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Review
The study of transcription has witnessed an explosion of
quantitative effort both experimentally and theoretical-
ly. In this article we highlight some of the exciting recent
experimental efforts in the study of transcription with an
eye to the demands that such experiments put on theo-
retical models of transcription. From a modeling per-
spective, we focus on two broad classes of models: the
so-called thermodynamic models that use statistical
mechanics to reckon the level of gene expression as
probabilities of promoter occupancy, and rate-equation
treatments that focus on the temporal evolution of the
activity of a given promoter and that make it possible to
compute the distributions of messenger RNA and pro-
teins. We consider several appealing case studies to
illustrate how quantitative models have been used to
dissect transcriptional regulation.

Introduction
The very existence of this special themed issue on CellBio-
X hints at a growing belief in what one might call a Bio-X
effect – the idea that somehow by attacking biological
problems from a physical or quantitative perspective we
will either refine our understanding of established biologi-
cal processes or discover completely new effects of mechan-
isms. One way to view the possible significance of this
emphasis on biological numeracy is by analogy to the
different kinds of catch fisherman can expect when using
nets or hooks of different types. Certain nets are sure to
catch some fish and not others. By introducing new ways of
fishing, or by casting these nets or hooks in new places, a
different ocean is revealed. We argue here that the types of
approaches reflected in this special issue provide a com-
plementary biological net that can reveal things that are
impossible to see using traditional verbal and pictorial
descriptions.

The type of quantitative approaches in biology argued
for above have been ballyhooed far and wide, whether in
the pages of learned reports [1,2], new online resources [3],
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in a variety of books and articles [4–9] or via the establish-
ment of new programs or courses at universities around
the world [10–12]. But what is the basis for this growing
enthusiasm for biological numeracy and what rewards has
it delivered (or might it deliver in the future) in our
understanding of cellular decision-making in particular?

Even as relative newcomers to the study of transcrip-
tion, it is clear to all of us that, with the passing of each
year, the rapid pace of technological advances is resulting
in a new generation of impressive and beautiful experi-
ments that are painting a much more nuanced picture of
the regulatory steps exploited by cells as they make deci-
sions. One thing is clear: many of these experiments chal-
lenge the conventional verbal and pictorial representations
of gene expression. With this increasing reliance on sys-
tematic and precise measurements of gene expression
[13–15] comes the possibility of asking entirely new classes
of questions about how regulation works. Further, these
approaches are beginning to suggest how regulatory net-
works can be engineered to create entirely new biological
functions, one of the signature achievements of the syn-
thetic biology approach. With the new-found emphasis on
reporting the results of these experiments quantitatively a
growing trend has emerged to use models that are de-
scribed in the same quantitative language as the data.

To make this claim concrete, consider the example of
transcriptional repressors that bind at two sites on the
DNA simultaneously, thereby looping the intervening frag-
ment of the genome. Elegant experiments have measured
how the level of gene expression depends upon the length of
the DNA loops in the lac operon, resulting in the authors
noting serious differences between the in vitro and in vivo
signatures of the underlying DNA mechanics [16]. Indeed,
these and other similar experiments have served as the
basis of more than a decade of effort aimed at a deeper
understanding of biological action at a distance and, spe-
cifically, trying to reconcile the in vitro and in vivo views of
DNA mechanics [17–24]. One of the ambitions of the
present paper is to provide a series of examples of precisely
this type where biological numeracy serves as the basis for
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asking new kinds of biological questions. The history of
modern biology is replete with examples of this kind:
Mendel counting peas with different traits, Morgan and
Sturtevant tracking the frequencies of mutations in flies,
Delbrück and Luria measuring the fluctuations in the
number of bacteria resistant to viral infection, Hodgkin
and Huxley measuring the electrical currents across cell
membranes, to name but a few. In all these cases analysis
of quantitative data from a quantitative perspective led to
new biological insights.

In an earlier set of papers [19,20] we explored biological
numeracy in the context of transcription using thermody-
namicmodels [25,26]. Here we extend the argumentsmade
there from the vantage point of the impressive experimen-
tal advances which have characterized the field since those
articles were written. Some of these experimental
advances include the direct observation of transcription
at the single-molecule level [27,28], single-cell measure-
ments on transcription which yield protein and mRNA
distributions in a population of cells [29–31], high-through-
put methods which permit the analysis of many architec-
tural motifs, and an explosion of synthetic biology
transcriptional architectures [32–35].

As a result of these powerful experimental advances
there has also been a new round of model building aimed at
responding to this next generation of measurements. It is
now becoming routine to see extremely complicated dia-
grams of ‘genetic networks’ with vague and hopeful analo-
gies to electronic circuits. What marks our understanding
of such circuits and the electronic components that consti-
tute them, however, is a reliable understanding of their
input–output properties (or transfer function) [36]. Part of
our mission is to explore the interplay between experimen-
tal and theoretical strategies for dissecting transcriptional
regulation in a way that comments on the fruitfulness of
such analogies.

One of the many ways in which new experimental
methods are sharpening the questions we can ask about
transcription centers on the fact that it is now possible to
measure the distribution of gene products in a population
of cells by watching cellular decision making at the single-
cell level [14,37,38]. We argue that distributions provide
yet another way to probe the mechanistic underpinnings of
observed patterns of gene expression. Although the details
are themselves fascinating, our primary emphasis here
will be on the style of quantitative thinking used in attack-
ing these problems. Further, with apologies to the many
scientists whose work has propelled the field forward, we
will focus on a small number of instructive case studies
which we find are most sympathetic for illustrating our
main arguments, and with no attempt at being compre-
hensive in our coverage of the literature.

In the next section we provide an overview of the use of
thermodynamic models to study cellular decision making.
The main purpose of this section is to show how the
thermodynamic models have honed the questions we can
ask about regulatory networks and have clarified our
understanding, while at the same time bringing into relief
certain surprises and paradoxes. The second main section
focuses on both measurements and models in which time
figures explicitly. Experiments have now reached the point
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where it is possible to watch the synthesis of individual
mRNAs, for example, on a cell-by-cell basis. Both the
individual trajectories and the distributions obtained by
tallying up the behavior of many cells together pose chal-
lenges which fall outside the scope of the thermodynamic
models but can be explored using rate equations that
reckon how the transcriptional state of the system will
change during a small instant of time, Dt.

Equilibrium models of gene expression
The ability to perform systematic experimental manipula-
tion of the various parameters (such as transcription factor
binding-site positions, strengths and concentrations)
highlighted in Figure 1 has resulted in a variety of different
measurements of the level of gene expression for a spec-
trum of promoters [33,39–44], although our discussion will
often focus on the classic lac operon which has become a
central quantitative testbed [18,45–50]. Within the frame-
work of the thermodynamic models which compute the
probability that RNA polymerase will occupy the promoter
of interest, the simplest way to make a direct comparison
between the measurements and models is through the
vehicle of the fold-change which gives the ratio of the level
of gene expression in the presence and absence of regula-
tory elements whose abundance serves as an experimental
control knob. For the special case of simple repression
considered in Figure 2A, the fold-change can be written
simply as

fold� change ¼ gene expressionðR 6¼ 0Þ
gene expressionðR ¼ 0Þ

� 1þ ½R�
K

� ��1
[1]

where [R] is the concentration of repressors and K is an
effective dissociation constant which is a measure of the
affinity of repressors for their target binding sites. The
origins of this formula are illustrated schematically in
Figure 2B which shows how to take the cartoon represen-
tation of the various states of the promoter and to find their
associated statistical weights as prescribed by the Boltz-
mann factor from equilibrium statistical mechanics
[8,19,20]. Note that the concentration of polymerase does
not enter Equation 1 because we are considering the ‘weak
promoter’ approximation in which the affinity of RNA
polymerase for the promoter is very weak [19,20]. With
the Boltzmann factors in hand we can then compute the
level of gene expression on the assumption that promoter
occupancy and gene expression are linearly related
[8,19,20].

How can we explore the potency of a formula such as
that given in Equation 1 and the many other similar
formulas highlighted in Figure 3? Several important case
studies have been carried out using well-characterized
bacterial promoters which permit a direct and meaningful
comparison between the measurements and the result
(and similar calculations and measurements have been
made for more complex regulatory architectures as shown
with a few examples in Figure 2). Note that we are vehe-
mently opposed to the idea that the goal of a model is to ‘fit
the data’. Instead, in addition to the central aim of having a
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Figure 1. Transcriptional control knobs for experimentalists and theorists alike. (a) Schematic diagram illustrating the simple-repression architecture used as a case study in

this paper. In this architecture a repressor bound to a binding site near the promoter excludes RNA polymerase from binding. The figure shows the ways in which key

parameters such as the position and strength of binding sites, the copy numbers of genes and their associated transcription factors and inducer concentrations can be

tuned to elicit different biological responses. (b) Experimental census of repression architectures in E. coli. The figure shows the distribution of binding site positions with

respect to their target promoters for simple repressors in E. coli. This plot was generated based on data available on RegulonDB [87].
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coherent ‘story’ about entire suites of data and themechan-
isms that underlie them, a much more useful outcome of
model building of the kind we describe here is that it leads
to some surprise or paradox, which in turn might imply
that the original cartoon representation of the regulatory
process of interest is incomplete or flawed.

Some of the most complete quantitative examples of this
overall strategyhave takenplace in the lac operonwhere, by
eliminating the auxiliary operators, it is possible to con-
struct a genetic circuit with the kind of simple repression
highlighted in Figure 1A. Indeed, all of the ‘control knobs’
highlighted in that figure have been systematically altered
experimentally and the resulting level of gene expression
has been characterized as shown in Figures 4A and 4B.

In one of the most thorough studies to date, the lac
operon was probed in quantitative detail by using the
thermodynamic framework to dissect the way in which
themolecular factors responsible for activation and repres-
sion interact. There is an unparalleled depth of knowledge
and quantitative data available for all the molecular
players and interactions responsible for the output of
the lac system. This provides a unique opportunity to
challenge the quantitative modeling perspective with real
experimental data and thereby demonstrate that this
classic and well-characterized biological system can have
a new life as a proving ground for the techniques of physical
biology. This case study is highlighted in Figure 4B. Here,
through the judicious construction of a variety of mutants,
the response of the lac system to each of its molecular
components was carefully isolated and measured [42,44].
By comparing the results of these experiments to a ther-
modynamic model formulated based on the known proper-
ties and interactions of the system, it was shown how the
complete output of the operon can be explained in quanti-
tative detail as the result of the accumulation of multiple
known interactions between the individual components. In
the language of electronic circuits introduced above, this
can be likened to predicting the properties of the circuit
based upon the known quantitative characteristics of its
constituent capacitances, resistances and so on.
725
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Figure 2. Modeling framework for simple repression. (a) States and weights for simple repression. In the thermodynamic models for promoter activity in simple repression

there are three competing states. The parameters are the concentration of RNA polymerase, [P], its dissociation constant to the promoter KP, the concentration of repressor,

[R], and its dissociation constant to its operator, KR. (b) Probability of finding RNA polymerase bound to the promoter (top) and resulting fold-change in gene expression

(bottom) using the weak promoter approximation in which the probability of polymerase bound is negligible compared to the other two states. (c) Kinetic model of simple

repression. When RNA polymerase is bound to the promoter it produces transcripts at a rate r, which decay at a rate g. The promoter is switched off and on as a result of

repressor binding with rates kR
on and kR

off. Note that in this version of the model we do not consider the ‘empty’ state in which the promoter has neither polymerase nor

repressor. (d) Trajectories and weights for simple repression. The kinetic model shown in (c) is characterized by a number of different transitions that can occur in a time

step Dt, each of which has a probability determined by the relevant rate constants. During each of these processes the state of both the promoter and the mRNA can change.
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Conversely, one can imagine the characterization of a
system in whichmuch less is known about the constituents
and their interactions. By comparing the results of experi-
mental characterization to the predictions of a simple
model capturing the known properties of the system,
inconsistencies that arise can be a signal that our under-
standing of the system is incomplete. For example, the
wild-type response of the lac system to changing concen-
trations of its repressor is extremely sensitive: the output
serves essentially as a switch – it is completely off at high
levels of repressor and abruptly switches on as concentra-
tions are lowered. There is nothing inherently surprising
about this observation, and such behavior might be
expected from a cartoon model of the action of a repressor.
However, when the sensitivity of the response is compared
quantitatively to the prediction of simple modeling, it is
seen that such a high level of sensitivity cannot result from
the action of the repressor alone. It is only through the
combined action and interaction of the repressor, positive
feedback, and DNA looping that the high sensitivity can be
explained.
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Once a gene is transcribed it can be subject to further
regulation before it is finally present in the cell as an active
protein. One way in which genes can be post-transcription-
ally regulated is through interaction with small untrans-
lated RNAs, or sRNAs [51–53]. sRNAs can bind to the
transcribed mRNAs and block their availability to the
translational machinery or mark them for degradation.
To understand these mechanisms the same thermodynam-
ic ideas introduced above have recently been played out in
the context of RNA regulation. Quantitative dissection of
this kind of regulation [54,55] shows that the stoichiomet-
ric co-degradation of sRNA with their targets results in
different quantitative regulatory characteristics than does
regulation by protein transcription factors (which are not
consumed during regulation and act catalytically), and
thermodynamic modeling conveys a deeper understanding
of this mode of regulation and its advantages and disad-
vantages relative to regulation by proteins.

One of the frustrating features of the experimental
strategy used in the case studies described above, where
the idea is to measure the gene regulation function (or the
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Figure 3. Formulae for transcriptional response. For each regulatory motif the thermodynamic models result in a simple expression for the fold-change in gene expression

as a function of key parameters such as the concentration of the repressors and activators ([R] and [A], respectively) and the dissociation constants (KR and KA). The

parameter v accounts for cooperativity between transcription factors whereas f is the increase in transcription rate due to the presence of an activator [19,20]. Similarly, for

each regulatory motif the kinetic models described in the text permit a calculation of the fold-change in the noise (defined as the ratio between the normalized variance for a

regulated promoter, and the normalized variance [74] for an unregulated, Poisson promoter) as shown in the third column. The parameter v captures the effect of

cooperativity in reducing the rate of dissociation of one activator due to the presence of the second activator. The fold-change in noise strength is computed using a

stochastic kinetic model of gene regulation [78], and is a function of the kinetic rates of transcription and degradation of mRNA (r and g, respectively), and of the rates of

binding (kR
on and kA

off) and dissociation (kR
off and kR

on), which are assumed to be identical for all the operators in the table. The main objective of this part of the table is to

illustrate that within this class of models it is possible to explicitly compute different measures of variability.
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fold-change), is that it requires a new strain every time we
want to change the number of repressors, for example.
That is, each of the black data points in Figure 4A corre-
sponds to a different strain. Is there amore systematic way
to tune the repressor concentration without resorting to
the construction of new strains? A recent set of clever
experiments (just one of many illustrations of the amazing
experimental advances in recent years) found a way to
circumvent this limitation by allowing the dilution of the
repressor molecules as the cells divide. When a mother cell
containing N repressors divides, each of the daughters
should get roughly N/2 repressors and in subsequent gen-
erations this results in roughly N/2n repressors in the
daughter cells when the original mother cell has under-
gone n rounds of division [56]. The significance of this fact
is that the level of repression is thereby systematically
titrated with each new generation. In turn, the regulated
gene increases its level of protein production with each
subsequent generation. One beauty of thismethod is that it
permits a direct determination of the number of repressors
that mediate the fold-change, a fundamental prerequisite
for any direct comparison between the thermodynamic
models and their experimental realization as shown in
Figure 4A. Interestingly, this example feeds directly into
the next section of the article because it illustrates some of
the nuance that comes on the heels of knowing something
about the fluctuations in a system as opposed to only mean
values.

Experimentally, by far the most common way of exert-
ing control of the binding of transcription factors to DNA is
by using inducermolecules [42,44]. Although this approach
allows for tuning the strength of DNA binding, in this case
an extra layer of knowledge and modeling is required to
explicitly link theory and experiment. Unless the intracel-
lular concentration of inducer (which can be taken up by
the cell in either an active or passivemanner) as well as the
parameters of inducer–transcription factor interactions
are all known, it is very hard to relate the extracellular
inducer concentration to an effective concentration of tran-
scription factors that are able to bind DNA.

Another way in which the transcription factor copy
number is tuned in multicellular organisms is to exploit
the naturally occurring spatial variation in their concen-
tration that arises in different parts of a developing em-
bryo. At different stages of the developmental process
different spatial patterns of transcription factor concentra-
tions are established. Recent quantitative experimental
efforts in the developing fruit fly embryo are in the process
of paving the way to the same sorts of systematic theory–

experiment interplay already enjoyed in the study of tran-
scription in bacteria [57–63]. For example, by measuring
the spatially-dependent expression of a reporter gene that
is under the control of transcription factors that have a
concentration gradient along the anterior–posterior axis of
the embryo, a first cut has been made at the input–output
relation between the hunchback and bicoid genes as shown
in Figure 4C [59]. Building on earlier work in flies that
explored the so-called minimal stripe element [64], recent
experiments have adopted the synthetic biology approach
by placing different repressor binding sites at different
locations on the genome and then measuring the resulting
fold-change in a way that makes it possible to compare to
727
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Figure 4. Confrontation of thermodynamic models and experiments. In each case the data are juxtaposed with an equation that serves as a prism through which to view the

data. (a) Fold-change as a function of the number of repressors for several different repression examples [39,56]. Center panel: above, the lac (lactose utilization) promoter;

below, rightward promoter PR from bacteriophage lambda. The equations describe the fold-change in terms of the repressor concentration, [R], and dissociation constant,

Kd [19]. (b) Level of gene expression as a function of inducer concentration for a series of different mutants of the lac operon [42,44]. As different elements of the system

were deleted the sensitivity of the induction neared that of the purified in vitro system. This sensitivity can be quantified by fitting to a thermodynamically-inspired

functional form such as the Hill function shown here. Each curve has been normalized to its corresponding maximum in gene expression. (c) hunchback gene expression as

a function of Bicoid concentration which varies from high to low along the anterior–posterior axis of the developing fly embryo. The data are plotted in such a way that

anterior is to the right of the curve. This data is fitted to a Hill function with a sensitivity of five although in fact there are seven binding sites for Bicoid in the hunchback

enhancer [59]. Abbreviations: cI, the bacteriophage lambda repressor; Bcd, Bicoid; Hb, Hunchback; IPTG, lac operon inducer isopropyl b-D-thiogalactoside; lacUV5, cAMP-

independent variant of the lac promoter.
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first-generation thermodynamic models for these complex
systems [62].

A crucial assumption of the thermodynamic model ap-
proach is the use of an equilibrium framework for describ-
ing the competition between RNA polymerase and the
factors that regulate it for the same piece of genomic real
estate. One of the ways to judge the merits of this approach
is by appealing to the relative timescales of the processes
that mediate regulation in comparison with the rate of
transcription initiation itself. For promoters where there is
728
a clear separation of timescales for these two classes of
processes – regulation on one side and initiation of RNA
production on the other – the mean number of messenger
RNAs produced by the cell is proportional to the equilibri-
um probability of the promoter being in a transcriptionally
active state. In that limit, when the processes accompa-
nying regulation are fast compared to those associated
with initiation of RNA production, transcription factors
and RNA polymerase will have enough time to reach
binding equilibrium with promoter DNA, and RNA pro-
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duction initiates from this equilibrium state. In the oppo-
site limit, in the case of fast transcription initiation, the
slow switching between different promoter states is not
affected by RNA production and the mean RNA number
reflects the mean time the promoter spends in the active
state. As an example, in vitro and in vivo studies of the lac
promoter have found that the typical time taken for the Lac
repressor to bind to and dissociate from the promoter DNA
is on the order of minutes [65,66], whereas the events that
lead to transcriptionwhen the repressor is not present take
place at second or sub-second timescales [67,68], thus
justifying the equilibrium assumption.

The same concrete interplay between systematic mea-
surements and thermodynamic models described in this
section has been played out again and again for a range of
different prokaryotic and eukaryotic promoters. Although
there are reasons to be skeptical as to whether insights as
dramatic as those garnered in the early days of gene
regulation will emerge from these kinds of quantitative
approaches, the fact that so many researchers are now
using these ideas signals a growing consensus that we can
only claim to really understand what is going on when we
can construct a quantitative framework that mirrors what
is observed experimentally. Perhaps evenmore significant-
ly, this kind of detailed quantitative understanding might
serve as the most useful jumping-off point for those trying
to engineer new architectures usingmore than enlightened
empiricism.

Despite their broad reach, the thermodynamic models
are relatively silent when it comes to the growing mass of
temporal measurements which examine the regulatory
responses of individual cells over time, or for those mea-
surements in which cell-to-cell variability or mRNA and
protein distributions are reported. For these phenomena
we must turn to a different class of models.

Putting the dynamics back in transcription
Nomatter how appealing the simplicity of the descriptions
introduced in the previous section, there are now an in-
creasing number of single-cell experiments that are deliv-
ering not only the entire distributions (as opposed to the
means that are the central focus of the thermodynamic
models), but also that yield the stochastic trajectories of
mRNA (and protein) concentrations as a function of time,
as shown in Figure 5. These kinds of data call for theoreti-
cal models that go beyond the thermodynamic framework.

One general class of models used to respond to such data
are built using rate equations or master equations (these
approaches have important differences, but we focus on
their common features). These models tell us how in a
small time-increment the population of the chemical spe-
cies of interest (e.g. mRNA or protein) or the probability
distributions themselves will vary [69–72]. The key as-
sumption of these models is that one can define distinct
states of the promoter, as in the thermodynamic models,
and then describe the temporal evolution of promoter
activity as a biased random-walk between the different
states, as shown in Figures 2C and 2D. The transitions
from one state to the next are characterized by rate con-
stants – namely the probabilities per unit time that the
specific transition of interest will occur [29,70,72–81]
If we interest ourselves in the temporal evolution of
mRNA levels, the idea in these time-dependent approaches
is that the amount of mRNA found at time t+Dt can be
obtained by considering the amount at time t and then
summing up all the ways that mRNAs can be gained and
lost during that small increment of time Dt. For example,
there will be loss of mRNA due to both degradation and cell
division, whereas there will also be terms tending to in-
crease theamountofmRNAasa result of transcription itself
(and the average rate of transcription will depend in turn
upon the concentrations of regulatory proteins such as
activators and repressors). The simplestmodel for the tran-
scriptionprocesspositsameanproduction rateperunit time
r, and a mean degradation rate per mRNA g, resulting in a
steady-state average mRNA number of <mRNA> = r/g.

However, even for this simple model, if we consider
mRNA number as a function of time the instantaneous
number will not always be equal to this predicted mean
value. Because the arrival and binding of individual RNA
polymerase molecules at the promoter is an inherently
random event, at any given time there can be fluctuations
resulting in slightly more or less mRNA than the predicted
mean. The size of these fluctuations can be quantified by
the ratio between the variance of the distribution
{Var(mRNA)} and the square of its mean {<mRNA>}.
For the simple model outlined above, the fluctuations
are characterized by

h2 ¼ VarðmRNAÞ
mRNAh i2

¼ 1

r=g
¼ 1

mRNAh i [2]

This simple model of stochastic mRNA production and
decay implies that mRNA is made stochastically in uncor-
related transcription events that are independent. The
prediction of the model is that the mRNA number is
described by a Poisson distribution, for which the variance
is equal to the mean.

One of the powerful insights that emerges from experi-
mental data such as those shown in Figure 5A is that they
reveal that the most naı̈ve model of mRNA dynamics
described above is not borne out experimentally. Whereas
the simplest model is predicated on the idea of a uniform
rate of mRNA production, we see even for a simple regula-
tory architecture that the mRNA production is ‘bursty’,
with brief periods of time in which the promoter is active
and multiple mRNAs are produced, followed by long per-
iods of time in which transcription is turned off. In a case
such as this the governing equations are more involved
because one has to track how the probability of being in
either the active or inactive state changes in a time Dt
[69–72,74,78]. However, even with this more complex
two-state model it is possible to compute the expected
mean and the variance; the resulting expressions are
shown in Figure 5A and more generally in Figure 3. Con-
sistent with the observations, the variance and the mean
are not equal, as the initial naı̈ve model predicts.

Rather than focusing solely on the lowest orders
moments of the mRNA distribution, recent measurements
and models have even permitted a determination of the
entire distribution [70,76]. One particularly interesting
case study in yeast is highlighted in Figure 5B. The num-
729
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Figure 5. Transcription and translation dynamics and distributions. (a) mRNA dynamics and steady state distribution in E. coli [28]. A single mRNA production time trace is

shown (top) together with the variance s2 of the mRNA distribution as a function of the mean, <mRNA>, (bottom). The dashed line corresponds to a model where the

initiation of mRNA transcription is a stochastic Poisson process. The solid line corresponds to a model where mRNA is produced in bursts. The promoter switches

stochastically from an active to an inactive state with rate kOFF and from inactive to active with a rate kON. We make the assumption that kOFF >> kON. The transcription rate is

r, and the mRNA decay rate is g [79]. (b) mRNA distribution in yeast for a constitutive (MDN1) and regulated gene (PDR5). The continuous curves are fits to the distributions

using either a Poisson model or a gamma distribution function which accounts for the bursting nature of the transcription process. n is the number of mRNA molecules, and

a and b are interepreted as the mRNA burst frequency and burst size, respectively [30]. (c) Bursts in expression of the enzyme b-galactosidase (b-gal) corresponding to the

translation of single mRNA molecules. The data are consistent with a geometrical distribution where the probability of translation of an mRNA molecule resulting in n

proteins is given by q and the probability of the molecule decaying is given by (1 - q) [88].
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ber of mRNA molecules being actively transcribed in indi-
vidual cells was determined using state-of-the-art single
molecule techniques. By measuring the entire mRNA dis-
tribution, quantitative information about the processes
that must be responsible for generating the observed dis-
tribution, and even the rates at which they take place, can
be determined.

As shown in this section, recent experiments are now
routinely generating data that call for theoretical analysis
beyond the thermodynamic models. As a result, ideas
based on rate equations have stepped into the breach
and are themselves producing a range of falsifiable pre-
dictions that not only guide experiments but have also
altered our picture of the transcription process itself.

Conclusions
The amazing progress in biology in the last half century
seems in many ways analogous to progress in astronomy
after the invention of the telescope. The expansion of our
factual understanding of living matter is staggering. Fur-
ther, it seems that the analogy to astronomy goes deeper.
Just as quantitative observations of themotions of celestial
bodies called for theoretical underpinnings, allied with the
development of this new generation of biological facts has
come a concomitant need for theoretical frameworks that
allow us to tell stories about these facts in away that brings
them under the same theoretical roof and in a way that
suggests fruitful directions for further experimentation.

The attempt to cast our understanding of biological
processes such as transcription in purely quantitative
terms as reviewed in this article is only in its infancy.
Indeed, many challenges stand in the way of making this
approach more generally applicable – including ignorance
of the complete set of molecular players and linkages in
many networks of interest and an unruly proliferation of
parameters even in those cases where the relevant molec-
ular actors and linkages are known. It is no accident that
much of our discussion focused on the seemingly over-
worked example of the lac operon. This reflects the fact
that, to make quantitative progress as advocated here, it is
necessary to have a well-characterized system – and few if
any systems have been subjected to the same level of
experimental scrutiny as the lac operon. Our Figure 3 is
an attempt to make more generic predictions about other
common regulatory architectures to break away from a lac
operon-dominated mindset. It is in a similar spirit that
several other key case-studies in yeast and flies have been
brought to bear on the much more challenging case studies
to be found in eukaryotes where other factors such as
nucleosomes add another level of complexity to the prob-
lem. Our sense is that an important way tomake continued
progress is the selection of certain key case studies which
will be characterized by depth rather than breadth. In
these cases, the acid test should remain the ability to make
testable predictions about how certain key ‘control knobs’
alter the level of expression, and the fundamental mantra
of the quantitative approach is that failure of the predic-
tions of such models is an opportunity to learn something
new.

Although the discussion in this paper has centered on
transcription, we could have written a similar story using
the same two frameworks (i.e. thermodynamic models and
rate equations) for discussing signal transduction in bac-
terial chemotaxis, for example, and much work in this vein
is already underway [82–85]. The same could be said for a
variety of other interesting problems in biology. In that
sense, this paper should be seen more broadly as reflecting
several useful strategies with much broader biological
reach than merely the fascinating topic of transcription.
In each of these cases the underlying argument is the
same. As noted by Abraham Pais in his discussion of
Einstein’s role in the emergence of the modern quantum
theory of solids, ‘In order to recognize an anomaly, one
needs a theory or a rule or at least a prejudice’ [86]. In that
sense, the approach advocated here is to use quantitative
models to build prejudices which can then serve as a
scalpel to dissect experiments in a way that the traditional
verbal and pictorial descriptions cannot, and which reveal
anomalies that can help us better understand and ulti-
mately control living matter.
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