is anabolic.
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enable growth at a rate set by exogenous limitations. Consistent
with this view, microbes typically accumulate C storage molecules
in nutrient-limited conditions, with the amount inversely related
to � (26–31).

A Need for Regulatory Mechanisms Balancing Flows of Energy,
Reductant, and Carbon. Because microbes can grow on a variety
of carbon sources (Fig. 1A), we considered respiratory growth as
a function of C source redox state, ZC,red. This value affects
both oxidative e− yield (stoichiometric coefficient �eox) and
anabolic demand for e− (�eana). Holding all other parameter values
constant, we found that growth was only feasible whenZC,red falls
in a defined range; outside this range �max = 0 (Fig. 4A). These
limits on growth result from our assumption that anabolism
consumes ATP and ECH in a defined ratio (�aana/�eana per C,
Fig. 2C ). If the C source is too reduced [e.g., ZC,red ≈ −2, as for
fatty acids (3)] its oxidation yields more ECH (�eox increases) but
anabolism consumes fewer (−�eana decreases). These conflicting
trends make it impossible for the modeled cell to grow on very
reduced substrates as there is no sink for excess reductant other
than producing unneeded ATP. Likewise, problems arise if the C
source is too oxidized, and these challenges persist in a nonlinear
model where fluxes J� are saturating functions of concentrations
(SI Appendix, Figs. S12–S14).

In photosynthetic organisms, imbalances between the supply
of and demand for ATP and ECH are addressed by various kinds
of light-powered alternative e− flow (32, 33). In contrast to linear
e− flow, which produces reductant and ATP in a characteristic
ratio, alternative flows produce only ATP and can therefore be
used to adjust the ATP:ECH production ratio to match anabolic
needs, e.g., the Calvin-Benson cycle consumes 3 ATP and 4 e−
per CO2 fixed. Based on theZC,red limits of our simplified model,
it is apparent that heterotrophy also requires some mechanism of
ATP:ECH flux ratio balancing. Such a mechanism could include
regulation of ATP production stoichiometry (i.e., altering �aox

or �ared), a shift in biomass composition affecting ATP or ECH
demand (altering �aana or �eana), regulated ATP hydrolysis (break-
down to ADP), or some additional sink for ECH (e.g., CO2 fixa-
tion as in ref. 34). We chose to model regulated ATP hydrolysis as
this approach is simpler than others. Including an ECH sink, for
example, is straightforward, but requires an additional terminal
e− acceptor or more complex flux-coupling (SI Appendix, section
S5). Regardless of the underlying mechanisms, regulated ATP
homeostasis appears to be a substantial cost for bacteria (35).

After adding a regulated ATP hydrolysis reaction (flux JH),
growth became feasible across the full range of ZC,red values
(purple curve in Fig. 4B), and such homeostasis was not required
for growth within the above limits. Yet, outside those limits,
ATP homeostasis imposes a substantial cost: �max decreases
roughly quadratically as ZC,red diverges from the preferred range
(Fig. 4B and SI Appendix, Fig. S15). This result highlights that
metabolic flexibility has a cost: Heterotrophs can arrange their
metabolic stoichiometry to optimize growth on a preferred range
of C sources and e− acceptors, but switching to a substantially
different metabolism (e.g., with a very different ZC,red) requires
some regulatory mechanism ensuring balanced flows of ATP,
e−, and C. Moreover, if the goal is to maintain fast growth
without regulatory overhead, it is preferable to make biomass
that is similar to nutrients in redox state, as �max arises when
ZC,B ≈ ZC,red (Fig. 4A).

Thus far, our model offered two valuable lessons regarding
physiology: i) carbon storage molecules enable a continuum
of submaximal growth rates (Fig. 3B), and ii) flux-balancing
regulatory mechanisms enable heterotrophic growth on carbon
sources spanning a wide range of redox states (Fig. 4 B and
C ). This latter point might provide context for observations
that light-harvesting proteins called rhodopsins are abundantly
expressed by heterotrophic microbes across Earth’s oceans (36),
as these proteins provide a light-dependent source of ATP
synthesis—an analog of alternative e− flows for heterotrophy.

A B

C

D

Fig. 4. Understanding the consequences of metabolic flexibility through the integrated model. Panels show results from optimization of the linearized model
discussed in the text. (A) A model of heterotrophic respiration achieves its fastest growth rate when the C source is somewhat more reduced than biomass
(yellow circle marking �∗max), consistent with the dual roles of Cred as a source of atoms for anabolism and e− for energy extraction. The gray range marks the
span of ZC,red values for organic C sources from ref. 3. If ZC,red and ZC,B were very different, growth was infeasible (where �max = 0). A model instantiation can
therefore be characterized by a viable range of ZC,red values, as marked. The failure to grow outside this range is due to the inability to simultaneously balance
flows of e−, energy, and C, as discussed in the text. This baseline model has ATP stoichiometries �aox = 0.5 ATP/C, �ared = 1 ATP/e−, �aana = −0.3 ATP/C, and
ZC,B = 0. (B) Adding a regulated ATP hydrolysis reaction (+reg.) enables the model to balance ATP and e− carriers by hydrolysis of excess ATP. This permits
growth with any ZC,red value, as shown by the purple curve. (C) Altering stoichiometric coefficients, e.g., of ATP production or consumption, can widen or shrink
the range of ZC,red values that permit growth. A variant with �aox = 0.75 is in blue, �ared = 0.5 in red, and �aana = −1 in green. As such, regulated switching of
metabolic pathways, which can alter �a� , can also serve as a means of balancing flows of C, ATP, and e−. (D) Varying the ATP yield of reduction (�ared, red curve) or
the ATP cost of anabolism (−�aana, green curve) reveals a tradeoff between �∗max and metabolic flexibility. Higher ATP yields or lower ATP costs give the largest
�∗max values, but over the narrowest range of viable ZC,red values. For detail, see SI Appendix, Fig. S15.
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Metabolic Flexibility and Fast Growth Are Conflicting Goals.
We saw that regulatory mechanisms are needed to permit growth
when there is a large difference between the redox state of biomass
carbon (ZC,B) environmentally supplied C sources (ZC,red). These
mechanisms can take various forms, but inevitably take up
“space” in biomass and consume resources like ATP to achieve
flux balance. Such homeostasis is only required when ZC,red falls
outside a preferred range that we calculate analytically from model
parameters in SI Appendix, section S6. As shown in Fig. 4C, this
range depends on the stoichiometric coefficients in the model,
e.g., the ATP yield of reduction (�ared) and the ECH requirements
of anabolism (�eana; see SI Appendix, section S6). This emphasizes
an equivalence between regulated pathway switching, which can
alter stoichiometries, and other forms of flux-balancing, e.g.,
regulated ATP hydrolysis (Fig. 4B) or alternative e− flows.

Altering stoichiometries—e.g., by switching oxidative (37)
or reductive pathways (38, 39)—affects the preferred ZC,red
range. The range can be widened by decreasing the reductive
ATP yield (�ared), for example, but at the expense of decreasing
�max (Fig. 4D). Increasing anabolic ATP demand (−�aana) had
a similar effect, highlighting that a tradeoff between flexibility
and fast growth is embedded in the structure of heterotrophic
metabolism.

Autotrophy and Fermentation Are More Constrained than
Respiration. An advantage of redox formalism is that it naturally
describes the full diversity of microbial metabolism, including
heterotrophic respiration (Fig. 2C ), oxygenic photosynthesis
(Fig. 5A), chemolithoautotrophy (SI Appendix, Fig. S4), and
fermentation (SI Appendix, Fig. S5). Indeed, in our framework,
equations for photosynthesis are nearly identical to those for
respiration, containing one additional mass balance constraint
because autotrophs produce reduced carbon (Cred) intracellularly

and use it to make biomass.
d [Cred]
dt

= Jred − Jana − �[Cred]. [6]

Due to this additional constraint, models of autotrophy are
defined by at least four equations. As such, four variables (�ox,
�red, �ana, �O) do not permit a continuum of growth rates
� < �max; it was natural to include alternative e− flow as a fifth
process in models of photosynthesis (JAEF ∝ �AEF, Fig. 5A).

Additional constraints on autotrophy can only decrease �max.
In our linearized model, the effect on �max depends on the
Cred concentration via the dilution term �[Cred] (SI Appendix,
Fig. S17), but this additional constraint reduces autotrophic
�max values even when [Cred] is negligible because Jred ≈ Jana
is required in this limit (see SI Appendix, Fig. S18 for a
geometric explanation). To estimate the magnitude of this effect
on �max, we sampled parameter values to construct comparable
models of photosynthesis and respiration, observing a roughly
threefold reduction in �max (Fig. 5B), with the exact difference
depending on the sampling procedure (SI Appendix, Fig. S17).
Our results therefore indicate that constraints absent from
respiration could explain why the fastest-growing autotrophs have
longer generation times than the fastest heterotrophs (Fig. 5C ),
even when grown in nutrient surfeit (40–43).

Similar to autotrophy, minimal models of fermentation
contain a mass-balance constraint not present in respiration.
Fermentations are heterotrophic metabolisms where the e−
acceptor is an intracellular product of the C source, e.g., the
glycolytic product pyruvate is the e− acceptor in lactic acid
fermentation of glucose (SI Appendix, Fig. S5). Steady-state
growth therefore requires balanced fluxes of pyruvate production
and consumption. Yet, as shown in SI Appendix, section S5.3,
this constraint is mathematically distinct from autotrophy and,
as such, affects fermentative growth differently.

A B C

Fig. 5. A constraint imposed only on autotrophs reduces maximum growth rates. (A) A model of photosynthesis comprises nearly identical equations to
respiration, but with key differences. Due to the use of light energy, phototrophs can balance ATP and redox carriers with new ATP synthesis, i.e., via alternative
e− flows (JAEF ∝ �AEF). Second, because autotrophs produce and consume Cred intracellularly, fluxes of Cred production, consumption, and dilution must be
balanced. Heterotrophs, in contrast, acquire Cred from outside the cell and can deplete it. (B) Comparing models of photosynthesis and respiration with identical
kinetic parameters, we found that respiratory �max values exceeded photosynthetic ones by approximately threefold (compare green and purple dots). �max
was calculated by optimization of the linearized model, as described in SI Appendix, section S4. (C) This result is qualitatively consistent with measurements.
The fastest-growing photosynthetic microbes known grow 5 to 10 times more slowly than heterotrophic counterparts. Purple markers denote heterotrophs,
green photoautotrophs, and yellow chemolithoautotrophs. Heterotrophic organisms: N V. natriegens, E. coli (-proteobacteria), � C. perfringens (clostridia).
Autotrophs: P. celeri, ● C. ohadii (green algae),I S. elongatus PCC 11801 (cyanobacterium),J T. crunogena (-proteobacterial chemoautotroph).
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Energy Economy Impacts the Redox State of Proteins. Above
we saw that large differences between biomass and nutrient redox
state (|ZC,B − ZC,red|) challenge heterotrophic growth (Fig. 4),
raising the prospect that microbes may adapt the composition
of their biomass over physiological and evolutionary timescales
to reduce the magnitude of the biochemical task. Fig. 4A gave
us a sense of the expected direction of adaptation: In nutrient
surplus, microbial growth is improved by making biomass with
ZC,B ≈ ZC,red.

Fig. 6A illustrates how �max varies as a function of ZC,B and
ZC,red. The largest values fall just above the line of equality
(ZC,B = ZC,red), indicating that the �-maximizing ZC,B value
is somewhat more oxidized than the C source. This is due to the
need to use a fraction of the e− from C substrates to produce
ATP. The �-maximizing ZC,B can be expressed as

Z∗C,B = KZZC,red + Z◦, [7]

where the slope, KZ , and intercept, Z◦, are functions of all
model parameters and typicalKZ values are positive (SI Appendix,
section S6.2). We interpret the right-hand side of this equation
as an effective environmental redox potential, one that includes
ZC,red, the potential of the e− acceptor (via the reductive ATP
yield, �aox), and the magnitudes of all intracellular fluxes. We
also noted that the penalty of deviating from Z∗C,B by Δz is
approximately quadratic in Δz (Fig. 4B and SI Appendix, Fig.
S16). So adapting ZC,B to the local environment is desirable—
it reduces excess expenditures of energy and catalytic capacity,
maximizing � in rich environments.

If microbial lineages have characteristic habitats—
environments with typical Z∗C,B values—and experience
surplus with sufficient frequency, we expect evolutionary
selection to push ZC,B toward Z∗C,B. Yet microbes frequently
experience growth-limiting nutrient and/or energy deprivation
in the wild—whether in soils (45, 46), sediments (47) or
elsewhere—so it is worth clarifying why we nonetheless assume
selection for faster growth in rich conditions. Selection and
drift proceed over generations, not over absolute time (48). If
microbes episodically experience nutrient surplus, fast growth

can account for a sizable fraction of generations even if it
represents a minuscule fraction of the time window considered.
As such, selection for increased maximum growth rate is
consistent with the widespread limitation of microbial growth.

We therefore hypothesized that the redox chemistry of
microbial biomass should evolve to match their environments
(49), becoming more reduced when Z∗C,B − Z◦ > KZZC,red
(Fig. 6B) or more oxidized when Z∗C,B − Z◦ < KZZC,red.
Proteins, for example, can typically accept a variety of amino
acid substitutions while still folding to achieve similar structures
and biochemical activities (50). Indeed, across the tree of life,
aminoacyl tRNA synthetases span nearly as wide a range of ZC
values as all globular proteins in the E. coli genome (SI Appendix,
Fig. S20). Amino acid substitutions that move ZC,B toward
optimality should therefore be both permitted and favored,
for example substituting arginine (ZC = +1/3) with lysine
(ZC = −2/3) in reducing conditions. As microbial genomes
encode thousands of proteins, a generic selection pressure on
ZC,B should affect all proteins, promoting substitutions moving
in the same direction and resulting in positive correlations
between ZC values of proteins in the same genome (Fig. 6B).

Importantly, while our analysis presumes balanced growth—
i.e., time-invariant intracellular concentrations—we do not
require chemical equilibrium. Rather, our model describes intra-
cellular processes that must all carry net forward flux for growth
to occur. Directional fluxes are a hallmark of nonequilibrium
systems. In contrast with equilibrium descriptions (49), the
magnitudes of these intracellular fluxes alter the optimal biomass
redox state (Z∗C,B) in our model.

Positive Correlations in Protein C Redox State Across the Tree
of Life. To test our hypothesis, we examined a set of ≈60,000
genomes from across the bacterial tree curated by the Genome
Taxonomy Database [GTDB, (44)]. GTDB also identifies
sequences for 120 single-copy genes in the bac120 gene set.
Using single-copy genes enabled comparison of proteinZC values
without the ambiguity arising from paralogs, i.e., genes with
shared ancestry that have evolved different functions. We found
that Pearson correlations (�) between bac120 ZC values were

A B C

E

D

Fig. 6. ZC values of conserved proteins are positively correlated, highlighting a redox-driven mode of protein evolution. (A) Optimization of our linearized
model indicated that heterotrophic growth can be improved by matching the redox state of biomass (ZC,B) to the carbon source (ZC,red). The dashed gray line
marks ZC,B = ZC,red and the growth rate is maximized (black line) when the C source is somewhat more reduced than biomass. (B) If microbes are found in
particular redox environments and/or have preferred metabolisms, we expect their biomass and, therefore, their proteins to take on the redox character of
their environments. For example, organisms thriving in reducing environments should benefit from evolving more reduced proteins, as diagrammed. Proteins
in the same genome should therefore exhibit positively correlated ZC values. We calculated ZC correlations for pairs of highly conserved single-copy genes
across ≈60,000 genomes spanning the bacterial tree of life (44). Panel (C) documents strong positive correlation between ZC values of serine and isoleucine
tRNA synthetases. (D) Comparison of the signal recognition particle receptor, FtsY, and the DNA repair protein RadA. (E) Considering pairs of 120 conserved
genes, ZC correlations were almost uniformly positive, with an interquartile range of +0.41 to 0.59. See SI Appendix, section S1.6 and Fig. S22 for detail.
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almost uniformly positive, with an interquartile range (IQR) of
0.41 to 0.59 and a 99% CI on the mean of 0.491 to 0.499 (Fig. 5
C and F and SI Appendix, Fig. S21).

Given their ubiquity, it is not surprising that bac120 genes
perform essential functions like transcription (6 genes), transla-
tion (70), genome replication (18), and protein secretion (6). So,
in addition to recording the influence of environmental redox
conditions on coding sequences, positive correlations might also
reflect the prominent and mostly anabolic roles bac120 genes play
in all bacteria. Indeed, expression of many anabolic proteins—
especially those involved in protein synthesis—correlates pos-
itively with � (8, 21, 51, 52). Because increasing ribosome
content results in the relative oxidation of biomass (Fig. 1C ),
one might expect anabolic enzymes to accrue reducing amino acid
substitutions that compensate for oxidation, thereby preserving
Z∗C,B ≈ KZZC,red + Z◦ as � increases.

While both explanations are compatible with our model, we
attempted to control for environmental effects, which should
affect the entire genome, by calculating partial correlations
controlling for the mean ZC of protein-coding sequences in
each genome. Partial correlations were attenuated but remained
significantly biased toward positive values (IQR = 0.07 to 0.21,
99% CI = 0.135 to 0.141, SI Appendix, Fig. S22), indicating
that both physiology and environment affect the redox state of
protein carbon.

Redox Driven Protein Sequence Evolution. Proteins are typically
considered to evolve toward improved individual function so long
as the organism benefits from the improvement (50, 53). Based on
the correlations documented in Fig. 6F, we propose an additional
mode of protein evolution wherein mutations neutral or even
weakly deleterious to the biochemical or structural functions
of individual proteins might nonetheless be selected due to an
organismal benefit—they cause ZC,B to better align with the
redox chemistry of the host’s typical environment (49). The
affected proteins can be involved in any cellular process, but
large and highly expressed proteins will affect ZC,B more.

Substantial changes to protein ZC typically require more
than one nucleotide substitution, however. To understand why,
recall that single nucleotide substitutions tend to produce small

A B C

D

Fig. 7. Proteomes compensate for the oxidation of biomass during fast
growth. (A) Faster-growing E. coli cells contain more RNA and less protein.
We estimated the change in biomass C redox state, ΔZC,B, due to measured
�-dependent changes in biomass composition [(14); see SI Appendix, section
S1.4]. This calculation implied an oxidation of biomass of ≈0.05 ZC units per
unit � increase (h−1 units), comparable to the SD of E. coli cytosolic proteins
(� = 0.04, SI Appendix, Fig. S20). Given the importance of ZC,B to attaining
maximal growth rates in our model, we expected cells to compensate for
this oxidation by making more reduced molecules during faster growth. (B)
Quantitative proteomics in E. coli (21) show that the proteins expressed during
fast growth are more reduced. The observed effect is of the same order as, but
falls short of complete compensation for (dashed line), background oxidation
estimated in (A). (C and D) Data from yeast (52) and cyanobacteria (51) show
similar trends, suggesting a generic mechanism.

changes in amino acid hydrophobicity metrics (54). As amino
acid hydrophobicity correlates with ZC, substitutions altering
ZC usually require multiple nucleotide changes (SI Appendix,
Fig. S23). So the rate of mutations altering protein ZC is lower
than the average substitution rate, and larger selection coefficients
are needed to drive these sequence changes to fixation (48).

Faster Growth Induces Coordinated Shifts in the C Redox State
of Proteomes. One principle arising from resource allocation
logic is that, in conditions of surplus, � is often limited by protein
translation (4, 5, 7). Even in nutrient-limited conditions, higher
� typically coincides with greater ribosome activities and larger
RNA:protein ratios (55, 56). Since ribosomes are ≈2/3 RNA
by mass (10, 11) and RNA is about 1 e−/C more oxidized than
protein (3, 15), increased RNA content entails a relative oxidation
of biomass at higher � (Fig. 1C ).

We estimated these biomass C redox changes by noting that
slower-growing E. coli cultures are ≈10% RNA and ≈60%
protein by mass (� ≈ 0.4 h−1), while fast growing cultures
(� ≈ 2 h−1) are≈20% RNA and≈40% protein (14). Assuming
ZC ≈ +0.9 for RNA and ≈ −0.15 for protein (15), ZC,B
increases by ≈0.05 for each unit increase in � (h−1 units; see
SI Appendix, section S1.4). This value may seem small, yet, as
noted above, deviations from optimal ZC,B lead to quadratic
decreases in �max in our model. As translation cycle catalysts
(ribosomes, tRNAs) are made of relatively oxidized polymers,
we predicted that the remainder of biomass—proteins, lipids,
storage polymers—should shift by a similar degree, but in the
direction of reduction, to compensate (Fig. 7A).

In principle, ZC,B can be calculated from the elemental com-
position of biomass (3). While C:N:P ratios, or “Redfield ratios”
(57), are commonly measured (58, 59), accurate C:H:O:S ratios
are also required to calculate ZC,B. We noted that quantitative
proteomic surveys (21, 51, 52) report on the abundance and
elemental composition of proteins and, therefore, the average
redox state of protein C, ZC,P. Consistent with our prediction, a
comprehensive E. coli dataset (21) showed a systematic trend
where the proteome was ≈0.005 units more reduced at the
fastest growth rates measured (Fig. 7B). This work manipulated
� in chemostats and also by varying the C source in batch
culture (21). These manipulations produced similar �-ZC,P plots,
suggesting that �, rather than C source chemistry, is the primary
determinant of ZC,P. Assuming that all biomass constituents
participate equally in compensating for RNA-induced oxidation,
we estimated that the relative reduction of E. coli protein C
(≈0.01 ZC units per � unit) compensates for ≈30% of the total
effect (SI Appendix, Fig. S25).

To see whether this observation is general, we examined addi-
tional E. coli, yeast (52) and cyanobacterial datasets (51). Though
these microbes perform distinct metabolisms and are separated
by billions of years of evolutionary divergence (60), all datasets
displayed �-dependent ZC,P changes of the same direction and
magnitude (Fig. 7C andD and SI Appendix, Fig. S24). This effect
appeared to be diffuse and widely shared across the proteome
because explaining ZC,P variance required a linear model tracking
proteins with at least 5 distinct biological functions (SI Appendix,
Fig. S26). Further,ZC,P values calculated from expressed proteins
differed significantly from those estimated from coding sequences
(SI Appendix, Fig. S27), indicating that i) regulation of gene
expression substantially affects ZC,P, and ii) genomes and
metagenomes yield an incomplete picture of protein ZC (15, 49).

These observations add to decades of literature document-
ing �-dependent changes in microbial form and composition.
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In E. coli, for example, fast-growing cells are larger (12), have
greater mass (61), lower surface area to volume ratios (62),
contain more ribosomes and, consequently, more RNA, less
protein, and, typically, less lipid as a fraction of total biomass
(5, 12–14). Similar trends are documented for other microbes,
especially yeast (55). These rearrangements can be rationalized
via resource allocation logic (4–9) and lead to the production of
relatively oxidized (e− poor) biomass during fast growth.

Beyond the observed changes in protein ZC , we know of
only one other example of biomass constituents becoming more
reduced (e− rich) during fast growth: the relative reduction of
lipids with increased temperature or � (63–65). Over the past
two decades, several redox-based lipid biomarkers (e.g., TEX86)
have been empirically established as paleothermometers and are
now widely used to infer ancient sea surface temperatures and
climate over the past 100 million years (63). The mechanisms
controlling lipid reduction remain debated, but recent work
indicates that lipid biomarker chemistry is primarily controlled by
growth rate (64). Our integrated model explains this relationship
as optimizing microbial growth by compensating for the relative
oxidation of biomass due to production of ribosomes during
faster growth. In SI Appendix, Fig. S28, we calculate the ZC
of total E. coli lipids (66), finding �-dependent changes of the
same sign and similar magnitude as the proteome, suggesting a
common mechanism.

Discussion

Unifying Redox Chemistry and Cellular Resource Allocation.
Here, we developed a quantitative framework for building
simple models coupling metabolic chemistry to the growth and
persistence of cells. This framework aims to express the impressive
flexibility and diversity of microbial metabolism by integrating
two approaches: i) using redox chemistry to describe the flows
of e− and atoms producing energy and biomass (Fig. 2A) and ii)
using principles of cellular resource allocation to understand how
microbes apportion their biosynthetic activity to achieve certain
metabolic rates (Fig. 2B).

We rely on redox chemistry to concisely describe (coarse-grain)
metabolism as coupling oxidation and reduction reactions to
load energy carriers (ATP) and reducing equivalents (ECH) for
anabolism, as in Fig. 2C. One advantage of redox models is their
chemical-specificity: Oxidations of glucose (ZC = 0), pyruvate
(ZC = +2/3), and palmitate (ZC = −1.75) have different ECH
stoichiometry, and respiration, fermentation, and photosynthesis
are represented by comparable, yet distinct equations. Coarse-
grained models of cellular resource allocation, by contrast, lack
such chemical specificity (4–9).

There is also a close relationship between redox reactions,
thermodynamic potentials, and the principle of “microbial
infallibility.” This impressively predictive principle asserts that
wherever there is energy to be gained from environmental nutri-
ents, microbes “find a way” to sustain themselves (67–71), i.e.,
evolve a workable combination of metabolic couplings. Redox
formalism enables the use of laboratory measurements, e.g., redox
potentials, to calculate the energy content of different metabolic
couplings and, in so doing, sets upper bounds on the ATP
yields of diverse metabolisms (Box 1 and SI Appendix, section
S2). Quantitative connections between metabolic chemistry and
bioenergetics are useful in engineering (72) and environmental
science, explaining why some substrates (e.g., O2) are consumed
before others [e.g., Fe(III)] in natural (73–76) and laboratory
settings (77). A final advantage of redox formalism is that it
naturally tracks flows of atoms, reducing equivalents, and energy

carriers so that models can enforce the simultaneous conservation
of energy and matter (SI Appendix, section S3) and interrogate
the effects of imbalances (Fig. 4).

Despite their many attractive qualities, redox models omit a
crucial aspect of growth, namely self-replication or autocatalysis.
Biomass is not just the product of anabolism, but also composed
of myriad enzymes catalyzing processes like nutrient transport,
translation, and lipid biosynthesis. By apportioning anabolic
activity to the production of catalysts for key cellular processes,
resource allocation models concisely express the catalytic nature
of biomass. Typically, such models subdivide protein translation
(Fig. 2B). Indeed, proteins are the primary effectors in cells
and the focus on proteins permits direct comparison with high-
throughput studies of protein expression (21, 51, 52). Yet, a
crucial step in developing a unified framework was to abandon
the subdivision of protein translation and subdivide total anabolic
activity instead (Fig. 2C ). This was essential because redox
descriptions of growth balance flows of atoms, energy, and e− to
produce all of biomass, not just protein.

Our integrated models can therefore enforce the simultaneous
conservation of matter, energy, and biosynthetic activity. As these
models are coarse-grained and chemically specific, they enabled us
to reason about the constraints imposed by metabolic chemistry
on growth. An overview of model assumptions and limitations is
given in SI Appendix, section S1.2.

Here, we focused primarily on the limits of metabolic flexibility
during respiratory growth (Figs. 3 and 4) and constraints unique
to autotrophy (Fig. 5A). Despite efforts to find superlative
photoautotrophs (41, 42), the fastest known heterotrophs grow
much faster (Fig. 5C ). We found that this discrepancy likely
arises because autotrophs must balance intracellular production
and consumption of reduced carbon, while heterotrophs can
deplete environmentally supplied Cred. This constraint sub-
stantially reduces �max in our models (SI Appendix, Figs. S17
and S18). Indeed, photoheterotrophic growth of green algae—
a mixed metabolism where cells photosynthesize and consume
extracellular organics at the same time—is notably faster than
growth by photosynthesis alone (42, 78). It appears, therefore,
that the requirement to balance intracellularly produced Cred
limits autotrophic growth rates both in theory and in practice.

Our exploration of heterotrophic respiration highlighted the
need for regulated mechanisms of flux balancing, akin to
alternative e− flows in photosynthesis (Fig. 4). Regulated
mechanisms of flux balancing enabled growth on a wide range of
C sources; however, these mechanisms came at a cost, consuming
energy and requiring that cells dedicate resources to the synthesis
of enzymes and regulators. Reducing this expenditure by gen-
erating biomass that matches the environment produced faster
maximum growth rates in the model (Fig. 6A), which led us to
posit the existence of a generic selection pressure for microbes to
match the redox state of biomass (ZC,B) to their habitats (49).
Consistent with this prediction, we found strong and widespread
positive correlations between the ZC values of conserved proteins
(Fig. 6), revealing that proteins are subject to shared evolutionary
pressures along a compositional dimension not directly related to
their individual functions. Additional support for this unexpected
mode of protein evolution is given by our finding that diverse
microbes express comparatively reduced proteins during fast
growth (Fig. 7), apparently using the proteome as an e− acceptor
to compensate for the relative oxidation of biomass due to the
RNA content of ribosomes.

Context and Conclusions. Our work here is situated in a long
history of modeling microbial physiology. Prior contributions
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come in a variety of “flavors,” modeling growth at various levels
of detail and emphasizing different aspects of living matter. Here,
we briefly discuss approaches related to, yet distinct from, our
efforts here.

Stoichiometric constraint-based modeling (CBM) is an influ-
ential framework developed by chemical engineers. Like redox
models, CBMs enumerate reactions in a system of interest,
whether a single pathway, core metabolism, or a whole cell (79).
The reaction network is described by a stoichiometric matrix,
S, used to enforce steady-state mass balance of intracellular
metabolites, i.e., an identifying a vector of reaction fluxes v for
which S · v = 0 (see ref. 80 for a mathematical introduction).
For larger networks, many such vectors exist, so CBMs are often
numerically optimized to achieve some goal, e.g., identifying
genetic knockouts that maximize fatty acids production (81). As
CBMs preserve the relationship between genes, enzymes, and
reactions, they write full chemical reactions rather than half-
reactions. This makes it difficult to apply redox principles for
coarse-graining as we did here. Indeed, microbial genomes often
encode >1,000 enzymes (82), so a focus on genes is essentially
incompatible with coarse-graining.

CBMs are, nonetheless, exquisitely chemically specific. Indeed,
notable prior efforts to integrate chemical-specificity and resource
allocation relied on genome-scale CBMs (83, 84). While these
integrated models express the constraints of self-replication in
a chemically specific setting and make predictions consistent
with measurements, the detail of genome-scale models makes it
difficult to extract principles and impractical to compare distinct
metabolisms, as we did here for photosynthesis and respiration.

Environmental scientists often apply more compact models
describing the effect of nutrient concentrations on microbial
growth (85). This interest follows Albert Redfield’s landmark
observations that oceanic concentrations of inorganic phosphorus
(P), nitrogen (N), oxygen, and carbon covary in the rough
proportions one might expect from the oxidation of biomass with
typical C:N:P ratios (57). Although the modern picture is more
complex (59), these observations left many scientists wondering
how such characteristic ratios arise (86) and how microbes cope
with imbalances in the concentrations of multiple nutrients.
Nutrient quota models posit that growth rates are controlled by
intracellular concentrations (quotas Q), which have minimum
values reflecting limits on cellular composition (85, 87–89). As
protein, lipid, nucleic acids, and carbohydrates have characteristic
C:N:P ratios (intimately related to their ZC values), the elemental
content of cells is tightly coupled to their macromolecular
composition. This coupling has been understood for decades
(12, 14, 90, 91) and integrated into quota models (85, 92, 93).
Yet such models omit autocatalysis and the redox basis of bioen-
ergetics, highlighting an opportunity to extend our framework
to address questions in environmental science.

While in this work we track only carbon, energy, and electrons,
our framework could be modified to consider N and P quotas, as
well as the costs of accessing these nutrients (89, 93). Other topics
of interest include nutrients that have a redox character [e.g., O2
(94)] as well as intrinsic constraints on chemolithoautotrophy,
fermentation, and heterotrophic carbon use efficiency, as these
have implications for the origins of metabolism (95), anoxic
heterotrophy on the early Earth (96), and vital attempts to predict
microbial CO2 emissions (19).

All of our results here derive from having integrated two
potent, but disparate, views of cellular physiology—merging
redox and resource allocation models. This integration couples
intracellular processes—regulatory, structural, and catalytic—to
the extracellular redox environment, whether in a lake, an animal
gut, a tumor matrix, or a soil pore. How should the character of
the chemical environment affect the metabolism and physiology
of diverse microbes? Our integrated, quantitative approach opens
the door to asking and answering such questions across domains
of life.

Materials and Methods

Unified Models of Microbial Physiology. Model derivations, assumptions,
parameter ranges, optimization, and model simulations are detailed in
supplement. While our framework admits arbitrary equations describing the
kinetics of metabolic processes, we mostly explored a linearized model in the
main text. Analysis of nonlinear models is discussed in SI Appendix, section S7.
Code for all analyses is available at github.com/flamholz/redox-proteome.

Data, Materials, and Software Availability. Source code for models and
analyses are available on GitHub (https://github.com/flamholz/redox-proteome)
(97). All other data are included in the manuscript and/or supporting information.
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