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Abstract Key enzymatic processes use the nonequilibrium error correction mechanism called

kinetic proofreading to enhance their specificity. The applicability of traditional proofreading

schemes, however, is limited because they typically require dedicated structural features in the

enzyme, such as a nucleotide hydrolysis site or multiple intermediate conformations. Here, we

explore an alternative conceptual mechanism that achieves error correction by having substrate

binding and subsequent product formation occur at distinct physical locations. The time taken by

the enzyme–substrate complex to diffuse from one location to another is leveraged to discard

wrong substrates. This mechanism does not have the typical structural requirements, making it

easier to overlook in experiments. We discuss how the length scales of molecular gradients dictate

proofreading performance, and quantify the limitations imposed by realistic diffusion and reaction

rates. Our work broadens the applicability of kinetic proofreading and sets the stage for studying

spatial gradients as a possible route to specificity.

Introduction
The nonequilibrium mechanism called kinetic proofreading (Hopfield, 1974; Ninio, 1975) is used for

reducing the error rates of many biochemical processes important for cell function (e.g. DNA replica-

tion [Kunkel, 2004], transcription [Sydow and Cramer, 2009], translation [Rodnina and Winter-

meyer, 2001; Ieong et al., 2016], signal transduction [Swain and Siggia, 2002], or pathogen

recognition [McKeithan, 1995; Goldstein et al., 2004; Cui and Mehta, 2018]). Proofreading mech-

anisms operate by inducing a delay between substrate binding and product formation via intermedi-

ate states for the enzyme–substrate complex. Such a delay gives the enzyme multiple chances to

release the wrong substrate after initial binding, allowing far lower error rates than what one would

expect solely from the binding energy difference between right and wrong substrates.

Traditional proofreading schemes require dedicated molecular features such as an exonuclease

pocket in DNA polymerases (Kunkel, 2004) or multiple phosphorylation sites on T-cell receptors

(McKeithan, 1995; Goldstein et al., 2004); such features create intermediate states that delay

product formation (Figure 1a) and thus allow proofreading. Additionally, since proofreading is an

active nonequilibrium process often involving near–irreversible reactions, the enzyme typically needs

to have an ATP or GTP hydrolysis site to enable the use of energy supplies of the cell (Yamane and

Hopfield, 1977; Rodnina and Wintermeyer, 2001). Due to such stringent structural requirements,

the number of confirmed proofreading enzymes is relatively small. Furthermore, generic enzymes

without such dedicated features are assumed to not have active error correction available to them.

In this work, we propose an alternative scheme where the delay between initial substrate binding

and product formation steps is achieved by separating these events in space. If substrates are spa-

tially localized and product formation is favorable only in a region of low substrate concentration

where an activating effector is present then the time taken by the enzyme–substrate complex to
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travel from one location to the other can be

used to discard the wrong substrates, which are

assumed to unbind from the enzyme more read-

ily than the right substrates (Figure 1b). When

this delay is longer than substrate unbinding

time scales, very low error rates of product for-

mation can be achieved, allowing this spatial

proofreading scheme to outperform biochemical

mechanisms with a finite number of proofread-

ing steps.

In contrast to traditional proofreading, the

nonequilibrium mechanism here does not

require any direct energy consumption by the

enzyme or substrate itself (e.g. through ATP

hydrolysis). This liberates the enzyme from any

proofreading-specific molecular features;

indeed, any ‘equilibrium’ enzyme with a localized

effector can proofread using our scheme if

appropriate concentration gradients of the sub-

strates or enzymes are set up. In this way, the

energetic and structural requirements of proof-

reading can be outsourced from the enzyme and

substrate to the gradient maintaining mecha-

nism. It also means that spatial proofreading is

easy to overlook in experiments, and that the

fidelity of reconstituted reactions in vitro could

be lower than the fidelity in vivo.

The lack of reliance on structure makes spatial

proofreading more adaptable. We study how

tuning the length scale of concentration gra-

dients can trade off error rate against speed and

energy consumption on the fly. In contrast, tradi-

tional proofreading schemes rely on nucleotide

chemical potentials, for example, the out of

equilibrium [ATP]/[ADP] ratio in the cell, and cannot modulate their operation without broader physi-

ological disruptions.

Our proposed scheme can be leveraged for specificity if appropriate concentration gradients are

set. Such gradients arise in multiple cellular contexts (e.g. near the nucleus, the plasma membrane,

the Golgi apparatus, the endoplasmic reticulum [ER], kinetochores, microtubules [Bivona et al.,

2003; Caudron et al., 2005; Kholodenko, 2006]) and several gradient-forming mechanisms have

been discussed in the literature (Wu et al., 2018; Kholodenko, 2006; Kholodenko, 2003). We con-

clude our analysis of spatial proofreading by quantifying its limitations as set by realistic reaction

rates and gradient formation mechanisms, and discuss examples from the literature, including the

localization of mRNAs in polarised cells, and the non-vesicular transport of lipids in eukaryotic cells,

in which this mechanism might be in play. Our work motivates a detailed investigation of spatial

structures and compartmentalization in living cells as possible delay mechanisms for proofreading

enzymatic reactions.

Results

Slow transport of enzymatic complex enables proofreading
Our proposed scheme is based on spatially separating substrate binding and product formation

events for the enzyme (Figure 1b). Such a setting arises naturally if substrates are spatially localized

by having concentration gradients in a cellular compartment. Similarly, an effector needed for prod-

uct formation (e.g. through allosteric activation) may have a spatial concentration gradient localized

(a)

time delay through
biochemical intermediates

chemical state space

(b)
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time delay through
spatial localization of substrates

binding activation

effector

kon r

physical space

activationbinding

koff
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Figure 1. Error correction schemes that operate by

delaying product formation. (a) The traditional

proofreading scheme with multiple biochemically

distinct intermediates, transitions between which are

typically accompanied by energy–consuming reactions.

The T-cell activation mechanism with successive

phosphorylation events is used for demonstration

(McKeithan, 1995; Cui and Mehta, 2018). (b) The

spatial proofreading scheme where the delay between

binding and catalysis is created by constraining these

events to distinct physical locations. The wavy arrows

stand for the diffusive motion of the complex. Binding

events primarily take place on the length scale l
S
of

substrate localization.
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elsewhere in that compartment. To keep our model simple, we assume that the right (R) and wrong

(W) substrates have identical concentration gradients of length scale l
S
but that the effector is

entirely localized to one end of the compartment, for example via membrane tethering. In Appendix

4, we extend our study of model performance to the scenario where the two substrates have differ-

ent localization length scales.

We model our system using coupled reaction–diffusion equations for the substrate-bound (‘ES’

with S ¼ R;W) and free (‘E’) enzyme densities, namely,

q�
ER

qt
¼D

q
2�

ER

qx2
� kRoff�ER

þ kon�R
�

E
; (1)

q�
EW

qt
¼D

q
2�

EW

qx2
� kWoff�EW

þ kon�W
�

E
; (2)

q�
E

qt
¼D

q
2�

E

qx2
þ
X

S¼R;W

kSoff�ES
�
X

S¼R;W

kon�S
�

E
: (3)

Here, D is the enzyme diffusion constant, kon and kSoff (with kWoff>k
R
off ) are the substrate binding and

unbinding rates, respectively, and �
S
ðxÞ~e�x=l

S is the spatially localized substrate concentration pro-

file which we take to be exponentially decaying, which is often the case for profiles created by cellu-

lar gradient formation mechanisms (Driever and Nüsslein-Volhard, 1988; Brown and Kholodenko,

1999). We limit our discussion to this one-dimensional setting of the system, though our treatment

can be generalized to two and three dimensions in a straightforward way.

The above model does not explicitly account for several effects relevant to living cells, such as

depletion of substrates or distinct diffusion rates for the free and substrate-bound enzymes. More

importantly, it does not account for the mechanism of substrate gradient formation. We analyze a

biochemically detailed model with this latter feature and experimentally constrained parameters

later in the paper. Here, we proceed with the minimal model above for explanatory purposes. To

identify the key determinants of the model’s performance, we assume throughout our analysis that

the amount of substrates is sufficiently low that the enzymes are mostly free with a roughly uniform

profile (i.e. �
E
» constant). This assumption makes Equations (1-3) linear and allows us to solve them

analytically at steady state. We demonstrate in Appendix 5 that proofreading is, in fact, most effec-

tive under this assumption and discuss the consequences of having high substrate amounts on the

performance of the scheme.

In our simplified picture, enzyme activation and catalysis take place upon reaching the right

boundary at a rate r that is identical for both substrates. Therefore, the density of substrate–bound

enzymes at the right boundary can be taken as a proxy for the rate of product formation vS, since

vS ¼ r�
ES
ðLÞ; (4)

where L is the size of the compartment. In order to keep the analytical results concise and intuitive,

we perform our main analyses under the assumption that catalysis is slow, mirroring the study of tra-

ditional proofreading schemes (Hopfield, 1974). In Appendix 3, we derive the precise conditions

under which this treatment is valid, and generalize our analysis to arbitrary catalysis rates.

To demonstrate the proofreading capacity of the model, we first analyze the limiting case where

substrates are localized to the left end of the compartment (l
S
! 0). In this limit, the fidelity h,

defined as the number of right products formed per single wrong product, becomes

h¼ vR

vW
¼ ffiffiffiffiffiffiffi

heq

p sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q� � ; (5)

where heq ¼ kWoff=k
R
off is the equilibrium fidelity, and t D ¼ L2=D is the characteristic time scale of diffu-

sion across the compartment (see Appendix 1 for the derivation).

Equation 5 is plotted in Figure 2 for a family of different parameter values. As can be seen, when

diffusion is fast (small t D), fidelity converges to its equilibrium value and proofreading is lost
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(h»

ffiffiffiffiffiffiffi
heq

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off=t Dk

R
off

q

¼ heq). Conversely,

when diffusion is slow (large t D), the enzyme

undergoes multiple rounds of binding a substrate

at the left end and unbinding midway until it

manages to diffuse across the whole compart-

ment as a complex and form a product. These

rounds serve as ‘futile cycles’ that endow the sys-

tem with proofreading. In this regime, fidelity

scales as

h~e
ffiffiffiffiffi
kW
off

p
�
ffiffiffiffiffi
kR
off

pð Þ ffiffiffiffiffit D

p
: (6)

To get further insights, we introduce an effec-

tive number of extra biochemical intermediates

(n) that a traditional proofreading scheme would

need to have in order to yield the same fidelity,

that is h=heq ¼ hn
eq. We calculate this number as

(see Appendix 1)

n»

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q

lnheq

: (7)

Notably, since t D ~L
2, the result above sug-

gests a linear relationship between the effective

number of proofreading realizations and the compartment size (n~L). In addition, because the right-

hand side of Equation 7 is an increasing function of kWoff , the proofreading efficiency of the scheme

rises with larger differences in substrate off-rates (Figure 2) – a feature that ‘hard–wired’ traditional

proofreading schemes with a fixed number of proofreading steps lack.

Navigating the speed–fidelity trade-off
As is inherent to all proofreading schemes, the fidelity enhancement described earlier comes at a

cost of reduced product formation speed. This reduction, in our case, happens because of increased

delays in diffusive transport. Here, we explore the resulting speed–fidelity trade-off and its different

regimes by varying two of the model parameters: diffusion time scale t D and the substrate localiza-

tion length scale l
S
.

Speed and fidelity for different sampled values of t D and l
S
are depicted in Figure 3a. As can be

seen, for a fixed t D, the reduction of l
S
can trade off fidelity against speed. This trade-off is intuitive;

with tighter substrate localization, the complexes are formed closer to the left boundary. Hence, a

smaller fraction of complexes reach the activation region, reducing reaction speed. The Pareto-opti-

mal front of the trade-off over the whole parameter space, shown as a red curve on the plot, is

reached in the limit of ideal substrate localization (l
S
! 0). Varying the diffusion time scale allows

one to navigate this optimal trade-off curve and access different performance regimes.

Specifically, if the diffusion time scale is fast compared with the time scales of substrate unbinding

(i.e. t D � 1=kRoff ; 1=k
W
off ), then both right and wrong complexes that form near the left boundary arrive

at the activation region with high probability, resulting in high speeds, although at the expense of

error–prone product formation (Figure 3b, top). In the opposite limit of slow diffusion, both types of

complexes have exponentially low densities at the activation region, but due to the difference in

substrate off-rates, production is highly accurate (Figure 3b, bottom). There also exists an intermedi-

ate regime where a significant fraction of right complexes reach the activation region while the vast

majority of wrong complexes do not (Figure 3b, middle). As a result, an advantageous trade-off is

achieved where a moderate decrease in the production rate yields high fidelity enhancement – a fea-

ture that was also identified in multi-step traditional proofreading models (Murugan et al., 2012).

In Appendix 3, we also study this trade-off caused by varying the catalysis rate r. Briefly, we find

that when all other parameters are fixed, increasing r trades off fidelity against speed in a linear fash-

ion, with the ratio of highest and lowest fidelity values falling in the ½ ffiffiffiffiffiffiffiheq
p

;heq� range. The Pareto–
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Figure 2. Dependence of fidelity on the diffusion time

scale in the limit of very high substrate localization.

Individual curves were made for different choices of kWoff
(varied in the ½10� 100� kRoff range). t R

off ¼ 1=kRoff is the

unbinding time scale of right substrates, kept fixed in

the study. Fidelity values corresponding to integer

degrees of proofreading in a traditional sense

(h=heq ¼ hn
eq, n ¼ 1; 2; 3; :::) are marked as circles.

Dominant processes in the two limiting regimes are

highlighted in red in the schematics shown as insets.
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optimal front of the trade-off, however, monotonically shifts toward the higher speed region, sug-

gesting that faster catalysis is, in fact, more favorable if the diffusion time scale t D can be adjusted

accordingly (see Appendix 3 for details).

We saw in Figure 3a that in the case of ideal substrate localization, the slowdown of diffusive

transport necessarily reduced the production rate and increased the fidelity. The latter part of this

statement, however, breaks down when substrate gradients are weak. Indeed, fidelity exhibits a

non-monotonic response to tuning t D when the substrate gradient length scale l
S
is non-zero

(Figure 3c). The reason for the eventual decay in fidelity is the fact that with slower diffusion (larger

t D), substrate binding and unbinding events take place more locally and therefore, the right and

wrong complex profiles start to resemble the substrate profile itself, which does not discriminate

between the two substrate kinds. We show in Appendix 1 that the optimal diffusion time scale can

be roughly approximated as t

�
D=t

R
off »h

�1

eq ðL=lS
Þ2, which increases monotonically with L=l

S
, consis-

tent with the shifting peaks in Figure 3c.

Not surprisingly, the error–correcting capacity of the scheme improves with better substrate

localization (lower l
S
). For a fixed t D, the bulk of this improvement takes place when L=l

S
is tuned

in a range set by the two key dimensionless numbers of the model, namely,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q

(Figure 3c, inset). In Appendix 1, we provide an analytical justification for this result. Taken together,

these parametric studies uncover the operational principles of the spatial proofreading scheme and

demonstrate how the speed–fidelity trade-off could be dynamically navigated as needed by tuning

the key time and length scales of the model.

Energy dissipation and limits of proofreading performance
A hallmark signature of proofreading is that it is a nonequilibrium mechanism with an associated free

energy cost. In our scheme, the enzyme itself is not directly involved in any energy-consuming reac-

tions, such as hydrolysis. Instead, the free energy cost comes from maintaining the spatial gradient

of substrates, which the enzymatic reaction tends to homogenize by releasing bound substrates in
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R
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(l
S
! ¥). The red line corresponds to the Pareto-optimal front and is reached in the high substrate localization limit. The example speed–fidelity trade-

off illustrated through the black dotted curve is obtained for t D » 20 t
R
off . (b) Density profiles of wrong (EW) and right (ER) complexes in three

qualitatively different performance regimes. The normalization factor �eq
ES

corresponds to the equilibrium complex densities. (c) Fidelity as a function of

diffusion time scale for different choices of l
S
(varied in the ½0:04; 0:4�L range). The dashed line corresponds to the ideal substrate localization limit
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S
! 0). Inset: Fidelity as a function of L=l

S
for a fixed t D. Shaded area indicates the range where the bulk of fidelity enhancement takes place.

Equilibrium fidelity heq ¼ 10 was used in generating all the panels.
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regions of low substrate concentration. As the activating effectors are assumed to be tethered at

x ¼ L, they do not require dissipation to remain localized.

While mechanisms of substrate gradient maintenance may differ in their energetic efficiency,

there exists a thermodynamically dictated minimum energy that any such mechanism must dissipate

per unit time. We calculate this minimum power P as

P¼
X

S¼fR;Wg

Z L

0

j
S
ðxÞ�ðxÞdx: (8)

Here j
S
ðxÞ ¼ kon�S

ðxÞ�
E
� kSoff�ES

ðxÞ is the net local binding flux of substrate ‘S’, and �ðxÞ is the local

chemical potential (see Appendix 2.1 for details). For substrates with an exponentially decaying pro-

file considered here, the chemical potential is given by

�ðxÞ ¼ �ð0Þþ kBT ln
�

S
ðxÞ

�
S
ð0Þ ¼ �ð0Þ� kBT

x

l
S

; (9)

where kBT is the thermal energy scale. Notably, the chemical potential difference across the com-

partment, which serves as an effective driving force for the scheme, is set by the inverse of the non-

dimensionalized substrate localization length scale, namely,

bD�¼ L

l
S

; (10)

where b�1 ¼ kBT . This driving force is zero for a uniform substrate profile (l
S
!¥) and increases with

tighter localization (lower l
S
), as intuitively expected.

We used Equation 8 to study the relationship between dissipation and fidelity enhancement as

we tuned D� for different choices of the diffusion time scale t D. As can be seen in Figure 4, power

rises with increasing fidelity, diverging when fidelity reaches its asymptotic maximum given by Equa-

tion 5 in the large D� limit. For the bulk of each curve, power scales as the logarithm of fidelity, sug-

gesting that a linear increase in dissipation can yield an exponential reduction in error. Notably, such

a scaling relationship has also been calculated in the context of E. coli chemoreceptor adaptation

(Lan et al., 2012). In particular, it was shown that the adaptation error decreases exponentially with

energy dissipated through multiple methylation–demethylation cycles which are used to stabilize the

activity state of the receptor. Analogies in the

cost-performance trade-off across these func-

tionally distinct mechanisms contribute to the

search for overarching thermodynamic themes

underlying cellular information processing

(Lan et al., 2012; Lan and Tu, 2013;

Horowitz et al., 2017; Sartori and Pigolotti,

2015).

The logarithmic scaling is achieved in our

model when the driving force is in a range where

most of the fidelity enhancement takes place,

namely,

bD� 2
ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

;
ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q� �

: (11)

At the end of this range, the cost per sub-

strate binding event approaches
ffiffiffiffiffiffiffi
heq

p
in kBT

units (see Appendix 2.1 for details). And beyond

the range, additional error correction is attained

at an increasingly higher cost.

Note that the power computed here does not

include the baseline cost of creating the sub-

strate gradient, which, for instance, would

depend on the substrate diffusion constant. We
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Figure 4. Power–fidelity relationship when tuning the

effective driving force D� for different choices of the

diffusion time scale t D. Jbind ¼ kon�E
R
�SðxÞdx is the

integrated rate of substrate binding. The red line

indicates the large dissipation limit of fidelity given by

Equation 5. The circles indicate the D� range specified

in Equation 11 for different t D choices. For sufficiently

large t D values, the cost per binding event approaches

b
ffiffiffiffiffiffiffi
heq

p
at the end of this range (see Appendix 2.1 for

details). In making this plot, heq ¼ 10 was used.
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only account for the additional cost to be paid due to the operation of the proofreading scheme

which works to homogenize this substrate gradient. The baseline cost in our case is analogous to the

work that ATP synthase needs to perform to maintain a nonequilibrium [ATP]/[ADP] ratio in the cell,

whereas our calculated power is analogous to the rate of ATP hydrolysis by a traditional proofread-

ing enzyme. We discuss these two classes of dissipation in greater detail in Appendix 2.3.

Just as the cellular chemical potential of ATP or GTP imposes a thermodynamic upper bound on

the fidelity enhancement by any proofreading mechanism (Qian, 2006), the effective driving force

D� imposes a similar constraint for the spatial proofreading model. This thermodynamic limit

depends only on the available chemical potential and is equal to ebD�. This limit can be approached

very closely by our model, which for D� >
~

1 achieves the exponential enhancement with an additional

linear prefactor, namely, ðh=heqÞmax
» ebD�=bD� (see Appendix 2.2). Such scaling behavior was theo-

retically accessible only to infinite-state traditional proofreading schemes (Qian, 2006;

Ehrenberg and Blomberg, 1980). This offers a view of spatial proofreading as a procession of the

enzyme through an infinite series of spatial filters and suggests that, from the perspective of peak

error reduction capacity, our model outperforms the finite-state schemes.

Proofreading by biochemically plausible intracellular gradients
Our discussion of the minimal model thus far was not aimed at a particular biochemical system and

thus did not involve the use of realistic reaction rates and diffusion constants typically seen in living

cells. Furthermore, we did not account for the possibility of substrate diffusion, as well as for the

homogenization of substrate concentration gradients due to enzymatic reactions, and have thereby

abstracted away the gradient maintaining mechanism. The quantitative inspection of such mecha-

nisms is important for understanding the constraints on spatial proofreading in realistic settings.

Here, we investigate proofreading based on a widely applicable mechanism for creating gradients

by the spatial separation of two opposing enzymes (Stelling and Kholodenko, 2009; Bivona et al.,

2003; Brown and Kholodenko, 1999). Consider a protein S that in its free state is phosphorylated

by a membrane-bound kinase and dephosphorylated by a delocalized cytoplasmic phosphatase, as

shown in Figure 5a. This setup will naturally create a gradient of the active form of protein (S�), with

the gradient length scale controlled by the rate of phosphatase activity kp (S� �!kp S). Such mecha-

nisms are known to create gradients of the active forms of MEK and ERK (Kholodenko, 2006), of

GTPases such as Ran (with GEF and GAP [Kalab et al., 2002] playing the role of kinase and phos-

phatase, respectively), of cAMP (Kholodenko, 2006) and of stathmin oncoprotein 18 (Op18)

(Bastiaens et al., 2006; Niethammer et al., 2004) near the plasma membrane, the Golgi apparatus,

the ER, kinetochores and other places.

We test the proofreading power of such gradients, assuming experimentally constrained biophys-

ical parameters for the gradient forming mechanism. Specifically, we consider an enzyme E that acts

on the active forms of cognate (R�) and non-cognate (W�) substrates which have off-rates 0.1 s-1 and

1 s-1, respectively (hence, heq ¼ 10). These off-rates are consistent with typical values for substrates

proofread by cellular signaling systems (Cui and Mehta, 2018; Gascoigne et al., 2001). The kinases

and phosphatases in our setup act identically on right and wrong substrates. We consider a dephos-

phorylation rate constant kp ¼ 5 s-1 that falls in the range 0.1�100 s-1 reported for different phospha-

tases (Brown and Kholodenko, 1999; Kholodenko et al., 2000; Todd et al., 1999), and a cytosolic

diffusion constant D ¼ 1 mm2/s for all proteins in this model. With this setup, exponential gradients

of length scale ~0.5 mm are formed for R� and W�. We evaluate the proofreading and energetic per-

formance of the model in a compartment of size L ¼ 10 mm – a typical length scale in eukaryotic cells

(see Appendix 6 for details).

Although not cost-efficient, this setup achieves proofreading in a wide range of regimes. Specifi-

cally, it is most effective when the enzyme–substrate binding is slow, in which case the exponential

substrate profile is maintained and the system attains the fidelity predicted by our earlier explana-

tory model (Figure 5b). The system’s proofreading capacity is retained if the first–order on-rate is

raised up to kon�E
~ 10 s-1, where around 10-fold increase in fidelity is still possible. If the binding rate

constant (kon) or the enzyme’s expression level (�
E
) is any higher, then enzymatic reactions overwhelm

the ability of the kinase/phosphatase system to keep the active forms of substrates sufficiently local-

ized (Figure 5c) and proofreading is lost. Overall, this model suggests that enzymes can work at
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reasonable binding rates and still proofread, when accounting for an experimentally characterized

gradient maintaining mechanism.

Discussion
We have outlined a way for enzymatic reactions to proofread and improve specificity by exploiting

spatial concentration gradients of substrates. Like the classic model, our proposed spatial proofread-

ing scheme is based on a time delay; but unlike the classic model, here the delay is due to spatial

transport rather than transitions through biochemical intermediates. Consequently, the enzyme is lib-

erated from the stringent structural requirements imposed by traditional proofreading, such as multi-

ple intermediate conformations and hydrolysis sites for energy coupling. Instead, our scheme

exploits the free energy supplied by active mechanisms that maintain spatial structures.

The decoupling of the two crucial features of proofreading – time delay and free energy dissipa-

tion – allows the cell to tune proofreading on the fly. For instance, all proofreading schemes offer

fidelity at the expense of reaction speed and energy. For traditional schemes, navigating this trade-

off is not always feasible, as it needs to involve structural changes via mutations or modulation of the

[ATP]/[ADP] ratio which can cause collateral effects on the rest of the cell. In contrast, the spatial

proofreading scheme is more adaptable to the changing conditions and needs of the cell. The

scheme can prioritize speed in one context, and fidelity in another, simply by tuning the length scale

of intracellular gradients (e.g. through the regulation of the phosphotase or free enzyme concentra-

tion in the scheme discussed earlier).

On the other hand, this modular decoupling can complicate the experimental identification of

proofreading enzymes and the interpretation of their fidelity. Here, the enzymes need not be

endowed with the structural and biochemical properties typically sought for in a proofreading
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Figure 5. Proofreading based on substrate gradients formed by spatially separated kinases and phosphatases. (a)

The active form S� of many proteins exhibits gradients because kinases that phosphorylate S are anchored to a

membrane while phosphatases can diffuse in the cytoplasm (Kholodenko, 2006). An enzyme can exploit the

resulting spatial gradient for proofreading. (b) At low enzyme activity (i.e. low kon�E
), the gradient of S� is

successfully maintained, allowing for proofreading. The upper dashed line corresponds to the peak fidelity when

the substrate profile is exponential. At high enzyme activity (large kon�E
), the dephosphorylation with rate kp ¼ 5 s-1

is no longer sufficient to maintain the gradient and proofreading is lost. (c) Profiles of right substrates for different

choices of enzyme activity. Numbers indicate kon�E
in s-1 units. The black line shows an exponential substrate

profile with a length scale l
S
¼

ffiffiffiffiffiffiffiffiffiffiffi

D=kp
p

~ 0:5 mm.
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enzyme. At the same time, any attempt to reconstitute enzymatic activity in a well-mixed, in vitro

assay, will show poor fidelity compared to in vivo measurements, even when all necessary molecular

players are present in vitro. Therefore, more care is required in studies of cellular information proc-

essing mechanisms that hijack a distant source of free energy compared to the case where the rele-

vant energy consumption is local and easier to link causally to function.

While we focused on spatially localized substrates and delocalized enzymes, our framework would

apply equally well to other scenarios, like one with a spatially localized enzyme (or its active form

[Kalab et al., 2002; Nalbant et al., 2004]) and effector with delocalized substrates, an example of

which would be an alternative version of the scheme in Figure 5a where the target of the kinase/

phosphatase activity is changed from substrates to enzymes. Our framework can also be extended

to signaling cascades, where slightly different phosphatase activities can result in magnified concen-

tration ratios of two competing signaling molecules at the spatial location of the next cascade step

(Roy and Cyert, 2009; Bauman and Scott, 2002; Kholodenko, 2006).

The spatial gradients needed for the operation of our model can be created and maintained

through multiple mechanisms in the cell, ranging from the kinase/phosphatase system modeled

here, to the passive diffusion of substrates/ligands combined with active degradation (e.g. Bicoid

and other developmental morphogens), to active transport processes combined with diffusion. A

particularly simple implementation of our scheme is via compartmentalization – substrates and effec-

tors are localized in two spatially separated compartments with the enzyme–substrate complex hav-

ing to travel from one to another to complete the reaction.

Many molecular localization pathways involving the naturally compartmentalized parts of the cell

require high substrate selectivity and are therefore potential candidates for the implementation of

spatial proofreading. For example, in polarized, asymmetric cells (e.g. budding yeast or neuronal

cells) gene expression often needs to be spatially regulated (Parton et al., 2014; Martin and Eph-

russi, 2009). Such regulation is achieved with designated ribonucleoproteins that bind specific

mRNAs near the cell nucleus, perform a biased random walk to the mRNA localization site and

deliver them for translation. During transport, mRNAs are protected from ribosome binding and

when they unbind, they are subject to degradation which would prevent rebinding events at inter-

mediate locations. Another example process is the non-vesicular transport of lipids between the

membrane–bound domains of the cells (e.g. the ER, mitochondria, the Golgi apparatus, or the

plasma membrane). This transport mechanism is mediated by lipid-transfer proteins that bind lipids

on the donor membrane, diffuse to the acceptor membrane and upon interacting with it, undergo a

conformational change, delivering the ‘cargo’ (Lev, 2010). Although the higher proximity of the two

membranes is thought to enhance the transport efficiency, it would be interesting to study the opti-

mality of the inter-membrane distance in the context of fidelity–transport efficiency trade-off, given

the fact that some of the lipid-transfer proteins are known to exhibit specificity for their cognate

substrates.

Our scheme may also be applicable as a quality control mechanism in protein secretion pathways

(Ellgaard and Helenius, 2003; Arvan et al., 2002), in high-fidelity targeting of membrane proteins

mediated by signal recognition particles (Rao et al., 2016; Chio et al., 2017), as well as in selective

glycosylation reactions in the Golgi apparatus (Jaiman and Thattai, 2020). Lastly, considering the

recent advances in generating synthetic morphogen patterns in multicellular organisms (Toda et al.,

2020; Stapornwongkul et al., 2020), spatial proofreading could also be employed in pathways act-

ing on engineered protein gradients. Experimental investigations of these processes in light of our

work will reveal the extent to which spatial transport promotes specificity.

In conclusion, we have analyzed the role played by spatial structures in endowing enzymatic reac-

tions with kinetic proofreading. Simply by spatially segregating substrate binding from catalysis,

enzymes can enhance their specificity. This suggests that enzymatic reactions may acquire de novo

proofreading capabilities by coupling to pre-existing spatial gradients in the cell.

Materials and methods
Detailed derivations of the analytical results presented in the main text along with additional studies

on our model are included in the Appendices. In addition, Python scripts and Jupyter notebooks

used to generate all the plots in the main text and Appendices are included as Supplementary files.

Galstyan et al. eLife 2020;9:e60415. DOI: https://doi.org/10.7554/eLife.60415 9 of 46

Research article Physics of Living Systems Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.60415


Acknowledgements
We thank Anatoly Kolomeisky, Shu-ou Shan and Erik Winfree for insightful discussions, Soichi Hiro-

kawa and Avi Flamholz for providing useful feedback on the manuscript. We also thank Alexander

Grosberg whose idea of a compartmentalized ‘rotary demon’ motivated the development of our

model. This work was supported by the NIH Grant 1R35 GM118043-01, the John Templeton Foun-

dation Grants 51250 and 60973 (to RP), a James S. McDonnell Foundation postdoctoral fellowship

(to KH), and the Simons Foundation (AM).

Additional information

Funding

Funder Author

James S. McDonnell Founda-
tion

Kabir Husain

Simons Foundation Arvind Murugan

John Templeton Foundation Rob Phillips

National Institute of General
Medical Sciences

Rob Phillips

The funders had no role in study design, data collection and

interpretation, or the decision to submit the work for publication.

Author contributions

Vahe Galstyan, Kabir Husain, Conceptualization, Formal analysis, Investigation, Methodology, Writ-

ing - original draft, Writing - review and editing; Fangzhou Xiao, Conceptualization, Formal analysis,

Investigation, Methodology, Writing - review and editing; Arvind Murugan, Rob Phillips, Conceptual-

ization, Supervision, Funding acquisition, Investigation, Methodology, Writing - original draft, Project

administration, Writing - review and editing

Author ORCIDs

Vahe Galstyan https://orcid.org/0000-0001-7073-9175

Arvind Murugan https://orcid.org/0000-0001-5464-917X

Rob Phillips https://orcid.org/0000-0003-3082-2809

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.60415.sa1

Author response https://doi.org/10.7554/eLife.60415.sa2

Additional files
Supplementary files
. Source code 1. Code files to reproduce the figures.

Data availability

All scripts used to generate the data for making the plots are provided in supporting files.

References
Arvan P, Zhao X, Ramos-Castaneda J, Chang A. 2002. Secretory pathway quality control operating in Golgi,
plasmalemmal, and endosomal systems. Traffic 3:771–780. DOI: https://doi.org/10.1034/j.1600-0854.2002.
31102.x, PMID: 12383343

Bastiaens P, Caudron M, Niethammer P, Karsenti E. 2006. Gradients in the self-organization of the mitotic
spindle. Trends in Cell Biology 16:125–134. DOI: https://doi.org/10.1016/j.tcb.2006.01.005, PMID: 16478663

Galstyan et al. eLife 2020;9:e60415. DOI: https://doi.org/10.7554/eLife.60415 10 of 46

Research article Physics of Living Systems Structural Biology and Molecular Biophysics

https://orcid.org/0000-0001-7073-9175
https://orcid.org/0000-0001-5464-917X
https://orcid.org/0000-0003-3082-2809
https://doi.org/10.7554/eLife.60415.sa1
https://doi.org/10.7554/eLife.60415.sa2
https://doi.org/10.1034/j.1600-0854.2002.31102.x
https://doi.org/10.1034/j.1600-0854.2002.31102.x
http://www.ncbi.nlm.nih.gov/pubmed/12383343
https://doi.org/10.1016/j.tcb.2006.01.005
http://www.ncbi.nlm.nih.gov/pubmed/16478663
https://doi.org/10.7554/eLife.60415


Bauman AL, Scott JD. 2002. Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo. Nature
Cell Biology 4:E203–E206. DOI: https://doi.org/10.1038/ncb0802-e203, PMID: 12149635
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Appendix 1

Analytical calculations of the complex density profile and fidelity
We begin this section by deriving an analytical expression for the density profile of substrate-bound

enzymes (�
ES
ðxÞ) in the case where the �ðxÞ » constant assumption holds. Based on this result, we then

obtain expressions for fidelity in low, high, and intermediate substrate localization regimes. We

reserve the studies of speed and fidelity in the general case of a nonuniform free enzyme profile to

Appendix 5.

1. Derivation of the complex density profile �
ES
ðxÞ

The ordinary differential equation (ODE) that defines the steady state profile of substrate-bound

enzymes is

D
d2�

ES

dx2
|fflfflffl{zfflfflffl}

diffusion

�kSoff�ES
ðxÞ

|fflfflfflfflffl{zfflfflfflfflffl}

unbinding

þkon�S
ð0Þe�x=l

S �
E
ðxÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

binding

¼ 0: (S1)

Here, �
S
ð0Þ is the substrate density at the leftmost boundary, whose value can be calculated from

the condition that the total number of free substrates is Stotal, namely,

Stotal ¼
Z L

x¼0

�
S
ð0Þe�x=l

S dx

¼ �
S
ð0Þl

S
1� e�L=l

S

� �

)
(S2)

�Sð0Þ ¼
Stotal

lS 1� e�L=lSð Þ : (S3)

In the limit of low substrate amounts where the approximation �
E
ðxÞ»constant is valid,

Equation S1 represents a linear nonhomogeneous ODE. Hence, its solution can be written as

�
ES
ðxÞ ¼ �ðhÞ

ES
ðxÞþ �ðpÞ

ES
ðxÞ; (S4)

where �ðhÞ
ES
ðxÞ is the general solution to the corresponding homogeneous equation, while �ðpÞ

ES
ðxÞ is a

particular solution.

Looking for solutions of the form Ce�x=l for the homogeneous part, we find

C
D

l2
� kSoff

� �

e�x=l ¼ 0: (S5)

The two possible roots for l are �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

D=kSoff

q

. Calling the positive root l
ES
, which represents the

mean distance traveled by the substrate–bound enzyme before releasing the substrate, we can write

the general solution to the homogeneous part of Equation S1 as

�ðhÞ
ES
ðxÞ ¼C1e

�x=l
ES þC2e

x=l
ES ; (S6)

where C1 and C2 are constants which will be determined from the boundary conditions.

Since the nonhomogeneous part of Equation S1 is a scaled exponential, we look for a particular

solution of the same functional form, namely, �ðpÞ
ES
ðxÞ ¼ Cpe

�x=l
S . Substituting this form into the ODE,

we obtain

Cp

D

l2
S

� kSoff

 !

e�x=l
S ¼�kon�S

ð0Þe�x=l
S �

E
: (S7)

The constant coefficient Cp can then be found as
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Cp ¼ kon�S
ð0Þ�

E

kSoff � D

l2
S

¼ kon�S
ð0Þ�

E

kSoff 1� D=kS
off

l2
S

� �

¼ kon�S
ð0Þ�

E

kSoff 1� l2
ES

l2
S

� � ;

(S8)

where we have used the equality l
ES
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

D=kSoff

q

.

Now, to find the unknown coefficients C1 and C2, we impose the no-flux boundary conditions for

the density �ESðxÞ at the left and right boundaries of the compartment, namely,

d�
ES

dx
jx¼0

¼� C1

l
ES

þ C2

l
ES

�Cp

l
S

¼ 0; (S9)

d�
ES

dx
jx¼L ¼� C1

l
ES

e
� L

l
ES þ C2

l
ES

e
L

l
ES �Cp

l
S

e
� L

l
S ¼ 0: (S10)

Note that we did not take into account the product formation flux at the rightmost boundary

when writing Equation S10 in order to simplify our calculations. This is justified in the limit of slow

catalysis – an assumption that we make in our treatment. The above system of two equations can

then be solved for C1 and C2, yielding

C1 ¼� lES

2lS

eL=lES � e�L=lS

sinhðL=lESÞ
Cp; (S11)

C2 ¼
lES

2lS

e�L=lS � e�L=lES

sinhðL=lESÞ
Cp: (S12)

With the constant coefficients known, we obtain the general solution for the complex profile as

�
ES
ðxÞ ¼C1e

�x=l
ES þC2e

x=l
ES þCpe

�x=l
S

¼Cp

l
ES

l
S
sinhðL=l

ES
Þ �eðL�xÞ=l

ES þ eðx�LÞ=l
ES

2
þ e�x=l

ES þ ex=lES

2
e�L=l

S

" #

þ e�x=l
S

 !

¼ kon�S
ð0Þ�

E

kSoff 1�l2
ES
=l2

S

� �
l

ES

l
S
sinhðL=l

ES
Þ �cosh

L� x

l
ES

� �

þ cosh
x

l
ES

� �

e�L=l
S

� �

þ e�x=l
S

� �

¼ kon�S
ð0Þ�

E

kSoff 1�l2
ES
=l2

S

� �
l

ES

l
S
sinhðL=l

ES
Þ �cosh

L� x

l
ES

� �

þ cosh
x

l
ES

� �

e�L=l
S

� �

þ e�x=l
S

� �

:

(S13)

2. Density profile in low and high substrate localization regimes

If substrate localization is very poor (l
S
� L), the substrate distribution will be uniform

(�
S
ðxÞ ¼ ��

S
¼ Stotal=L), resulting in a similarly flat profile of enzyme–substrate complexes with their

density �¥
ES

given by

�¥
ES

¼ kon�S
ð0Þ�

E

kSoff

¼ kon��S
�

E

kSoff
:

(S14)

This is the expected equilibrium result where the complex concentration is inversely proportional

to the dissociation constant (kSoff=kon).

In the opposite limit where the substrates are highly localized (l
S
� l

ES
; L and �

S
ð0Þ» Stotal=lS

from Equation S3), the complex density profile simplifies into
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�
ES
ðxÞ »

konStotal�E

kSofflS
ð�l2

ES
=l2

S
Þ

� l
ES

l
S
sinhðL=l

ES
Þcosh

L� x

l
ES

� �� �

¼ konStotal�E

kSoffL

L=l
ES

sinhðL=l
ES
Þcosh

L� x

l
ES

� �

¼ �¥
ES
� L=l

ES

sinhðL=l
ES
Þcosh

L� x

l
ES

� �

:

(S15)

The x-dependence through the coshð�Þ function suggests that the complex density is the highest

at the leftmost boundary and lowest at the rightmost boundary, with the degree of complex localiza-

tion dictated by the length scale parameter l
ES
. Notably, this localization of complexes does not

alter their total number, since the average complex density is conserved, that is,

h�
ES
i ¼

Z L

0

�
ES
ðxÞdx

¼ �¥
ES
� L=l

ES

sinhðL=l
ES
Þ�

1

L

Z L

0

cosh
L� x

l
ES

� �

dx

¼ �¥
ES
� L=l

ES

sinhðL=l
ES
Þ�

l
ES

L
sinhðL=l

ES
Þ

¼ �¥
ES
:

(S16)

Equation S15 for the complex profile can be alternatively written in terms of the diffusion time

scale t D ¼ L2=D and the substrate off-rate kSoff . Noting that L=l
ES
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2kSoff=D
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

and intro-

ducing a dimensionless coordinate ~x¼ x=L, we find

�
ES
ðxÞ ¼ �¥

ES
�

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q� �cosh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

ð1�~xÞ
� �

: (S17)

The above equation is what was used for generating the plots in Figure 3b of the main text for

different choices of the diffusion time scale.

3. Fidelity in low and high substrate localization regimes

Let us now evaluate the fidelity of the model in the two limiting regimes discussed earlier. In the

poor substrate localization case, which corresponds to an equilibrium setting, the fidelity can be

found from Equation S14 as

heq ¼
r�¥

ER

r�¥
EW

¼ kWoff

kRoff
; (S18)

where we have employed the assumption about the right and wrong substrates having identical den-

sity profiles. This is the expected result for equilibrium discrimination where no advantage is taken of

the system’s spatial structure.

In the regime with high substrate localization, the enzyme–substrate complexes have a nonuni-

form spatial distribution. What matters for product formation is the complex density at the rightmost

boundary (~x ¼ 1), which we obtain from Equation S17 as

�
ES
ðLÞ ¼ �¥

ES
�

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q� � : (S19)

Substituting the above expression written for right and wrong complexes into the definition of

fidelity, we find
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h ¼ r�
ER
ðLÞ

r�
EW
ðLÞ

¼ heq�
ffiffiffiffiffiffiffi

kRoff

kWoff

s
sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q� �

¼ ffiffiffiffiffiffiffi
heq

p sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q� � :

(S20)

This is the result reported in Equation 5 of the main text. To gain more intuition about it and

draw parallels with traditional kinetic proofreading, let us consider the limit of long diffusion time

scales where proofreading is the most effective. In this limit, the hyperbolic sine functions above can

be approximated as sinhð
ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

Þ»0:5e
ffiffiffiffiffiffiffiffiffi
t Dk

S
off

p
, simplifying the fidelity expression into

h ¼ ffiffiffiffiffiffiffi
heq

p e
ffiffiffiffiffiffiffiffiffi
t Dk

W
off

p

e
ffiffiffiffiffiffiffiffiffi
t Dk

R
off

p

¼ ffiffiffiffiffiffiffi
heq

p
e
ffiffiffiffiffiffiffiffiffi
t Dk

W
off

p
�
ffiffiffiffiffiffiffiffiffi
t Dk

R
off

p

¼ ffiffiffiffiffiffiffi
heq

p
e
ffiffiffiffiffiffiffiffiffi
t Dk

R
off

p ffiffiffiffiffi
heq

p �1ð Þ;

(S21)

where we have used the definition of equilibrium fidelity (Equation S18). In traditional proofreading,

a scheme with n proofreading realizations can yield a maximum fidelity of h=heq ¼ hn
eq. The value of n

for the original Hopfield model, for instance, is 1. It would be informative to also know the effective

parameter n for the spatial proofreading model. Dividing Equation S21 by heq, we find

h

heq

¼ 1
ffiffiffiffiffiffiffi
heq

p e

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q
ffiffiffiffiffiffiffi
heq

p � 1
� �

¼ hn
eq;

e

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q
ffiffiffiffiffiffiffi
heq

p � 1
� �

¼ h
nþ1

2

eq ;
ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q
ffiffiffiffiffiffiffi
heq

p � 1

� �

¼ nþ 1

2

� �

lnheq )

nþ 1

2
¼

ffiffiffiffiffiffiffi
heq

p � 1

lnheq

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

:

(S22)

This exact result can be simplified into an approximate form when diffusion is slow and heq � 1,

yielding the expression reported in Equation 7 of the main text, namely,

n »

ffiffiffiffiffiffiffi
heq

p ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

lnheq

¼

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q

lnheq

:

(S23)

4. Fidelity in an intermediate substrate localization regime

The generic expression for complex density at the rightmost boundary (x ¼ L) can be written using

Equation S13 as

�
ES
ðLÞ ¼ kon�S

ð0Þ�
E

kSoff 1�l2
ES
=l2

S

� �
l

ES

l
S
sinhðL=l

ES
Þ cosh

L

l
ES

� �

e�L=l
S � 1

� �

þ e�L=l
S

� �

: (S24)

For the system to proofread, substrates need to be sufficiently localized (l
S
<L) and diffusion

needs to be sufficiently slow (t Dk
S
off>1 or, l

ES
<L). Under these conditions, the substrate profile can

be approximated using Equation S3 as �
S
ðxÞ»l�1

S
Stotale

�x=l
S , while the hyperbolic sine and cosine
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functions used above can be approximated as sinhðL=l
ES
Þ» coshðL=l

ES
Þ»0:5eL=lES . With these

approximations, the complex density expression simplifies into

�
ES
ðLÞ ¼ konStotal�E

kSofflS
1�l2

ES
=l2

S

� �
l

ES

l
S

e�L=l
S � 2e�L=l

ES

h i

þ e�L=l
S

� �

¼ konStotal�E

kSoffðl2S �l2
ES
Þ

ðl
S
þl

ES
Þe�L=l

S � 2l
ES
e�L=l

ES

� �

:

(S25)

Now, depending on how l
S
compares with l

ES
, there can be two qualitatively different regimes

for the complex density, namely,

�
ES
ðLÞ ¼ �¥

ES
�

2L

l
ES

e�L=l
ES ; if lS � lES ðL=lS �

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

Þ

L

lS
e�L=lS ; if lES � lS ð

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

� L=lSÞ

8

>><

>>:

(S26)

where we used the equilibrium complex density �¥
ES

defined in Equation S14.

Notably, the first regime effectively corresponds to the case of ideal substrate localization where

complex density is independent of the precise value of l
S
. The dimensionless number

ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

sets

the scale for the minimum L=l
S
value beyond which ideal localization can be assumed. Conversely,

the second regime corresponds to the case where the distance traveled by a complex before disso-

ciating is so short that the complex profile is dictated by the substrate profile itself. Because of that,

the complex density reduction from its equilibrium limit is independent of the precise values of t D

and kSoff , as long as the condition l
ES

� l
S
is met.

The scheme yields its highest fidelity when both right and wrong complex densities are in the first

regime (ideal localization). When both densities are in the second regime, fidelity is reduced down

to its equilibrium value heq (Appendix 1—table 1). The transition between these two extremes hap-

pens when the density profiles of right and wrong complexes fall under different regimes. Fidelity

can be navigated in the transition zone by tuning the substrate gradient length scale l
S
. This is dem-

onstrated in Appendix 1—figure 1 for three different choices of heq. In all three cases, the dimen-

sionless numbers
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q

set the approximate range in which the bulk of fidelity

enhancement occurs, as stated in the main text.

Appendix 1—table 1. Fidelity of the scheme in different regimes of right and wrong complex

densities.

The upper-right cell is empty because the two conditions on l
S
cannot be simultaneously met, since

l
ER
>l

EW
by construction (follows from kRoff<k

W
off ).

l
S
� l

ER
l

S
� l

ER

l
S
� l

EW
l

EW

l
ER

e
L l�1

EW
�l�1

ER

� �
-

l
S
� l

EW 2l
S

l
ER

e
L l�1

S
�l�1

ER

� �
heq
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Appendix 1—figure 1. The effective number of proofreading realizations (neff ) as a function of L=l
S
.

The shaded region represents the range of L=l
S
values set by the key dimensionless numbers

ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q

. t D values chosen for the demonstration were 60, 40, and 20 (in 1=kRoff units)

for the three different choices of heq, respectively.

5. Optimal diffusion time scale for maximum fidelity

Figure 3c of the main text illustrated the non-monotonic dependence of fidelity on the diffusion

time scale t D for different fixed values of l
S
. Here, we further explore this feature by asking what

sets the optimal t D. To gain analytical insights, we focus on the case where the system can proof-

read, which, as we argued in the previous section, happens when l
S
; l

ES
<L. Under this condition, we

identified two qualitatively different regimes of complex density reduction (Equation S26). Namely,

we found that for sufficiently fast diffusion the system acted as if the substrates were localized ide-

ally, whereas for sufficiently slow diffusion the complex density reduction was dictated solely by l
S

and did not discriminate between the two substrate kinds. These two limiting behaviors are indeed

reflected in Figure 3c where in the low t D limit (fast diffusion) the family of curves matches the dot-

ted ideal localization curve, while in the high t D limit (slow diffusion) all curves decay to 1, corre-

sponding to the loss of error correction.

An intuitive approach for identifying the optimal t D is to slow down diffusion up to the point

where the density of wrong complexes at x ¼ L approaches a plateau and effectively stops decreas-

ing. Going past this threshold would only reduce the density of right complexes at x ¼ L and

thereby, reduce the fidelity. We know from Equation S26 that plateauing for wrong complexes hap-

pens when l
EW

� l
S
(equivalently,

ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q

� L=l
S
). Hence, our first guess for the optimal diffusion

time scale t

�
D is

t

�
Dk

W
off ~

L

l
S

� �2

) (S27)

t

�
Dk

R
off ~

kRoff

kWoff

L

l
S

� �2

) (S28)

t

�
D=t

R
off ~

1

heq

L

l
S

� �2

: (S29)

To test the soundness of this expression, we compared its predictions to the optimal t D values in

Figure 3 that were identified numerically for different choices of l
S
. The results of the comparison

are shown in Appendix 1—figure 2. As can be seen, for sufficiently high degrees of substrate locali-

zation (L=l
S
), the prediction of Equation S29 provides a good approximation of the true optimum.

However, it is apparent that the prediction consistently underestimates the true t

�
D, which was

expected since plateauing of �
EW
ðLÞ happens not under equality but a strict inequality condition (i.e.

ffiffiffiffiffiffiffiffiffiffiffiffi

t

�
Dk

W
off

q

� L=l
S
). Because an exact analytical expression for t �

D is not available, we performed differ-

ent approximations to the fidelity formula and found an empirical correction term for our earlier esti-

mate given by 2ðL=l
S
Þ= ffiffiffiffiffiffiffi

heq
p

. The prediction for t �
D with the correction term is now accurate starting
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a much lower value of L=l
S
, corresponding to a regime where the system proofreads once (neff »1).

Overall, these analytical results provide good initial guesses for t �
D which should be refined using a

numerical approach for a higher accuracy.
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Appendix 1—figure 2. Optimal diffusion time scale for different choices of l
S
. Blue dots represent

the exact values obtained numerically for the data in Figure 3c. Dashed and solid lines represent the

analytical estimates with and without the correction term. Vertical lines correspond to those values

of L=l
S
that yield an integer number of effective proofreading realizations.
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Appendix 2

Energetics of the scheme
We start this section by deriving an analytical expression for the minimum dissipated power, which

was used in making Figure 4 of the main text. Then, we calculate the upper limit on fidelity enhance-

ment available to our model for a finite substrate gradient length scale and compare this limit with

the fundamental thermodynamic bound. We end the section by providing an estimate for the base-

line cost of setting up gradients and compare this cost with the maintenance cost reported in the

main text. Similar to our treatment of Appendix 1, here too our calculations are based on the

�
E
» constant assumption to allow for intuitive analytical results.

1. Derivation of the minimum dissipated power

As stated in the main text, we calculate the minimum rate of energy dissipation necessary for main-

taining the substrate profiles as

P¼
X

S¼R;W

Z L

0

j
S
ðxÞ�ðxÞdx; (S30)

where j
S
ðxÞ ¼ kon�S

ðxÞ�
E
� kSoff�ES

ðxÞ is the net local substrate binding flux and �ðxÞ ¼ �ð0Þþ
kBT ln�

S
ðxÞ=�

S
ð0Þ ¼ �ð0Þ� kBT � x=l

S
is the local chemical potential.

Our choice for the expression of power at steady state is motivated by that fact that the enzyme

transport is passive and therefore, energy needs to be spent only on counteracting the local bind-

ing/unbinding events that tend to homogenize the substrate profile. To demonstrate the validity of

our proposed expression more formally, we invoke the standard approaches for calculating power

(Hill, 1977; Zhang et al., 2012). In particular, for a system that is described through discrete states

with transition rates ki!j between them, the rate of energy dissipation at steady state is given by

P¼ kBT
X

i>j

ðJi!j� Jj!iÞ ln
ki!j

kj!i

; (S31)

where Ji!j is the flux from state i into state j. We note here that a similar expression for the rate of

total entropy production involves a lnðJi!j=Jj!iÞ term (statistical forces) instead of the lnðki!j=kj!iÞ
term (deterministic driving forces). At steady state, however, these two expressions are mathemati-

cally equivalent (Zhang et al., 2012). Our choice for Equation S31 stems from the better physical

intuition that it provides in our context.

So far, the description of our system has been in terms of continuous density functions. To apply

Equation S31 for calculating power, we consider the discrete-state representation of enzyme

dynamics shown in Appendix 2—figure 1. There, space is discretized into intervals of size dx and dif-

fusion is represented through jumps between neighboring sites with a rate D=dx2. What keeps the

system out of equilibrium is the spatially varying substrate profile �
S
ðxÞ.

Because forward and backward diffusive transitions have identical rates, according to

Equation S31 they will not contribute to energy dissipation (since lnð1Þ ¼ 0). The contribution from

the remaining substrate binding/unbinding events can then be written as

P¼ kBT
X

S¼R;W

X

i

kon�S
ðxiÞ� dnEi � kSoff � dnESi

� �
ln
kon�S

ðxiÞ
kSoff

; (S32)

where dnEi ¼ �
E
dx and dnESi ¼ �

ES
ðxiÞdx are the numbers of free and substrate–bound enzymes, respec-

tively, in the ½xi;xi þ dx� interval. In the limit of a large number of discrete spatial intervals, the sum

over i in Equation S32 can be rewritten as an integral over the coordinate x, namely,

P¼ kBT
X

S¼R;W

Z
¥

x¼0

kon�S
ðxÞ�

E
� kSoff�ES

ðxÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

j
S
ðxÞ

ln
kon�S

ðxÞ
kSoff

dx: (S33)

Comparing the form of Equation S33 to that of Equation S30 (with �ðxÞ substituted), one can
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notice a difference in the terms that multiply j
S
ðxÞ. Specifically, in Equation S30 we have �ðxÞ ¼

�ð0Þ� kBT ln�
S
ð0Þþ kBT ln�

S
ðxÞ while the corresponding term in Equation S33 is

kBT lnðkon=kSoffÞþ kBT ln�S
ðxÞ. The difference between them, however, is in the parts that do not

depend on x, while the spatially varying parts (namely, the kBT ln�
S
ðxÞ contributions) are identical.

Now, since the number of bound complexes is constant at steady state, we have
R
¥

0
j
S
ðxÞdx¼ 0. This

means that the x-independent parts discussed earlier all integrate to zero, making the power esti-

mates by Equation S30 and Equation S33 identical, thereby justifying our proposed expression.

To estimate power, we substitute the analytical expression for �
ES
ðxÞ found earlier (Equation S13)

into j
S
ðxÞ and performing a somewhat cumbersome integral, obtain

bP¼ Jbind
X

S¼R;W

1

1�l2
S
=l2

ES

l
ES

l
S

tanh L=2l
ES

ð Þ
tanh L=2l

S
ð Þ � 1

� �

; (S34)

where b�1 ¼ kBT , and Jbind ¼ konStotal�E
is the net binding rate of each substrate. Figure 4 in the main

text was made using this expression for power.

To get additional insights about this result, let us consider the case where substrates are highly

localized (l
S
� L) and diffusion is slow (l

ES
� L) – conditions needed for effective proofreading.

Under these conditions, the hyperbolic tangent terms become 1 and the expression for the power

expenditure simplifies into

bP¼ Jbind
X

S¼R;W

l2
ES

l
S
ðl

ES
þl

S
Þ : (S35)

The monotonic increase of power with l
ES

suggests that energy is primarily spent on maintaining

the concentration gradient of right substrates. This is not surprising, since typically right complexes

travel a much greater distance into the low concentration region of the compartment before releas-

ing the bound substrate (i.e. l
ER

� l
EW
). Therefore, neglecting the contribution from wrong sub-

strates and considering the range of l
S
values where the bulk of power–fidelity trade-off takes place

(l
ER
>l

S
>l

EW
), we further simplify the power expression into

bP»
JbindlER

l
S

¼ Jbind �bD�
ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q ; (S36)

where we used the identities bD�¼ L=l
S
and l

ER
¼ L=

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

. This simple linear relation suggests

that in order to maintain the exponential substrate profile, the minimum energy spent per substrate

binding event should be at least P=Jbind »kBT �l
ER
=l

S
>1kBT (since l

ER
>l

S
).
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Appendix 2—figure 1. Discrete-state representation of diffusive transport and substrate binding/unbinding

events. Transparent clusters of different numbers of substrates illustrate the spatial variation of substrate

concentration.
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We can also use Equation S36 to estimate the minimum dissipation per substrate binding event

at l
S
»l

EW
where the logarithmic power–fidelity scaling regime ends (see Figure 4 of the main text).

Substituting the value of l
S
, we obtain bP=Jbind » ðlER

=l
EW
Þ ¼ ffiffiffiffiffiffiffi

heq
p

, which is the result illustrated in

Figure 4.

2. Limits on fidelity enhancement

The error reduction capacity of the spatial proofreading scheme improves with a greater difference

in substrate off-rates, as was demonstrated in Figure 2 of the main text. At the same time,

Figure 3c showed that the finite length scale of substrate localization (or, finite driving force) sets an

upper limit on fidelity enhancement for substrates with fixed off-rates. It is therefore of interest to

consider these two features together to find the absolute limit on fidelity enhancement available to

our model and then compare it with the fundamental bound set by thermodynamics.

Intuitively, fidelity will be enhanced the most if the density of right complexes does not decay

across the compartment, while that of wrong complexes decays maximally. The first condition can

be met if diffusion is fast or if the unbinding rate of right substrates is low, in which case we have

�
ER
ðLÞ»�¥

ER
; (S37)

where �¥
ER

is the equilibrium density of right complexes. Conversely, when the unbinding rate of

wrong substrates is very large, the density of wrong complexes is maximally reduced at the right-

most boundary and can be obtained from Equation S24 by taking the l
ES
! 0 limit, namely,

�
EW
ðLÞ »

kon�E
�

S
ð0Þe�L=l

S

kWoff
¼ kon�E

Stotale
�L=l

S

l
S
1� e�L=l

S

� �
kWoff

¼ kon�E
Stotal

kWoffL
� Le�L=l

S

l
S
1� e�L=l

S

� �

¼ �¥
EW

�bD�e�bD�

1� e�bD�
:

(S38)

Here, �¥
EW

is the equilibrium density of wrong complexes, and bD�¼ L=l
S
is the effective driving

force of the scheme. Taking the ratio of Equations S37 and S38. Limits on fidelity enhancement, we

obtain the largest fidelity enhancement of the scheme for the given driving force, namely,

hmax ¼ �
ER
ðLÞ

�
EW
ðLÞ ¼

�¥
ER

�¥
EW
|{z}

heq

�ebD�� 1

bD�
) (S39)

h=heq

� �max¼ ðebD� � 1Þ=bD�: (S40)

When bD� >
~

1 (or, l
S
<
~

LÞ, the limit above gets further simplified into

h=heq

� �max
»ebD�=bD�: (S41)

Now, thermodynamics imposes an upper bound on fidelity enhancement by any proofreading

scheme operating with a finite chemical potential D�. This bound is equal to ebD� and is reached

when the entire chemical potential is used to increase the free energy difference between right and

wrong substrates (Qian, 2006). Comparing it with the result in Equation S41, we can see that fidel-

ity enhancement in the spatial proofreading model has the same exponential scaling term, but with

an additional linear factor. Since the dominant contribution comes from the exponential term (as

captured also in Appendix 2—figure 2), we can claim that our proposed model can operate very

close to the fundamental thermodynamic limit.

3. Energetic cost to setup a concentration gradient

Earlier in the section, we calculated the rate at which energy needs to be dissipated to counteract

the homogenizing effect that enzyme activity has on the substrate gradient. In addition to this cost,
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however, there is also a baseline cost for setting up a gradient in the absence of any enzyme. Here,

we calculate this cost in the case where the gradient formation mechanism needs to work against

diffusion that tends to flatten the substrate profile.

As before, we consider an exponentially decaying substrate gradient with a decay length scale l
S

and a total number of substrates Stotal. We write the minimum power PD required for counteracting

the diffusion of substrates as

PD ¼�
Z L

0

JDðxÞ�0ðxÞdx; (S42)

where JD ¼�D
S
r�

S
ðxÞ is the diffusive flux, with D

S
being the substrate diffusion constant. The ratio-

nale for writing this form is that diffusion moves substrates from a higher chemical potential region

into a neighboring lower chemical potential region. The gradient maintaining mechanism would

need to spend at least this chemical potential difference (d�¼��0ðxÞdx) per each substrate diffusing

a distance dx down the chemical potential gradient. Adding up the contribution from all local neigh-

borhoods with a local diffusive flux JDðxÞ results in Equation S42.

Now, substituting �
S
ðxÞ~ e�x=l

S for the substrate profile and �ðxÞ ¼ �ð0Þ þ kBT ln �
S
ðxÞ=�

S
ð0Þð Þ for

the chemical potential, we obtain

bPD ¼
Z L

0

D
S
�0

S
ðxÞ ln�

S
ðxÞð Þ0 dx

¼D
S

Z L

0

�0
S
ðxÞ

� �2

�
S
ðxÞ dx

¼D
S

Z L

0

�
S
ðxÞ
l2

S

dx

¼D
S
Stotal

l2
S

;

(S43)

where in the third step we used the relation �0
S
ðxÞ ¼��

S
ðxÞ=l

S
. This suggests that the minimum dissi-

pated power required for setting up an exponential gradient increases quadratically with decreasing

localization length scale l
S
.

It is informative to also make a comparison between this result and the earlier calculated mini-

mum dissipation needed to counteract the enzyme’s homogenizing activity. Recall that when sub-

strates were sufficiently localized and when diffusion was sufficiently slow, proofreading power could

be approximated as (Equation S35)
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Appendix 2—figure 2. Fidelity enhancement as a function of the effective driving force for varying choices of kWoff .

The red dashed line indicates the thermodynamic bound given by ebD�. The black dashed line corresponds to the

model’s upper limit on fidelity enhancement given by Equation S40.
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bP»Jbind
l2

ES

l
S
ðl

ES
þl

S
Þ ; (S44)

where Jbind ¼ konStotal�E
is the total substrate binding flux. Using the identities l

ES
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

D=kSoff

q

and

KS
d ¼ kSoff=kon, we can calculate the ratio of the proofreading power to baseline power as

P

PD

¼
konStotal�E

l2
ES

D
S
Stotal

�
l2

S

l
S
l

ES
þl

S
ð Þ

¼ D

D
S

� �
E

KS
d

� l
S
=l

ES

1þl
S
=l

ES

:

(S45)

Presuming for simplicity that the enzyme and substrate diffusion constants are the same, we see

that two factors determine the power ratio: (1) the amount of free enzyme in the system (�
E
=KS

d ) and

(2) the substrate localization length scale relative to the characteristic length scale of complex diffu-

sion (l
S
=l

ES
). Now, recall that the proofreading cost is spent largely on counteracting the homoge-

nizing activity of the enzyme on right substrates (Appendix 2.1) and that the bulk of fidelity

enhancement takes place when l
S
<
~

l
ER

(Appendix 1.4). Therefore, when tuning l
S
down, initially the

power ratio would only depend on the amount of free enzyme in the system (�
E
=KS

d ) and then, with

tighter substrate localization, the relative contribution of the proofreading power would start to

decrease.

In the end, we would like to note that spatial gradients can also be set up using an external

potential without a continuous dissipation of energy. In an in vivo setting, gravity can give rise to

spatial structures in oocytes (Feric and Brangwynne, 2013), while in an in vitro setting, electric fields

can create gradients and power the transport of the complex (Hansen et al., 2017). We leave the

investigations of such alternative strategies to future work.
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Appendix 3

Studies on the effect of catalysis on the model performance
In Appendix 1, we considered the rate of catalysis at the right boundary to be very small for the ana-

lytical simplicity of our derivations. This resulted in expressions for fidelity that were independent of

the rate of catalysis r and allowed us to use the complex density at the right boundary as a proxy for

speed. In this section, we relax this assumption and explore the consequences of having non-negligi-

ble catalysis rates on the model’s fidelity and on the speed–fidelity trade-off.

1. Derivation of the complex density profile �
ES
ðxÞ

Accounting for catalysis in our model should be done through a boundary condition for the complex

density equation (Equation S1). Earlier, we imposed a no-flux boundary condition at x ¼ L under the

slow catalysis assumption. With non-negligible catalysis, this assumption is no longer valid, and the

boundary condition is modified into

�D
d�

ES

dx
jx¼L ¼ r�

ES
ðLÞ

|fflfflffl{zfflfflffl}

catalysis flux

: (S46)

Recall from Equations S4, S6 and S8 that the general solution for the complex profile had the

form

�ESðxÞ ¼C1e
�x=l

ES þC2e
x=l

ES þCpe
�x=l

S ; where (S47)

Cp ¼
kon�S

ð0Þ�
E

kSoff 1� l2
ES

l2
S

� � : (S48)

Imposing the no-flux boundary condition at x¼ 0 allows us to eliminate one of the integration

constants, namely,

�D
d�

ES

dx
jx¼0

¼�D � C1

l
ES

þ C2

l
ES

�Cp

l
S

� �

¼ 0) (S49)

C2 ¼C1 þ
l

ES

l
S

Cp ) (S50)

�
ES
ðxÞ ¼C1 e�x=l

ES þ ex=lES
� �

þCp

l
S

l
ES
ex=lES þl

S
e�x=l

S

� �

¼ 2C1 coshðx=lES
ÞþCp

l
S

l
ES
ex=lES þl

S
e�x=l

S

� �

: (S51)

Next, we impose the new boundary condition at x¼ L (Equation S46), which yields

�D 2C1

l
ES

sinhðL=l
ES
Þþ Cp

l
S

eL=lES � e�L=l
S

� �� �

¼ r 2C1 coshðL=lES
Þþ Cp

l
S

l
ES
eL=lES þl

S
e�L=l

S

� �� �

) 2C1 sinhðL=lES
Þþ Cp

l
S

l
ES

eL=lES � e�L=l
S

� �

¼� l
ES
r

D
|{z}

"

2C1 coshðL=lES
Þþ Cp

l
S

l
ES
eL=lES þl

S
e�L=l

S

� �� �

:

(S52)

Note that we have introduced the dimensionless variable ", which, as will see later, will define the

extent to which the presence of catalysis affects the fidelity. For convenience, here we write different

equivalent forms for " as

"¼ l
ES
r

D
¼ r

ffiffiffiffiffiffiffiffiffiffi

DkSoff

q ¼ r

LkSoff

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

: (S53)

Solving for the remaining unknown coefficient C1 in Equation S52, we find
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C1 ¼� Cp

2l
S

l
ES

eL=lES � e�L=l
S

� �
þ " l

ES
eL=lES þl

S
e�L=l

S

� �

sinhðL=l
ES
Þþ "coshðL=l

ES
Þ : (S54)

Lastly, we substitute this result for C1 into Equation S51 and obtain a general expression for the

complex density profile as

�ESðxÞ ¼�Cp

l
S

l
ES

eL=lES � e�L=l
S

� �
þ " l

ES
eL=lES þl

S
e�L=l

S

� �

sinhðL=l
ES
Þþ "coshðL=l

ES
Þ coshðx=l

ES
ÞþCp

l
S

l
ES
ex=lES þl

S
e�x=l

S

� �

: (S55)

One can show in a straightforward way that this result reduces to Equation S13 in the "! 0 limit.

2. Effects on fidelity in low and high substrate localization regimes

Accounting for the catalysis flux has made the general expression for the complex density profile

even more incomprehensible. In order to gain insights about the qualitative as well as quantitative

changes introduced by catalysis, we will focus on two characteristic limits of substrate localization –

uniform substrate profile (l
S
! ¥) and ideal substrate localization (l

S
! 0).

2.1. Uniform substrate profile
In this case, no mechanism for localizing substrates is in play. Let us start off by evaluating the coeffi-

cient Cp (Equation S48) in the l
S
! ¥ limit. Recalling from Equation S3 that

�
S
ð0Þ ¼ Stotal=ðlS

ð1� e�L=l
S Þ), we find

�
S
ð0Þ» Stotal

L
) (S56)

Cp »
kon�S

ð0Þ�
E

kSoff

»

konStotal�E

LkSoff

¼ Jbind

LkSoff
; (S57)

where Jbind ¼ konStotal�E
is the total substrate binding flux.

Substituting the expression for Cp into Equation S55 and eliminating all the terms that vanish

upon taking the l
S
! ¥ limit, we obtain

�
ES
ðxÞ »Cp 1� "coshðx=l

ES
Þ

sinhðL=l
ES
Þþ "coshðL=l

ES
Þ

� �

¼ Jbind

LkSoff
� sinhðL=l

ES
Þþ " coshðL=l

ES
Þ� coshðx=l

ES
Þð Þ

sinhðL=l
ES
Þþ "coshðL=l

ES
Þ :

(S58)

Ultimately, we are interested in knowing the rate of product formation defined via vS ¼ r�
ES
ðLÞ.

We therefore evaluate the complex density at x¼ L and multiply it by r, which yields

vS ¼ r�
ES
ðLÞ ¼ Jbind�

r

LkSoff

 !

� sinhðL=l
ES
Þ

sinhðL=l
ES
Þþ "coshðL=l

ES
Þ

¼ Jbind�
r

LkSoff

 !

� tanhðL=l
ES
Þ

tanhðL=l
ES
Þþ "

� Jbind�
r

LkSoff

 !

�
tanh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q� �

tanh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q� �

þ "
;

(S59)

where in the last step we wrote an equivalent expression using the L=l
ES
¼

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

identity. To ana-

lyze this result further, we will consider two limiting cases.

Galstyan et al. eLife 2020;9:e60415. DOI: https://doi.org/10.7554/eLife.60415 26 of 46

Research article Physics of Living Systems Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.60415


Case 1: Fast diffusion (
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

� 1). If diffusion is fast, we can approximate the hyperbolic tan-

gent functions as the arguments themselves (i.e. tanhðzÞ» z for z � 1). Then, using the last form of "

in Equation S53, we simplify the expression for speed as

vS »Jbind �
r

LkSoff

 !

�

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

þ r
LkS

off

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

¼ Jbind�
r

LkSoff

 !

� 1

1þ r
LkS

off

) (S60)

vS ¼ Jbind�
~r

kSoff þ~r
; where (S61)

~r¼ r=L: (S62)

This is an intuitive result, suggesting that an enzyme that diffuses fast acts like a standard Michae-

lis–Menten enzyme with an effective catalysis rate ~r. For such an enzyme, the probability of catalysis

for a bound substrate is ~r=ðkSoff þ~rÞ. Multiplying this probability by the net substrate binding flux

yields the expression for speed in Equation S61.

Fidelity of the model in this fast diffusion setting can be written as

h¼ vR

vW
¼ kWoff þ~r

kRoff þ~r
: (S63)

In the limit where catalysis is very slow (~r� kRoff ), the equilibrium fidelity given by the ratio of off-

rates is recovered. And in the opposite limit of very fast catalysis (~r� kWoff ), the discriminatory capac-

ity of the enzyme disappears altogether (Appendix 3—figure 1a).
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Appendix 3—figure 1. Dependence of fidelity on the catalysis rate in the case where the substrate

profile is uniform. (a) Fast diffusion setting (
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

� 1). The highest fidelity reduction is a factor of

heq. (b) Slow diffusion setting (
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

>
~

1). The highest fidelity reduction is a factor of
ffiffiffiffiffiffiffi
heq

p
. In both

cases, heq ¼ 10 was used.

Case 2: Slow diffusion (
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

>
~

1). A more interesting case is when diffusion is slow. Now, the

hyperbolic tangent functions in Equation S59 are approximately 1, allowing us to simplify the

expression for speed into

vS ¼ Jbind �
r

LkSoff

 !

� 1

1þ r
LkS

off

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

¼ Jbind �
~r

kSoff þ~r

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q :

(S64)
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Drawing an analogy between the above result and Equation S61, one can notice the presence of

an extra
ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

factor for ~r in the denominator.

Evaluating the speeds of right and wrong product formation, we can write fidelity in this slow dif-

fusion setting as

h¼ vR

vW
¼
kWoff þ~r

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q

kRoff þ~r

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q : (S65)

Like the fast diffusion case, when catalysis is very slow (~r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kRoff=t D

q

or, equivalently, r�
ffiffiffiffiffiffiffiffiffiffi

DkRoff

q

),

the equilibrium fidelity is recovered. Unlike the fast diffusion case, however, if catalysis is very fast

(r�
ffiffiffiffiffiffiffiffiffiffi

DkWoff

q

), the enzyme partly preserves its discriminatory capacity (Appendix 3—figure 1b). In

this limit, a fidelity equal to the square root of the equilibrium fidelity is still attainable, namely,

h»

ffiffiffiffiffiffiffi

kWoff

q

ffiffiffiffiffiffiffi

kRoff

q ¼ ffiffiffiffiffiffiffi
heq

p
: (S66)

This unexpected result suggests a potential advantage of localizing fast catalytic reactions instead

of having them occur in a well–mixed solution.

2.2. Ideal substrate localization
We next consider the effect of catalysis on model fidelity in the ideal substrate localization limit

(l
S
! 0). We begin by evaluating the Cp=lS

ratio that appears in the density profile expression

(Equation S55). Using Equations S48 and Equations S3, we find

�
S
ð0Þ» Stotal

l
S

(S67)

Cp

l
S

¼ kon�S
ð0Þ�

E

l
S
kSoffð1�l2

ES
=l2

S
Þ

»

konStotal�E

�kSoffl
2

ES

¼�Jbind

D
; (S68)

where in the last step we invoked the identities l2
ES
¼D=kSoff and Jbind ¼ konStotal�E

. We then substitute

our result for Cp=lS
into Equation S55 and simplify the complex density expression into

�
ES
ðxÞ ¼ Jbind

D
�l

ES

eL=lES þ "eL=lES

sinhðL=l
ES
Þþ "coshðL=l

ES
Þcoshðx=lES

Þ� ex=lES

 !

¼ Jbind �
l

ES

D

coshððL� xÞ=l
ES
Þþ " sinhððL� xÞ=l

ES
Þ

sinhðL=l
ES
Þþ "coshðL=l

ES
Þ :

(S69)

To obtain the speed, we evaluate �
ES
ðxÞ at the right boundary (x¼ L) and multiply it by r, namely,

vS ¼ r�
ES
ðLÞ ¼ Jbind

l
ES
r

D
|{z}

"

1

sinhðL=l
ES
Þþ "coshðL=l

ES
Þ

¼ Jbind �
"

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q� �

þ "cosh
ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q� � :

(S70)

To evaluate the effect of catalysis further, we again consider two special limits – those of fast and

slow diffusion.
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Case 1: Fast diffusion (
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

� 1). In this limit, the hyperbolic sine function can be approxi-

mated by its argument (i.e. sinhðzÞ» z for z � 1), while the hyperbolic cosine function is approxi-

mately 1. Making these approximations and substituting the expression for ", we obtain

vS »Jbind �
r

LkS
off

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

þ r
LkS

off

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

¼ Jbind �
r

LkS
off

1þ r
LkS

off

¼ Jbind �
~r

kSoff þ~r
:

(S71)

This result is identical to what we found in the fast diffusion limit for the l
S
!¥ setting

(Equation S61), which is reasonable, since the location of substrate binding is irrelevant if diffusion is

very fast (Appendix 3—figure 2a).
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Appendix 3—figure 2. Fidelity as a function of the catalysis rate in an ideal substrate localization

setting. (a) Fast diffusion case, where the behavior of the system is identical to that in Appendix 3—

figure 1a. (b) Slow diffusion case where efficient proofreading is achieved. Catalysis can reduce the

fidelity by up to a factor of
ffiffiffiffiffiffiffi
heq

p
. In both cases, heq ¼ 10 was used.

Case 2: Slow diffusion (
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

� 1). In this limit, the hyperbolic sine and cosine functions can

be approximated as exponentials with a 1=2 prefactor, simplifying the expression of speed into

vS »Jbind �
2"

1þ "
e�

ffiffiffiffiffiffiffiffiffi
t Dk

S
off

p
: (S72)

Recalling the identity "¼ r=
ffiffiffiffiffiffiffiffiffiffi

DkSoff

q

(note that " depends on the substrate kind), we evaluate the

speed for right and wrong product formation and, dividing them, obtain the fidelity as

h¼ vR

vW
¼
1þ r=

ffiffiffiffiffiffiffiffiffiffi

DkWoff

q

1þ r=
ffiffiffiffiffiffiffiffiffiffi

DkRoff

q �

ffiffiffiffiffiffiffi

kWoff

q

ffiffiffiffiffiffiffi
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q e
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off

p
�
ffiffiffiffiffiffiffiffiffi
t Dk

R
off

p

¼
1þ r=

ffiffiffiffiffiffiffiffiffiffi

DkWoff

q

1þ r=
ffiffiffiffiffiffiffiffiffiffi

DkRoff

q � ffiffiffiffiffiffiffi
heq

p
e
ffiffiffiffiffiffiffiffiffi
t Dk

R
off

p
ð ffiffiffiffiffiheq
p �1Þ:

(S73)

In the case where catalysis is slow (r�
ffiffiffiffiffiffiffiffiffiffi

DkRoff

q

), the first term in the fidelity expression becomes

approximately 1, and the our earlier result obtained with no account of catalysis is recovered

(Equation S21). In the opposite limit of fast catalysis (r�
ffiffiffiffiffiffiffiffiffiffi

DkWoff

q

), the first term is no longer 1, and

we find
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h »
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kRoff

kWoff

s

ffiffiffiffiffiffiffi
heq

p

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

1

e
ffiffiffiffiffiffiffiffiffi
t Dk

R
off

p
ð ffiffiffiffiffiheq
p �1Þ

¼ e
ffiffiffiffiffiffiffiffiffi
t Dk

R
off

p
ð ffiffiffiffiffiheq
p �1Þ:

(S74)

As we can see, fast catalysis in the slow diffusion regime reduces the fidelity by
ffiffiffiffiffiffiffi
heq

p
or, equiva-

lently, reduces the effective number of proofreading realizations by one half, without affecting the

exponential amplification term (Appendix 3—figure 2b).

To conclude, our study demonstrated the expected reduction of fidelity with increasing catalysis

rate. In the case of fast diffusion, up to a factor of heq reduction is possible, as is the case for the

original (Hopfield, 1974; Wong et al., 2018). In the case of slow diffusion, however, the cap on the

amount of reduction is decreased down to
ffiffiffiffiffiffiffi
heq

p
. The advantage of this feature is most notable in

the limit of a non-localized (i.e. uniform) substrate profile and fast catalysis where a diffusing enzyme

is still capable of discriminating between substrates. This behavior would not be possible for a

Michaelis–Menten enzyme in a well-mixed solution.

3. Effects on the speed–fidelity trade-off

In Figure 3a of the main text we explored the speed–fidelity trade-off in the slow catalysis limit. This

trade-off arose in response to tuning the substrate localization length scale (l
S
) and the diffusion

time scale (t D). Here, we explore the changes to this trade-off behavior in the case where the effects

of catalysis are not negligible. For concreteness, we focus on alterations to the Pareto front of the

trade-off achieved in the l
S
! 0 limit.

Appendix 3—figure 3a compares the Pareto fronts in the cases of slow and fast catalysis limits.

In each case, speed is normalized by the corresponding effective Michaelis–Menten speed that is

reached in the fast diffusion limit and is given by v
MM

¼ Jbind � ~r=ðkRoff þ ~rÞ, where ~r ¼ r=L. One can

notice a shift of the fast catalysis front toward the low-fidelity region, which was expected since ear-

lier we observed the complete loss of substrate discrimination when diffusion and catalysis were

both fast (Appendix 3—figure 2a).
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Appendix 3—figure 3. Pareto front of the speed–fidelity trade-off at different levels of catalytic

activity. (a) Cases of slow and fast catalysis limits, with the y-axis for speed normalized to the [0,1]

interval. (b) Family of Pareto fronts for different choices of the catalysis rate. Speed on the y-axis is

reported relative to the substrate binding flux Jbind.

Appendix 3—figure 3a may leave an impression that faster catalysis leads to a less favorable

speed–fidelity trade-off. Note, however, that the speed v
MM

ð~rÞ used to normalize the y-axis is itself a

function of the catalysis rate and penalizes the fast catalysis case more than its slow counterpart. To

eliminate this ambiguity, we plotted a family of Pareto fronts for increasing values of the catalysis

rate but this time normalizing the y-axis by the r-independent quantity Jbind (Appendix 3—figure

3b). As can be seen, faster catalysis in fact improves the speed–fidelity trade-off, meaning that in

order to maximize fidelity at a given speed level, the best strategy would be to increase the catalysis

rate and correspondingly slow down the diffusion.
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A trade-off between speed and fidelity also arises in response to the sole alteration of the cataly-

sis rate, while keeping the rest of the model parameters fixed. To explore this trade-off for an arbi-

trary fixed choice of l
S
and t D, we begin by evaluating speed from Equation S55, namely,

vS ¼ r�
ES
ðLÞ

¼ r� �Cp

l
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l
ES
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� �
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� �

sinhðL=l
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� �
 !
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��l
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ES
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ES
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ES
Þ þ
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S
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S
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ES
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Þþ "coshðL=l
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Þ

¼ a
S
r

1þ b
S
r
:

(S75)

In the last step, we introduced coefficients a
S
and b

S
that are independent from r, and used the

fact that "~r.

Now, using the definition of fidelity and the result obtained above, we can write

h¼ vR

vW
¼ a

R

a
W

1þ b
W
r

1þ b
R
r
: (S76)

Notice that the ratio a
R
=a

W
� h

0
is the fidelity in the limit of very slow catalysis (r! 0). Substituting

it, we write

h¼ h0

�
1þ b

R
r�ðb

R
� b

W
Þr

1þ b
R
r

�

¼ h0

�

1�ðb
R
� b

W
Þ� r

1þ b
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r

|fflfflffl{zfflfflffl}

vR=aR

�

) (S77)

h¼ h
0

1�Db

a
R

vR

� �

; (S78)

where Db¼ b
R
� b

W
. Recalling that "¼ l

ES
r=D and noting the function form of the denominator in

Equation S75, one can show that b
S
¼D�1l

ES
=tanhðL=l

ES
Þ. This is an increasing function of l

ES
and

hence, a decreasing function of kSoff , implying that Db>0.

With this condition in mind, we can see from Equation S78 that speed and fidelity are anticorre-

lated with a linear slope when tuning the catalysis rate, unlike the more sophisticated trade-off rela-

tions when tuning the other model parameters. The peak fidelity h0 is attained in the limit of

vanishing speed. And conversely, speed is the highest when fidelity is the lowest for the given fixed

values of l
S
and t D (Appendix 3—figure 4).
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Appendix 3—figure 4. Linear trade-off between speed and fidelity when tuning the rate of catalysis.

hmin is the fidelity in the fast catalysis limit and is up to heq lower than h0 (based on the results of the

previous section). Linear scale is used for both axes.

Overall, our result illustrates the simple speed–fidelity trade-off that can be navigated by tuning

the catalysis rate. This, for instance, can be achieved by changing the concentration of effectors that

activate the enzyme for catalysis.
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Appendix 4

Proofreading for substrates with different localization conditions
Following the original treatment by Hopfield, 1974, we have performed the studies of our model

under the assumption that discrimination between right and wrong substrates is solely based on

their off–rates (kWoff>k
R
off ). Although this is often the signature difference between substrates, in a cel-

lular setting substrate discrimination may occur through other factors also. For example, substrates

may be present at different amounts or they may have non-identical on–rates. These differences,

however, have a multiplicative effect on the fidelity (i.e. h~ ðkRon½R�Þ=ðkWon½W�Þ) and do not highlight

the proofreading capacity of a particular model.

Unlike these two features, differences in the degree to which right and wrong substrates are

localized can have a non-trivial effect on the proofreading performance. In this Appendix, we gener-

alize our study of the model fidelity to cases where right and wrong substrates have unequal localiza-

tion length scales l
R
and l

W
, respectively.

1. Limiting cases

We start off by exploring the limiting cases first. From the earlier derived Equation S14 and

Equation S15, we know that the complex density at x ¼ L in very low (l
S
� L) and very high (l

S
� L)

substrate localization regimes is given by

�¥
ES
¼ kon��S

�
E

kSoff
and (S79)

�ideal
ES

ðLÞ ¼ �¥
ES
� L=l

ES

sinhðL=l
ES
Þ ; (S80)

respectively. Note that the complex density in the ideal localization case is necessarily lower than

that in the case of a uniform profile, since the inequality sinhðL=l
ES
Þ>L=l

ES
holds for all choices of

l
ES
. If l

R
and l

W
are not constrained to be equal, then the highest fidelity for a given t D will be

attained when the right substrates are distributed uniformly while the wrong substrates are highly

localized (l
R
� L and l

W
� L, respectively). We obtain the fidelity in this case as

hmax ¼
�¥

ER

�ideal
EW

ðLÞ

¼
�¥

ER

�¥
EW

� sinhðL=l
EW
Þ

L=l
EW

¼ heq �
sinhðL=l

EW
Þ

L=l
EW

) (S81)

hmax

heq

¼ sinhðL=l
EW
Þ

L=l
EW

�
sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q� �

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q : (S82)

Notably, this result for maximum fidelity enhancement is independent of kRoff . Furthermore, it

exceeds the ideal localization fidelity reported in the main text (Equation 5, derived in the l
S
! 0

limit), which was expected since now the right complexes on average travel a shorter distance to

reach the activation site than the wrong complexes.

In the opposite scenario where the wrong substrates are uniformly distributed and the right ones

are highly localized (l
R
� L and l

W
� L, respectively), the system attains its lowest fidelity for a

given t D, namely,
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hmin ¼
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ðLÞ
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¼
�¥

ER
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ER

sinhðL=l
ER
Þ

¼ heq�
L=l

ER

sinhðL=l
ER
Þ) (S83)

hmin

heq

¼ L=l
ER

sinhðL=l
ER
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q� � : (S84)

Since L=l
ER
< sinhðL=l

ER
Þ, the lowest fidelity is less than the equilibrium fidelity itself (hmin<heq),

suggesting that the enzyme may in fact do anti-proofreading (Murugan et al., 2014) if the wrong

substrates are generally closer to the catalytic site.

2. Intermediate levels of substrate localization

In Figure 3 inset as well as in Appendix 1.4, we explored the dependence of fidelity on the substrate

localization length scale l
S
when it was the same for the two substrate kinds. Here, we expand this

study to the case where this constraint is relaxed.

In particular, using Equation S24, we calculate complex densities and corresponding fidelity val-

ues as a function of l
R
for different fixed choices of the length scale ratio l

R
=l

W
. The results of the

study are captured in Appendix 4—figure 1. In the special case where the two length scales are

equal (l
R
= l

W
, solid black line), fidelity exhibits a monotonic depends on L=l

R
, and in the limit of

ideal localization (very large L=l
R
) the result in Equation 5 of the main text is recovered.

When l
R
6¼ l

W
, the dependence of fidelity on L=l

R
is no longer monotonic. If right substrates are

more localized than the wrong ones (red curves), then the fidelity curves have a minimum where the

enzyme does anti-proofreading (i.e. h<heq). The proofreading portion of the curves (when h>heq) is

shifted to the right, suggesting that much higher substrate localization is needed for the enzyme to

proofread.

The opposite case is when the right substrates have a shallower gradient than the wrong ones

(blue curves). The fidelity curves are now shifted to the left and have a peak that is greater than the

large L=l
R
limit of fidelity. This means that there is an optimal degree of substrate localization, going

beyond which makes the model performance worse in terms of both error correction and energy

consumption.
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Appendix 4—figure 1. Fidelity as a function of L=l
R
for different choices of the ratio l

R
=l

W
. The

solid black line corresponds to the earlier studied regime where substrates had identical localization

length scales. The blue curves represent the cases where l
R
>l

W
, while the red curves represent the

cases where l
R
<l

W
. Numbers next to the curves correspond to the l

R
=l

W
ratios used for generating

them. Expressions for the highest and lowest fidelity values, as well as the fidelity expression in the

limit where both substrates are highly localized are shown on the right side of the figure. t D ¼
40 t

R
off and heq ¼ 10 were used for demonstration.
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Over the course of its diffusive transport, a bound enzyme is more likely to deposit a right sub-

strate in a substrate-depleted region than a wrong one, because right substrates stay attached to

the enzyme for a longer time. Therefore, if the gradient-maintaining mechanism does not discrimi-

nate between substrates (which we assume is the case for the kinase/phosphatase-based one), then

it will be easier for it to maintain the wrong ones localized since they tend to get deposited closer to

the localization site (see Appendix 6—figure 1c as an example). This means that in a realistic setting

the spatial organization of substrates is more likely to be in the advantageous blue region of Appen-

dix 4—figure 1 where l
R
>l

W
, facilitating the realization of spatial proofreading.
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Appendix 5

Studies on the validity of the uniform free enzyme profile assumption
In our treatment of the model so far, we have assumed for mathematical convenience that free

enzymes are in excess, which suggested the approximation �
E
ðxÞ» constant. Example enzyme density

profiles shown in Appendix 5—figure 1, however, demonstrate that this assumption does not hold

in general. Specifically, there is a depletion of free enzymes near the substrate localization site and

abundance near the catalysis site. Because of this depletion at the leftmost edge, we expect a reduc-

tion in speed in comparison with our earlier treatment where a flat profile was assumed. In addition,

if substrates have a weak gradient, we expect the fidelity to also be reduced, since more enzymes

will bind substrates at intermediate positions, reducing the average travel distance to the catalytic

site. In what follows, we discuss in greater detail the consequences of having a nonuniform free

enzyme distribution on the model performance.
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Appendix 5—figure 1. Example profiles of free and substrate-bound enzymes. Enzyme profiles are

normalized so that the sum of areas under the curves is unity. The substrate profile (rescaled on the

y-axis) is shown in transparent gray.

1. Effects that relaxing the �
E
ðxÞ » constant assumption has on the Pareto

front

We begin by studying the effects of relaxing the uniform free enzyme profile assumption on the Par-

eto front of the speed–fidelity trade-off (Figure 3a of the main text). This front is reached in the ideal

substrate localization limit (l
S
! 0). Though in general enzyme profiles need to be obtained using

numerical methods due to the nonlinearity of reaction–diffusion equations, in this particular limit

(l
S
! 0) an analytical solution is available. To obtain it, we write the reaction–diffusion equations in

the bulk region of space as

q�
ER

qt
¼D

q
2�

ER

qx2
� kRoff�ER

(S85)

q�
EW

qt
¼D

q
2�

EW

qx2
� kWoff�EW

(S86)

q�
E

qt
¼D

q
2�

E

qx2
þ
X

S¼R;W

kSoff�ES
: (S87)

Substrate binding reactions did not enter the above equations, as they occur at the leftmost

boundary only. They are instead accounted for via boundary conditions, which read
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�D
q�ER

qx

�
�
�
�
x¼0

¼ konStoal�Eð0Þ; (S88)

�D
q�EW

qx

�
�
�
�
x¼0

¼ konStotal�Eð0Þ; (S89)

�D
q�E

qx

�
�
�
�
x¼0

¼�2konStotal�Eð0Þ; (S90)

where Stotal is the total amount of free substrate of each kind concentrated at x¼ 0.

Relating local enzyme concentrations
Considering the system at steady state, we add Equations S85-S87 and obtain

0¼D
d2�ER

dx2
þD

d2�EW

dx2
þD

d2�E

dx2
; (S91)

where we replaced the partial derivatives with total derivative since the profiles are time-indepen-

dent. Dividing Equation S91 by D and integrating once, we find

d�
ER

dx
þd�

EW

dx
þd�

E

dx
¼C1: (S92)

The above relation must hold for arbitrary position x. Choosing x¼ 0 and noting that from

Equations S88-S90 the sum of fluxes should be zero, we can claim that C1 ¼ 0. Integrating for the

second time, we obtain

�ERðxÞþ �EWðxÞþ �EðxÞ ¼C2; (S93)

where C2 is now a different constant. To find it, we perform an integral for the last time across the

entire compartment, namely,

Z L

0

�
�ERðxÞþ �EWðxÞþ �EðxÞ

�
dx¼ Etotal ¼C2L: (S94)

Here, we introduced the parameter Etotal as the total number of enzymes in the system (in free or

bound forms). The constant C2, which we will rename into �0, is then the average enzyme density,

that is,

�0 ¼ Etotal=L: (S95)

Substituting this result into Equation S93, we find an insightful relation between free and bound

enzyme densities at an arbitrary position, namely,

�EðxÞ ¼ �0 � �ERðxÞ� �EWðxÞ: (S96)

This relation suggests that whenever the local concentration of bound enzymes is high, the local

concentration of free enzymes should be correspondingly low, as we see reflected in the profiles of

Appendix 5—figure 1.

Deriving the fidelity expression
Next, we consider Equations S85 and S86 separately at steady state, written in the form

D
d2�

ES

dx2
� kSoff�ES

¼ 0: (S97)

The general solution to this ODE reads

�ESðxÞ ¼CS
1
e�x=lES þCS

2
ex=lES ; (S98)

where l
ES
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

D=kSoff

q

, and CS
1
and CS

2
(S = R,W) are constants which are different for right and wrong
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complexes. The no-flux boundary condition at x¼ L can be used to relate these constants and sim-

plify the complex profile expression, namely,

�D
d�

ES
ðxÞ

dx
jx¼L ¼� D

l
ES

�CS
1
e�L=l

ES þCS
2
eL=lES

� �

¼ 0) (S99)

CS
2
¼ e�2L=l

ESCS
1
) (S100)

�
ES
ðxÞ ¼CS

1
e�x=l

ES þCS
1
e�2L=l

ES ex=lES

¼ 2CS
1
e�L=l

ES cosh
L� x

l
ES

� �

¼ ~CS
1
cosh

L� x

l
ES

� �

; (S101)

where ~CS
1
¼ 2CS

1
e�L=l

ES is a new constant coefficient introduced for convenience.

Now, the fidelity of the scheme is the ratio of right and wrong complex densities at x ¼ L. Using

the result above, the fidelity can be written as

h¼ �
ER
ðLÞ

�
EW
ðLÞ ¼

~CR
1

~CW
1

: (S102)

The ratio of these constant coefficients can be obtained by noting that the diffusive fluxes of right

and wrong complexes at x¼ 0 are identical (from Equations S38 and S38), that is,

�D
q�

ER

qx
jx¼0

¼�D
q�

EW

qx
jx¼0

) (S103)

~CR
1
� sinhðL=l

ER
Þ

l
ER

¼ ~CW
1
� sinhðL=l

EW
Þ

l
EW

) (S104)

~CR
1

~CW
1

¼ l
ER

l
EW

sinhðL=l
EW
Þ

sinhðL=l
ER
Þ : (S105)

Substituting this result into Equation S102, and recalling the equality L=l
ES
¼

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
S
off

q

, we obtain

h¼

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q� �¼ ffiffiffiffiffiffiffi
heq

p sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
W
off

q� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffi

t Dk
R
off

q� � : (S106)

This expression is identical to that in Equation S20 which was derived under the �
E
ðxÞ»constant

assumption, suggesting that when substrates are highly localized, the shape of the free enzyme pro-

file does not dictate the fidelity.

Deriving the speed expression
To keep the expression of speed compact while still illustrating the key consequences of relaxing

the �ðxÞ» constant assumption, we will assume moving forward that the density of wrong complexes

is much lower than that of the right complexes, that is, �
EW
ðxÞ � �

ER
ðxÞ. This assumption holds as

long as the right and wrong complexes have sufficiently different off-rates. To see why it is the case,

note that the ratio �
EW
ðxÞ=�

ER
ðxÞ is the highest at x ¼ 0. We therefore calculate an upper bound for

the ratio using Equation S101 and Equation S105 as

�EWðxÞ
�ERðxÞ

<
�EWð0Þ
�ERð0Þ

¼ lEW

lER

tanhðL=lERÞ
tanhðL=lEWÞ

<
lEW

lER

¼
ffiffiffiffiffiffiffi

kRoff

kWoff

s

¼ 1
ffiffiffiffiffiffiffi
heq

p : (S107)

As long as heq
>
~

10, it is fair to assume that the right complexes greatly outnumber the wrong

ones, which allows us to approximate the free enzyme density from Equation S96 as

�
E
ðxÞ»�0� �

ER
ðxÞ.

The specification of the right complex density profile requires the knowledge of the unknown

coefficient ~CR
1
. To find this coefficient, we use the boundary condition in Equation S88 and the

approximation �
E
ðxÞ» �0 � �

ER
ðxÞ to write
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D
~CR
1

l
ER

sinhðL=l
ER
Þ ¼ konStotal �0 � ~CR

1
coshðL=l

ER
Þ

� �
) (S108)

~CR
1
¼ konStotal�0

D
l
ER

sinhðL=l
ER
Þþ konStotal coshðL=lER

Þ

¼ konStotal�0

l
ER
kRoff sinhðL=lER

Þþ konStotal coshðL=lER
Þ

¼ �0 �

konStotal

kRoffL

1þ L

l
ER

coshðL=l
ER
Þ

sinhðL=l
ER
Þ
konStotal

kRoffL

� L=l
ER

sinhðL=l
ER
Þ : (S109)

With the constant coefficient known, the right complex density then becomes

�
ER
ðxÞ ¼ �0 �

��
S

KR
d

1þ L
l
ER

coshðL=l
ER

Þ
sinhðL=l

ER
Þ
��
S

KR
d

� L=l
ER

sinhðL=l
ER
Þcosh

L� x

l
ER

� �

; (S110)

where we used the definitions of the mean substrate density ��
S
¼ Stotal=L and the dissociation con-

stant KR
d ¼ kRoff=kon.

To enable a direct parallel between this general treatment and the earlier one with the

�
E
ðxÞ» constant approximation, let us introduce �¥

ER
as the uniform right complex density when diffu-

sion is very fast (l
ER

� L) and calculate it from Equation S110 as

�¥
ER

¼ �0 �
��
S

KR
d

1þ ��
S

KR
d

: (S111)

Now, using the �¥
ER

expression, we rewrite Equation S110 as

�
ER
ðxÞ ¼

1þ ��
S

KR
d

1þ L
l
ER

coshðL=l
ER

Þ
sinhðL=l

ER
Þ
��
S

KR
d

� �¥
ER
� L=l

ER

sinhðL=l
ER
Þcosh

L� x

l
ER

� �

¼
1þ ��

S

KR
d

1þ L

l
ER

coshðL=l
ER
Þ

sinhðL=l
ER
Þ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

g

��
S

KR
d

� �const
ER

ðxÞ;
(S112)

where �const
ER

ðxÞ is the complex density obtained under the �
E
ðxÞ»constant assumption

(Equation S15). The extra factor that appears on front does not exceed 1 since g� 1, indicating a

reduction in speed, as we anticipated in our more qualitative discussion at the beginning of the sec-

tion. The presence of the extra factor suggests two possibilities for the approximation to hold true;

first, g»1 which happens when l
ER

>
~

L or when the right complex does not decay noticeably across

the compartment, and second, when g>1 and ��
S
� g�1KR

d , which is when right complexes do decay

but their fraction is low compared with free enzymes because of low substrate concentration.

Let us demonstrate the last statement more explicitly. Specifically, let us show that the validity of

the approximation �
E
ðxÞ» constant is indeed linked directly to the fraction of bound enzymes. To

that end, we evaluate �
E
ð0Þ=�

E
ðLÞ as a metric that quantifies the degree to which �

E
ðxÞ» constant

holds. If there is a large depletion of free enzymes near the substrate-binding site, then the metric

will be significantly less than 1; conversely, if the free enzyme profile is practically flat, then the met-

ric will be close to 1. Invoking the relation �
E
ðxÞ » �0 � �

ER
ðxÞ and using our result for the complex

density (Equation S110) as well as the definition of g in Equation S112, we evaluate this metric as
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�
E
ð0Þ

�
E
ðLÞ »

�0 � �
ER
ð0Þ

�0 � �
ER
ðLÞ

¼
1� g��

S
=KR

d

1þg��
S
=KR

d

1� g��
S
=KR

d

coshðL=l
ER

Þð1þg��
S
=KR

d
Þ

¼ 1

1þ 1� 1

coshðL=l
ER

Þ

� �

g��
S
=KR

d

:

(S113)

Next, we calculate the fraction of bound enzymes pbound from Equation S110 as

pbound »E�1

total

R L

0
�

ER
ðxÞdx

¼ �0L

Etotal

��
S
=KR

d

1þg��
S
=KR

d

¼ ��
S
=KR

d

1þg��
S
=KR

d

:

(S114)

Note that g�1 emerges as the highest fraction of bound enzymes (pmax
bound) reached in the large sub-

strate concentration limit.

To link the metric �
E
ð0Þ=�

E
ðLÞ to the fraction of bound enzymes, we express ��

S
=KR

d in terms of

pbound and substitute it into Equation S113, namely,

��
S
=KR

d ¼ pbound

1�gpbound
) (S115)

�
E
ð0Þ

�
E
ðLÞ ¼

1

1þ 1� 1

coshðL=l
ER

Þ

� �
gpbound

1�gpbound

¼ 1�gpbound

ð1�gpboundÞþ 1� 1

coshðL=l
ER

Þ

� �

gpbound

¼ 1�gpbound

1�gpbound=coshðL=lER
Þ

¼ pmax
bound � pbound

pmax
bound� pbound=coshðL=lER

Þ : (S116)

Now, when the complexes do not decay appreciably across the compartment (l
ER

>
~

L and thus,

coshðL=l
ER
Þ»1), the metric becomes roughly equal to 1, suggesting that the free enzyme profile is

practically flat. A more interesting case is when the complexes do decay (l
ER
<L), as in Appendix 5—

figure 1. In this case, applying the condition coshðL=l
ER
Þ� 1, we find

�Eð0Þ
�EðLÞ

»1� pbound

pmax
bound

: (S117)

The anti-correlation between the �
E
ð0Þ=�

E
ðLÞ and pbound in the above result demonstrates that the

degree to which the approximation �
E
ðxÞ»constant is violated is indeed dictated by the fraction of

bound enzymes.

Pareto front shift
The previous calculations showed that in the ideal substrate localization limit relaxing the

�ðxÞ» constant assumption keeps the fidelity the same while the speed gets reduced. And this reduc-

tion is greater for higher substrate concentrations. We therefore expect a shift in the Pareto front

when going to the high substrate concentration limit, as is illustrated in Appendix 5—figure 2a. To

get more intuition about the effect of this shift caused by tuning the amount of substrates, we con-

sider the effective number of proofreading realizations at half-maximum speed (n50) and study how

this number changes as a function of the fraction of enzymes bound (pbound), which increases mono-

tonically with Stotal as suggested by Equation S114. Appendix 5—figure 2b shows this dependence.

As can be seen, n50 reduces roughly linearly with pbound; for example, if 10% of the enzymes are
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bound, then a 10% reduction in n50 is expected. This suggests that as long as the fraction of bound

enzymes is low, our findings related to the Pareto front made under the �
E
» constant assumption will

generally hold true.

pbound
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Appendix 5—figure 2. Consequences of relaxing the �
E
ðxÞ» constant assumption on the Pareto

front. (a) Pareto fronts in the low and high substrate concentration limits. (b) Reduction in the

effective number of proofreading realizations at half-maximum speed as a function of the fraction of

enzymes bound. heq ¼ 10 was used in making the plots.

2. Effects that relaxing the �
E
ðxÞ » constant assumption has on fidelity in a

weak substrate gradient setting

In this section, we study how accounting for the spatial distribution of free enzymes affects our

results on the model’s fidelity in the setting where substrates have a finite localization length scale

l
S
. In this setting, Equations (1–3) (in the main text) describing the system’s dynamics become a sys-

tem of nonlinear equations, which we solve at steady state using numerical methods.

An example curve of how fidelity changes with tuning diffusion time scale in a finite l
S
setting is

shown in Appendix 5—figure 3. As expected, the nonuniform free enzyme profile leads to a reduc-

tion in fidelity. This reduction is not significant when diffusion is relatively fast as in that case the free

enzyme profile manages to flatten out rapidly. The reduction is not significant also in the very slow

diffusion limit where binding events that lead to production primarily take place in the proximity of

the activation region and hence, the nonuniform profile of free enzymes across the compartment has

little impact on fidelity. The greatest reduction happens at intermediate diffusion time scales; in par-

ticular, when the system achieves its peak fidelity.
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Appendix 5—figure 3. Fidelity as a function of diffusion time scale calculated with and without mak-

ing the �
E
ðxÞ » constant approximation. The total number of free substrates is chosen so that

��
S
=KR

d ¼ 3. The substrate localization length scale used for generating the solid curves is l
S
=L ¼ 0:04.
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To quantify the extent of this highest reduction, we calculated the peak value of the effective

number of proofreading realizations (nmax) for different free substrate amounts which regulate the

fraction of bound enzymes (pbound). The results obtained for different choices of l
S
are summarized in

Appendix 5—figure 4. As can be seen, for the high substrate localization case (l
S
=L ¼ 0:04), there is

a roughly linear dependence between nmax and pbound. The initial decrease in nmax with growing pbound

is even slower when substrates are less tightly localized (l
S
=L ¼ 0:10; 0:30).
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Appendix 5—figure 4. Reduction in the peak effective number of proofreading realizations as a

function of pbound. nlowmax represents the peak value of neff in the limit of low substrate concentration

(the maximum of the solid blue curve in Appendix 5—figure 3).

Taken together, these results suggest that if the substrate concentration is low enough to leave

most of the enzymes unbound, then our proposed scheme will proofread efficiently. And this

requirement on substrate amount will be further relaxed if diffusion is fast, or if substrates are not

very tightly localized.
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Appendix 6

Proofreading on a kinase/phosphatase-induced gradient
In this section, we introduce the mathematical modeling setup for the kinase/phosphatase-based

gradient formation scheme and describe how its fidelity is calculated numerically. In the end, we dis-

cuss the energetics of setting up the substrate concentration gradient and link our calculations to

the lower bounds on energy cost obtained earlier in Appendix 2.

1. Setup and estimation of fidelity

In the analysis thus far, we have imposed a gradient of free substrates and analyzed the proofread-

ing capability of an enzyme acting on this gradient. In a living cell, gradients themselves are main-

tained by active cellular processes. However, the action of the enzyme – that is, binding a substrate

in one spatial location, diffusing away, and releasing the substrate elsewhere – can destroy the gradi-

ent, and thereby lead to a loss of proofreading. Here, we analyze the consequences of free substrate

depletion and gradient flattening caused by the enzyme.

We model the formation of a substrate gradient by a combination of localized activation and

delocalized deactivation. We suppose that substrates can exist in phosphorylated or dephosphory-

lated forms, and that only the phosphorylated form is capable of binding to the enzyme. The sub-

strates are phosphorylated by a kinase with rate kkin ¼ 0:2 s�1, and dephosphorylated by a

phosphatase with rate kp ¼ 5 s�1. Crucially, we assume that phosphatases are found everywhere in

the domain of size L ~ 10 �m (a typical length scale in a eukaryotic cell), while kinases are localized to

one end of the domain (at x ¼ 0), as may occur naturally if kinases are bound to one of the mem-

branes enclosing the domain.

The minimal dynamics of phosphorylated substrates and enzyme–substrate complexes is then

given by

q�S

qt
¼Dr2�S � kb�S þ kS

off
�ES � kp�S;

q�ES

qt
¼Dr2�ES þ kb�S � kSoff�ES;

(S118)

augmented by the boundary conditions

Substratephosphorylation :�Dr�
S
jx¼0

¼ kkin;

No� flux :�Dr�Sjx¼L ¼�Dr�ESjx¼L ¼�Dr�ESjx¼0
¼ 0:

(S119)

Here, we have supposed that the densities of free enzymes, dephosphorylated substrates, and

phosphatases are fixed and uniform, and have absorbed them into the relevant rate constants

(kb ¼ kon�E
, kkin, and kp, respectively). For simplicity, we have also assumed that the free substrates

and enzyme–substrate complexes have the same diffusion coefficient D¼ 1 �m2/s. We note that

accounting for distinct diffusivities of phosphorylated and unphosphorylated substrate forms (Kholo-

denko, 2009) would affect the speed, while accounting for the slower diffusion of the enzyme–sub-

strate complex would alter the estimates of both speed and fidelity of the model. One or several of

these effects can be considered when studying a specific biological system where these microscopic

details are known.

We numerically solve Equations S118 and S119 at steady state to obtain the concentration pro-

files. First, the equations of dynamics are made dimensionless by settings units of length and time

by L (�x ¼ x=L) and t D � L2=D (�t ¼ t=t D), respectively. At steady state, the dimensionless equations

read

�r2��S ¼ �kb þ�kp
� �

��S ��kSoff ��ES;

�r2��ES ¼��kb��S þ kSoff ��ES;
(S120)

with boundary conditions
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�r��Sj�x¼0
¼��kkin;

�r��Sj�x¼1
¼ �r��ESj�x¼1

¼ �r��ESj�x¼0
¼ 0;

(S121)

where concentrations have been rescaled as ��¼ �L, and kinetic rates as �k¼ k t D.

We discretize the steady state equations on a grid with spacing D�x ¼ 0:01, approximating the sec-

ond derivative as

�r2��»
1

D�x2
ð��ð�xþD�xÞþ ��ð�x�D�xÞ� 2��ð�xÞÞ: (S122)

This is ill-defined at the boundaries �x¼ 0 and �x¼ 1, which is addressed by incorporating the

boundary conditions. For illustration, consider the left boundary, �x¼ 0, and suppose that our domain

included also a point at �x¼�D�x. Then, we could approximate the boundary condition �r��
S
j�x¼0

¼
��kkin by a centred difference scheme, and solve out for the fictional point at �x¼�D�x, namely,

�r��Sj�x¼0
¼��kkin

) 1

2D�x

�
��SðD�xÞ� ��Sð�D�xÞ

�
¼��kkin

) ��Sð�D�xÞ ¼ ��SðD�xÞþ 2D�x�kkin;

which, when inserted into Equation S122, specifies �r2��
S
at �x¼ 0, that is,

�r2��
S
j�x¼0

¼ 1

D�x2
ð2��

S
ðD�xÞ� 2��

S
ð0ÞÞþ 2

D�x
�kkin: (S123)

For the boundary at the right (�x¼ 1) as well as for the boundary conditions for ��
ES
, we similarly

implement no-flux boundary conditions. After discretizing, Equation S120 can then be written in a

matrix form as

1

D�x2

�2 2 0 � � � 0

1 �2 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 � � � 1 �2 1

0 0 � � � 1 �1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

�ð�kb þ�kpÞI

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
MS

~�S ¼��kSoff~�ES þ

� 2

D�x
�kkin

0

..

.

0

0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
~b

;

1

D�x2

�1 1 0 � � � 0

1 �2 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 � � � 1 �2 1

0 0 � � � 1 �1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

��kSoffI

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MES

~�ES ¼��kb~�S;

(S124)

where ~�S, ~�ES are column vectors of the nondimensionalized concentration profiles evaluated at the

spatial grid points, that is, ��ð0Þ; ��ðD�xÞ; � � �½ �T . Solving these matrix equations yields

~�S ¼ MS ��kSoff
�kbM

�1

ES

� ��1~b;

~�ES ¼��kb MSMES ��kSoff
�kbI

� ��1~b:
(S125)

We compute Equation S125 numerically for two substrates: a cognate (‘R’) and a non-cognate

(‘W’), which differ in their off-rates (kRoff ¼ 0:1 s�1 and kWoff ¼ 1 s�1, respectively). Having the density pro-

files, the fidelity of the model becomes h» ��
ER
ð�x¼ 1Þ=��

EW
ð�x¼ 1Þ. We calculate the fidelity for different

choices of the first–order rate of enzyme–substrate binding (kb ¼ kon�E
); this may be thought of as

varying the concentration of free enzyme in the cell. The results are shown in Figure 5 of the main

text.
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2. Energy dissipation

In Appendices 2.1 and 2.3, we estimated lower bounds on the minimum power that needs to be dis-

sipated in order to counter the homogenizing effect that enzyme activity and substrate diffusion

respectively have on localized substrate profiles. Here, we calculate the energy dissipation required

to run the kinase/phosphatase-based mechanism and compare it with these lower bounds estimated

earlier.

Let us assume that phosphorylation and dephosphorylation reactions by kinases and phospha-

tases are nearly irreversible with associated free energy costs of D"kin and D"phosph per reaction,

respectively. The net rate at which active substrates get dephosphorylated is kpSphosphorylated and it

needs to be identical to the net phosphorylation rate of inactive substrates in order for Sphosphorylated
to remain constant. With the costs of each reaction known, we can write the rate of energy dissipa-

tion Pk=p as

Pk=p ¼ kpSphosphorylatedðD"kinþD"phosphÞ: (S126)

To gain analytical intuition, we first consider the case where the enzyme activity is very low, so

that the kinase/phosphatase–based mechanism maintains an exponential profile of active substrates

with a decay length scale l
S
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D

S
=kp

p
. Expressing the rate of phosphorylation in terms of l

S
and D

S

(i.e., kp ¼D
S
=l2

S
), and substituting it into Equation S126, we obtain

Pk=p ¼
D

S
Sphosphorylated

l2
S

ðD"kin þD"phosphÞ: (S127)

Comparing this result with the lower dissipation bound found earlier (Equation S43), we can note

the presence of an extra factor bðD"kinþD"phosphÞ. Since the free energy consumption during ATP

hydrolysis is ~10kBT, we can say that the power dissipated by the kinase/phosphatase system for

setting up an exponential gradient surpasses the lower limit necessary for counteracting diffusion

roughly by an order of magnitude.

Next, we explore the energetics of the kinase/phosphatase-based mechanism in the context of

the power–fidelity trade-off. Our study of the trade-off in Figure 4 of the main text was performed

under the assumption that substrate profiles were exponentially decaying in the entire spatial

domain. In Appendix 6—figure 1a, we show the trade-off curves obtained under this assumption

and compare them with the trade-off curve for the kinase/phosphatase-based mechanism that arises

in response to changing the substrate localization by tuning kp. As can be seen, the predicted lower

bound (sum of the minimum powers needed to counteract the enzyme action and substrate diffu-

sion) is roughly an order of magnitude lower than the total dissipation of the mechanism, and this

difference increases with higher fidelity.

Note, however, that the assumption about an exponential substrate localization is not generally

valid for the kinase/phosphatase-based mechanism because substrates can be deposited in low–con-

centration regions and not get immediately dephosphorylated (Appendix 6—figure 1c). We there-

fore refine our lower bounds on the dissipated power by estimating them numerically using their

generic definitions, namely, Equation S30 for counteracting enzymatic action, and Equation S42 for

counteracting substrate diffusion. These refined estimates suggest a factor of ~10 difference

between the total cost and its lower bound consistently across a wide region of the trade-off curve.

This means that substrate gradient maintenance through practically irreversible phosphorylation and

dephosphorylation reactions has low energetic efficiency for doing spatial proofreading, which, how-

ever, may be sustainable depending on the energy budget of the cell.
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Appendix 6—figure 1. Energetic performance of the kinase/phosphatase–based mechanism. (a)

Total dissipation and calculated lower bounds under the assumption of exponential substrate

localization. (b) Total dissipation and lower bounds estimated without assuming exponential

substrate profiles. In both (a) and (b) kb ¼ 1 s�1 and D"kin ¼ D"phosph ¼ 10 kBT were used. (c) Example

profiles of right and wrong substrates for the physiologically relevant dephosphorylation rate

kp ¼ 5 s�1. Exponential decay of the substrate profile with the predicted length scale l
S
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D

S
=kp

p

holds in the first ~ 2 �m of the compartment.
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