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Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study

the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of

excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower

bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what

has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron,

generally represents the energetically favorable shape of bilayer polyhedra.
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In an aqueous environment, amphiphilic molecules such
as lipids are observed to self-organize into bilayer vesicles
[1,2], thus forming the physical basis for cell membranes.
Bilayer vesicles generally exhibit shapes with constant or
smoothly varying curvature [3,4]. But in recent experi-
ments [5,6], bilayer vesicles with polyhedral shape, con-
sisting of flat faces connected by ridges and vertices with
high local curvature, have been observed. In these experi-
ments, two types of oppositely charged, single-tailed am-
phiphiles were used, with a slight excess of one amphiphile
species over the other. At high temperatures, the amphi-
philes were found to form spherical bilayer vesicles.
However, provided that the number of excess, unpaired
amphiphiles was tuned to some optimal range, cooling the
system below the chain melting temperature yielded poly-
hedral bilayer vesicles. It was reported that the bilayer
polyhedra were stable over weeks, and that their shape
was consistently reproduced upon thermal cycling.
Furthermore, it was suggested [5,6] that the observed
polyhedra had icosahedral symmetry, although some un-
certainty regarding the polyhedral symmetry remained.

What is the mechanism governing the formation and
symmetry of bilayer polyhedra? It was argued [5,6] on
the basis of the experimental phenomenology that elastic
contributions to the polyhedron free energy dominate over
entropic or electrostatic contributions, and that minimiza-
tion of elastic bending energy alone determines the shape
of bilayer polyhedra. In this Letter, we take these intriguing
observations as our starting point and address the general
problem of finding polyhedral shapes with minimal bend-
ing energy. Questions regarding the minimal energy shape
of bilayer vesicles are commonly answered using a varia-
tional approach [1–3]. However, a given polyhedral shape
is defined by the geometric parameters characterizing its
vertices and ridges. Thus, polyhedra are inherently of
singular nature, which severely restricts the applicability
of variational calculus. We therefore employ a comple-
mentary method, in which we allow for ridges and vertices
with arbitrary geometric properties and, on this basis,
calculate polyhedron bending energies as a function of

polyhedron symmetry. In the remainder of this Letter, we
first consider the most straightforward case of bilayers with
uniform composition, and then turn to the richer case in
which there is segregation of excess amphiphiles.
The solution of the two-dimensional equations of elas-

ticity is a formidable challenge, and has only been
achieved for the vertices and ridges of polyhedra in certain
limiting cases [7–11]. Thus, in order to determine the
elastic energies of arbitrary polyhedral shapes, we mainly
employ simple expressions based on the Helfrich-Canham-
Evans free energy of bending [1–3],
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where Kb is the bilayer bending rigidity, R1 and R2 are the
two principal radii of curvature, and H0 is the spontaneous
curvature. The resulting expressions for polyhedron ener-
gies are intuitive and only involve a few parameters but,
ultimately, are purely phenomenological. We assess their
validity by making comparisons to polyhedron energies
obtained for the aforementioned limiting cases of the
equations of elasticity, which allow for stretching as well
as bending deformations.
Figure 1(a) shows schematic illustrations of a bilayer

bending gradually (left panel) and sharply (right panel)
along a ridge with dihedral angle �i. The first model is
inspired by the electron micrographs of bilayer polyhedra
in Refs. [5,6,12], while the second model provides a more
faithful representation of the polyhedral geometry. Based
on the picture presented in the left panel of Fig. 1(a), we
approximate ridges by a bilayer bending partially around a
cylinder of radius R1 ¼ d=ð�� �iÞ, where d is the arc
length. Following the right panel, we discretize the bilayer
with a lattice spacing b, and assume a harmonic potential
for the angle between adjacent bond vectors. Upon setting
d ¼ b one finds from either approach a ridge energy
similar to the expression used in Ref. [6],

Gr ¼
�Kb

2
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where �Kb ¼ Kb=b, l is the ridge length, and we have
assumed that H0 ¼ 0. A simple expression for the bend-
ing energy associated with closed bilayer vertices [see
Fig. 1(b)] is obtained from Eq. (1) following analogous
steps, leading to the vertex energy

Gv ¼ Kb

2

X
j

ð�� �jÞ2; (3)

where �j denotes the face angle subtended by two ridges

meeting at a given polyhedron vertex.
Closed bilayer vertices may break up to form pores

[5,6,12], which was suggested [5] as a mechanism for
avoiding the curvature singularity associated with closed
vertices. Figures 1(c) and 1(d) show two models for pores
at the vertices of polyhedra which, similarly as before, are
inspired by the experimental images in Refs. [5,6,12]
[Fig. 1(c)] and a stricter interpretation of the polyhedral
geometry of bilayer vesicles [Fig. 1(d)]. In our first model
[see Fig. 1(c)] we approximate the vertex of a given poly-
hedron by a cone with apex angle �� 2�, where � ¼
�=2� arccosð1��=2�Þ for a solid angle � subtended
by the polyhedron vertex. In our second model we assume

that, along each face, the pore consists of a straight
cylindrical edge [see Fig. 1(d), left panel], which bends
through an angle �j across a ridge from one face to a

neighboring face [see Fig. 1(d), right panel]. In both cases,
the elastic pore energy Gp can be evaluated on the basis of

Eq. (1) and is found [13] to depend on the pore radius, the
monolayer bending rigidity, K?

b , and the monolayer spon-

taneous curvature, H?
0 , as well as the face angle and solid

angle characterizing the geometry of a given polyhedron.
For physically relevant parameter ranges, Gp increases

with decreasing H?
0 and �.

We now turn to the presence of excess amphiphiles in
bilayer polyhedra. The expulsion of excess amphiphiles
from flat bilayers and the resulting molecular segregation,
together with the high spontaneous curvature of single-
tailed excess amphiphiles, are thought [5,6] to have two
principal effects on the bending energies of polyhedra. On
the one hand, excess amphiphiles can seed pores into
bilayers [5,6] and, thus, pores may have a role beyond
reducing the elastic energy of polyhedron vertices. In
particular, it has been suggested [6] that excess amphi-
philes produce pores in the spherical bilayer vesicles from
which bilayer polyhedra originate upon cooling. On the
other hand, it has been found [6] that excess amphiphiles
preferentially accumulate along the ridges of polyhedra.
As a result, molecular segregation can decrease the bend-
ing energy of the outer monolayer at ridges.
The above observations suggest a simple description of

how vertex and ridge energies are modified by the presence
of excess amphiphiles. Ideally, excess amphiphiles are
arranged along ridges such that they induce an anisotropic
spontaneous curvature commensurate with the dihedral
angle. Assuming such ‘‘perfect segregation,’’ only the
bending energy of the inner layer must be considered
when computing ridge energies. We therefore obtain a
lower bound on the modified ridge energy which takes a
similar form as Eq. (2), but with the rescaled bilayer bend-
ing modulus �Kb replaced by the rescaled monolayer bend-
ing modulus �K?

b ¼ K?
b=b. Thus, provided that the optimal

amount of excess amphiphiles is present [5,6], the ridge
energy is lowered by a factor K?

b=Kb, with the number of

pores seeded into spherical vesicles equal to or greater than
the number of polyhedron vertices. Experiments [5,6] and
simulations [14] suggest that K?

b=Kb & 10�2.

From the simple model for perfectly segregated bilayer
polyhedra described above one finds that the optimal ratio
of the amphiphile species in excess to the total amphiphile
content is given by rI � 0:51 for the polyhedron sizes
observed in experiments [5,6]. This optimal value for rI
is a direct result of amphiphile and polyhedron geometry
and, hence, does not depend on any elastic parameters. The
corresponding experimental estimate is rI � 0:57 [5,6].
We expect that in experiments not all excess amphiphiles
are segregated along the ridges and vertices of polyhedra as
a result of, for instance, entropic mixing within bilayer
polyhedra or the formation of micelles [6]. Thus, our
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FIG. 1 (color online). Illustration of the contributions to the
elastic bending energies of polyhedra: (a) Side view of a ridge
with dihedral angle �i, (b) vertex with face angle �j, (c) cross

section of half of a pore around the tip of a cone (see inset) with
apex angle �� 2� and radius r, (d) top-down view (left panel)
and side view (right panel) of a pore composed of straight edges
along each face.
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theoretical estimate for rI is in broad agreement with
experimental observations.

For certain limits of the equations of elasticity, approxi-
mate solutions corresponding to polyhedron vertex [7–9]
and ridge [10,11] energies have been obtained. In particu-
lar, it has been found [7] that fivefold disclinations in
hexagonal lattices are accommodated for small lattice sizes
through a stretching of lattice vectors. However, for large
enough lattice sizes it becomes energetically favorable to
buckle out of the plane [7], in which case the energetics of
the system are dominated by bending. This behavior is
characterized by a dimensionless quantity known as the
Föppl-von Kármán number � ¼ YR2=Kb, where Y is the
two-dimensional Young’s modulus and R is the lattice size.
As � ! 1, pronounced ridges develop [8,9] between the
fivefold disclination sites of icosadeltahedral triangulations
of the sphere. In this limit, the total elastic energy is
dominated by ridges and was determined in Refs. [10,11]

to be of the form Kbð�� �Þ7=3l1=3fðY=KbÞ, with 0:1 &

fðY=KbÞ & 0:4 nm�1=3 for bilayer polyhedra [6,13,14].
Thus, the asymptotic expression for the ridge energy found
in Refs. [10,11] leads to a similar dependence on the
dihedral angle and proportionality factor as in Eq. (2),
while increasing sublinearly with the ridge length l.

The lowest energy states of icosadeltahedral triangula-
tions of the sphere are found to resemble icosahedra for
� * 107 [8,9], which corresponds to a vertex energy
greater than 8Kb with, for instance, a value 12Kb for
� ¼ 1010. This compares quite favorably with the estimate
Gv � 11Kb implied by Eq. (3) for the icosahedron. More-
over, we find [13] that our two models for pores predict
similar ranges for the pore energyGp, with the competition

between pores and closed bilayer vertices governed by the
ratio K?

b=Kb. In particular, the aforementioned estimate

K?
b=Kb & 10�2 [5,6,14] implies that closed bilayer verti-

ces will be unstable to the formation of (closed) pores, thus
removing the singularity associated with polyhedron ver-
tices. This is consistent with experimental observations
[5,6,12] and allows adjustment of the volume of bilayer
polyhedra for a fixed total area or number of amphiphiles.

Ridges impose an energetic cost and, hence, one expects
that for a fixed area and dihedral angle the faces of poly-
hedra relax to form regular polygons. We therefore focus
here on the convex polyhedra with regular polygons
as faces, but we have also considered polyhedra with
irregular faces [13]. The class of convex polyhedra with
regular faces encompasses the five Platonic solids, the 13
Archimedean solids, the two (infinitely large) families of
prisms and antiprisms, and the 92 Johnson solids [15,16]. It
has been shown [17] that this list exhausts all convex
polyhedra with regular faces. Thus, counting prisms and
antiprisms as one solid each, there are exactly 112 convex
polyhedra with regular faces. With each of these polyhedra
a specific set of parameters characterizing ridges, vertices,
and faces is associated, leading to distinct contributions to
the total elastic bending energy.

We have evaluated the total elastic bending energies of
all convex polyhedra with regular faces. As illustrated in
Fig. 2, polyhedron energies are compared by plotting
elastic energy as a function of the polyhedron radius Rp

[8], which is related to the polyhedron area A via A ¼
4�R2

p, such that, for each value of Rp, all shapes have the

same total area. While the quantitative details of the result-
ing energy curves depend on the particular combination of
the aforementioned expressions for ridge, vertex, and pore
energies used, we find that all curves share the same basic
qualitative features. Consistent with a previous study [6],
the icosahedron [see Fig. 3(a)] minimizes bending energy
among the Platonic solids. However, we also find that,
in general, the icosahedron does not minimize bending
energy among arbitrary polyhedral shapes. In fact, for large
enough polyhedron sizes, the snub dodecahedron [see
Fig. 3(b)] is the polyhedral shape minimizing bending
energy among the convex polyhedra with regular faces,
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FIG. 2 (color online). Total elastic bending energies of the
convex polyhedra with regular faces, obtained for the case of
perfect segregation of excess amphiphiles, and bending energy
of the sphere, normalized by the total bending energy of the
icosahedron,Gi, with (a) pores with r ¼ 0 nm and (b) pores with
r ¼ 20 nm at each polyhedron vertex. The snub dodecahedron
corresponds to the bold curve minimizing bending energy in (a),
(b) for Rp � 500 nm.
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and the snub cube [see Fig. 3(c)] also has a lower energy
than the icosahedron in this limit.

Allowing for an optimal number of excess amphiphiles,
we find (see Fig. 2) that polyhedra can have lower bending
energies than the sphere, but only if we permit molecular
segregation along ridges as observed in Ref. [6].
Segregation at pores, which was originally suggested in
Ref. [5] as a potential mechanism stabilizing polyhedral
shapes, is not sufficient to produce polyhedra with bending
energies which are favorable compared to the sphere [13].
Indeed, if we assume that pores are closed, bilayer poly-
hedra are energetically favorable for the experimentally
observed polyhedron radius Rp � 500 nm [see Fig. 2(a)],

with the snub dodecahedron as the minimum energy shape
among the convex polyhedra with regular faces. If we
allow pores of a finite size, a sequence of polyhedral shapes
is obtained which minimize bending energy for smaller
polyhedron radii [see Fig. 2(b)]. The most notable of these
polyhedral shapes is the great rhombicosidodecahedron
[see Fig. 3(d)], which surpasses the snub dodecahedron
in bending energy at Rp � 300 nm. However, according to

our analysis, the snub dodecahedron represents the mini-
mum in bending energy among the convex polyhedra
with regular faces for the polyhedron sizes and pore sizes
(r � 20 nm) found experimentally [5,6,12].

In summary, we have used Eq. (1) and a variety of other
expressions [7–11] to systematically evaluate the bending
energies of bilayer polyhedra. We find that, contrary to
what has been suggested on the basis of experiments [5,6],
the snub dodecahedron and the snub cube generally have
lower total elastic bending energies than the icosahedron.
This result is consistent with several complementary theo-
retical studies which suggest that the elastic energies of
chiral shapes such as the snub dodecahedron and the snub
cube can be favorable compared to the icosahedron
[18–20] and that, even if the icosahedral shape is imposed,
the minimum energy structure may still be chiral [21].
While we followed here the experimental phenomenology

[5,6] and assumed that minimization of bending energy
governs the shape of bilayer polyhedra, other contributions
to the free energy, as well as kinetic effects [14,22], could,
in principle, modify the preferred polyhedral symmetry. In
light of our results, we suggest revisiting the symmetry of
bilayer polyhedra, and the thermodynamic or kinetic
mechanisms potentially governing their formation and
stability, in greater experimental detail.
This work was supported by a Collaborative Innovation

Award of the Howard Hughes Medical Institute, and the
National Institutes of Health through NIH Award number
R01 GM084211 and the Director’s Pioneer Award. We
thank A. Agrawal, M. B. Jackson, W. S. Klug, R.W.
Pastor, T. R. Powers, D. C. Rees, M.H. B. Stowell, D. P.
Tieleman, T. S. Ursell, and H. Yin for helpful comments.

[1] D. Boal, Mechanics of The Cell (Cambridge University
Press, Cambridge, 2002).

[2] S. A. Safran, Statistical Thermodynamics of Surfaces,
Interfaces, and Membranes (Westview Press, Boulder,
2003).

[3] U. Seifert, Adv. Phys. 46, 13 (1997).
[4] G. Lim H.W., M. Wortis, and R. Mukhopadhyay, Proc.

Natl. Acad. Sci. U.S.A. 99, 16 766 (2002).
[5] M. Dubois et al., Nature (London) 411, 672 (2001).
[6] M. Dubois et al., Proc. Natl. Acad. Sci. U.S.A. 101, 15 082

(2004).
[7] H. S. Seung and D. R. Nelson, Phys. Rev. A 38, 1005

(1988).
[8] J. Lidmar, L. Mirny, and D. R. Nelson, Phys. Rev. E 68,

051910 (2003).
[9] T. T. Nguyen, R. F. Bruinsma, and W.M. Gelbart, Phys.

Rev. E 72, 051923 (2005).
[10] A. E. Lobkovsky, Phys. Rev. E 53, 3750 (1996).
[11] A. E. Lobkovsky and T.A. Witten, Phys. Rev. E 55, 1577

(1997).
[12] K. Glinel et al., Langmuir 20, 8546 (2004).
[13] C. A. Haselwandter and R. Phillips (to be published).
[14] M.A. Hartmann et al., Phys. Rev. Lett. 97, 018106

(2006).
[15] P. R. Cromwell, Polyhedra (Cambridge University Press,

Cambridge, 1997).
[16] M. Berman, J. Franklin Inst. 291, 329 (1971).
[17] N.W. Johnson, Can. J. Math. 18, 169 (1966); V. A.

Zalgaller, Sem. in Math. Vol. 2, Steklov Math. Institute,
Leningrad (1967) (Consultants Bureau, New York, 1969),
(English translation).

[18] R. F. Bruinsma et al., Phys. Rev. Lett. 90, 248101
(2003).

[19] R. Zandi et al., Proc. Natl. Acad. Sci. U.S.A. 101, 15 556
(2004).

[20] M. J.W. Dodgson, J. Phys. A 29, 2499 (1996).
[21] G. Vernizzi and M. Olvera de la Cruz, Proc. Natl. Acad.

Sci. U.S.A. 104, 18382 (2007).
[22] H. Noguchi, Phys. Rev. E 67, 041901 (2003).

a b

c d

FIG. 3 (color online). Image representations of (a) the icosa-
hedron, (b) the snub dodecahedron, (c) the snub cube, and (d) the
great rhombicosidodecahedron. The polyhedra in (b) and (c) are
chiral.
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