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1. Supplementary Figures For Main Text

We begin by presenting, for easy access, the supplementary figures referenced within the body of the
main text. Additional figures are embedded through the Supplementary Information document, adjacent
to the material that they illustrate or support.
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Figure S1. Back-and-forth patch gliding and MLC1 localization. (A) Timelapse showing back-and-forth patch
gliding behavior in T. gondii tachyzoites (parental strain; see Experimental Methods and Materials). Star marks parasite
posterior end. (B) Confocal (Airyscan super-resolution) images of fixed extracellular tachyzoites with retracted conoids
(left) and protruded conoids (right) expressing myosin light chain 1 (MLC1)-halo and immunostained for α-tubulin.
MLC1, which recruits myosin A to the IMC [1], does not localize exclusively along subpellicular microtubules. Images
shown are individual z-slices. Multicolor beads were used for channel registration.

Figure S1 presents observations inconsistent with a templated model of Toxoplasma gondii F-actin
transport during gliding, in which F-actin is transported uniformly rearward towards the posterior end
of the cell by myosin A. In this model, reviewed in reference [2], a polarized rearward F-actin flow leads
to forward traction force and forward (anterior-end-leading) movement of the cell. As highlighted in
Figure S1A, however, Toxoplasma gondii tachyzoites can move both forward and rearward. Further,
rearward F-actin transport was thought to be likely directed or templated by the polarized subpellicular
microtubules that lie beneath the inner membrane complex (IMC) [3, 2]. However, as shown in Figure
S1B and in references [4, 5], the myosin A light chain MLC1 localizes throughout the IMC, not specifically
at subpellicular microtubules. Thus, it remains unclear how the polarity of the microtubules could dictate
or restrict the polarity of myosin A activity - and direct an only-rearward F-actin flow.
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Figure S2. Imaging and tracking myosin (MLC1) and actin. (A) Labeling control showing that even at the
highest concentrations (500 pM) of HaloTag Ligand Janelia Fluor used, fluorophores specifically labeled only HaloTag
fusion proteins. No fluorescent molecules were detectable in parent strain tachyzoites following labeling and standard
washes (see Experimental Methods and Materials). (B) Histogram of speeds of automatically-tracked single myosin light
chain 1 (MLC1) proteins compared to fixed-cell control. (C) Histogram of speeds of automatically-tracked single actin
proteins compared to the same fixed-cell control. In the fixed-cell control, halo-actin proteins are labeled and imaged
under identical conditions, but cells are fixed before imaging. This condition allows us to establish the baseline speed
distribution for static molecules that arises from measurement error when imaging at the rapid temporal resolution
required to capture fast dynamics [6]. Given a pixel size of 100 nm and a frame interval of 86 ms, even a one-pixel
localization error produces a measured speed of 1.2 µm/s. (D) Cumulative distribution function of fixed cell control,
MLC1, and actin speeds. (B-D) Automatic tracking reveals a population of mobile actin molecules, compared to MLC1
and fixed control speed profiles (n = 15 cells for actin, 7 cells for myosin, and 6 cells for the fixed control). We note that
the actin mobile population is likely an undercount; automatic tracking disproportionately reports immobile and slow
trajectories, in which detection events are easier to confidently link. Fast, directional movements visible by eye were
challenging to capture with automated methods, necessitating the use of manual tracking for a focused analysis of
directional trajectories (Figure 1; as discussed in Supplemental Information Section 5).
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Figure S2 presents additional results relevant to the imaging of single myosin light chain 1 (MLC1)
and actin molecules inside living extracellular Toxoplasma gondii tachyzoites. In these experiments,
fusion proteins expressed at low levels (MLC1-halo and halo-actin, see Experimental Methods and Ma-
terials) were labeled sparsely with bright, photostable Janelia Fluor dyes using the HaloTag system.
The labeling control shown in Figure S2A shows the specificity of this labeling approach. Figure S2B-D
reports speeds from automated detection and tracking of MLC1 and actin molecules using the u-track
algorithm [7]. While the tracking settings (see Section 5) required to prevent false linkages between
molecules disproportionately reports immobile and slow trajectories, in which detection events can be
more confidently linked, automated tracking still showed a larger fraction of mobile actin (Figure S2C-D)
compared to myosin (MLC1).To put numbers on the difference between the distribution of actin speeds
and the distribution of fixed control and myosin speeds visible by eye in FigureS2D, we can calculate the
two-sample Kolmogorov-Smirnov test statistic, which reports on the maximum absolute difference be-
tween cumulative distribution functions. The Kolmogorov-Smirnov statistic is 0.048 when comparing the
speed distributions of immobile fixed-cell control molecules to myosin; 0.15 when comparing the immobile
fixed-cell control to actin, and 0.18 when comparing myosin to actin (p < 0.001 in all 3 cases, suggesting
that each distribution is unique). Importantly, we note that the challenge of using automated methods
to capture fast, directional actin movements visible by eye necessitated the use of manual tracking for a
focused analysis of directional trajectories shown in Figure 1 D-F (see Section 5 for additional discussion).
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Figure S3. Governing equations of actin filament self-organization. (A) In a regime in which filaments are stable
and conserved, the continuity equation governs filament density. (B) Generalized Toner-Tu flocking theory for actin
filament self-organization. Different terms correspond to different effects governing filament velocity and speed. In other
words, filament velocity evolves according to local rules, implemented mathematically. (C) In a filament turnover regime,
incorporating our knowledge of Toxoplasma actin biology, we allow filament polymerization at the cell’s anterior (apical)
end and filament depolymerization throughout. (D) Filament velocity evolves according to the same equation (B) as in
the stable filament regime. We include this second version in order to pedagogically annotate the coefficients that tune
each term.

In Figure S3, we annotate the Toner-Tu flocking model used to predict emergent actin filament
organization and dynamics at the Toxoplasma gondii cell surface. For the interested reader, the model
is presented in detail in Section 6 and reference [8]. In brief, actin filament organization is described
by two fields: the scalar field ρ, which captures filament density, and the velocity vector field v, which
captures both filament polarity (orientation of v) and speed (magnitude of v). The continuity equation
ensures conservation of stable filaments (Figure S3A) or is modified to capture filament polymerization
at the cell anterior end and filament depolymerization throughout (Figure S3C). As shown in Figure S3B
and D, filament velocity evolves according to a minimal version of the Toner-Tu flocking model, with an
additional term that penalizes filament curvature which is derived in Section 6.3.
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Figure S4. Predicted steady-state F-actin density and velocity patterns for different filament turnover
rates. Tuning actin depolymerization rate (γ, filaments/s) in the Toner-Tu actin self-organization model changes features
like chirality and density gradient in the emergent steady-state actin patterns predicted. Shown here are steady-state
filament density (color) and velocity (black arrows) for a filament polymerization rate c = 1500 µm−2s−1 (estimated in
Section 7.2) and filament turnover rates γ as indicated.

In Figure S4, we highlight the effect of actin filament depolymerization rate on predicted steady-
state unidirectional F-actin flows. These flow patterns, which we call “steady-state” because the density
and velocity fields reach a stable solution which they hold over time, consist of largely unidirectional,
rearward actin flow and are labeled as “unidirectional” (dark purple circles) in Figure 4B. Those steady
states that lie in a regime close to the transition to recirculation are most consistent with cell motions
during helical gliding, circular gliding, and twirling, as depicted in Figure 4D-F. In the example shown
here, this regime corresponds to depolymerization rates of γ = 0.45-0.55 filaments/s. (Lower rates of
depolymerization lead to F-actin recirculation (“cyclosis,” orange circles), as shown in Figure 4B.) Our
theoretical model indicates that in Toxoplasma gondii parasites whose actin dynamics lie in this regime,
actin self-organization alone is sufficient to generate patterns that explain helical gliding, circular gliding,
and twirling. Interesting, this finding is consistent with experimental results suggesting that careful
tuning of actin filament stability is critical for normal gliding behaviors [9, 10, 11, 12] We note that this
sufficiency does not preclude the existence of additional complexity not explored here, like contributions
from inner membrane complex (IMC) shape.
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2. Video Legends

Video 1. Diverse gliding modes: an individual cell performs back-and-forth gliding, helical
gliding, and then twirling. In this brightfield microscopy video, an extracellular Toxoplasma gondii
tachyzoite glides back and forth (0:00 min:s), displaying so-called patch or pendulum gliding (see Table
S1). Several minutes later, the same cell displays helical gliding (4:04 min:s), followed by twirling (4:13
min:s). The ability of an individual cell to switch between gliding modes on the timescale of minutes
is consistent with the self-organization hypothesis presented in this work. Different self-organized actin
states may arise at different points in time, likely in response to altered regulation of actin dynamics,
even though the underlying cell structure (e.g., IMC and microtubules) remains unchanged.

Video 2. Single-molecule imaging reports on dynamics of myosin in extracellular Toxo-
plasma gondii. Example of total internal reflection fluorescence (TIRF) imaging of myosin light chain
1 (MLC1-halo) single molecule dynamics (cyan) in an extracellular parasite, with bulk labeling (magenta)
to show cell position. MLC1-halo was expressed at low levels, labeled with picomolar concentrations of
Janelia Fluor 549 to visualize single molecules (cyan), and labeled with nanomolar concentrations of
Janelia Fluor 647 to visualize the cell (magenta). MLC1 molecules frequently remained immobile, or
bound, on the time scale of seconds. Five molecules, indicated by arrowheads, remain bound for the
length of the movie. Time is in min:s.

Video 3. Single-molecule imaging reports on dynamics of actin in extracellular Toxoplasma
gondii. Example of total internal reflection fluorescence (TIRF) imaging of Toxoplasma actin (halo-
actin) single molecule dynamics (cyan) in an extracellular parasite, with bulk labeling (magenta) to show
cell position. Halo-actin was expressed at low levels, labeled with picomolar concentrations of Janelia
Fluor 549 to visualize single molecules (cyan), and labeled with nanomolar concentrations of Janelia Fluor
647 to visualize the cell (magenta). The same video repeats three times in order to highlight different
molecule behaviors. First, “b” labels an immobile (“bound”) molecule, which persists for a second before
disappearing - likely because it unbinds and moves out of the TIRF field. Second, “d” labels a molecule
that displays meandering (diffusive) behavior. Third, “m” labels a directional (“motor-transported”)
molecule that moves persistently towards the anterior of the cell. Time is in min:s.

Video 4. Actin flocking model predicts self-organized recirculation (“cyclosis”) of actin
patches in the absence of filament turnover. The simulation begins with a disordered network, and
then filament density ρ and velocity v evolve over time on the Toxoplasma gondii tachyzoite cell surface
according the actin self-organization Toner-Tu equations presented in Sections 6 - 9. Filaments are stable
and conserved, as in Supplementary Figure S3 A-B. Equations were solved and results simulated using
the finite element method in COMSOL Multiphysics R©. The cell surface shape was obtained by soft
X-ray tomography.

Video 5. Imaging of jasplakinolide-stabilized actin bundles that recirculate up and down
the Toxoplasma gondii cell. Example of total internal reflection fluorescence (TIRF) imaging of
halo-actin in extracellular Toxoplasma tachyzoites treated briefly with 1 µM jasplakinolide to stabilize
actin filaments. The recirculating bundle sometimes moves out of the TIRF field but is clearly visible
when parallel to the imaging plane (e.g., 0:13-0:15 min:s).

Video 6. Actin flocking model predicts the emergence of self-organized unidirectional flow
in the presence of filament turnover. The simulation begins with a disordered network, and then
filament density ρ and velocity v evolve over time on the Toxoplasma gondii tachyzoite cell surface
according the actin self-organization Toner-Tu equations presented in Sections 6 - 9. Filaments are
polymerized in the conoid (anterior end) at rate c = 1500 µm−2s−1 and depolymerized throughout
the cell surface at rate γρ = (0.5 s−1) (ρ µm−2), as in Supplementary Figure S3 C-D and Section 7.2.
Equations were solved and results simulated using the finite element method in COMSOL Multiphysics R©.
The cell surface shape was obtained by soft X-ray tomography.
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3. Supplementary Table 1: Observations of Back-and-Forth Gliding

Organism
& life
stage

Condition Expected effect
on actin

Observed bidirectional glid-
ing phenotype

Reference

T. gondii
tachyzoites

“Wild-type”
extracellular
RH in media
conditioned by
human foreskin
fibroblasts

N/A “Patch” gliding with frequent
pauses: e.g., gliding forward,
rearward, forward, flipping over
the posterior cell end, rearward,
pausing, etc. Cell-substrate
contact point is stationary in
the lab reference frame.

This study
(Fig. S1,
Video 1)

T. gondii
tachyzoites

Jasplakinolide
treatment

Increased filament
stability

“frequent reversal of direction
often resulted in a behavior
called “rolling,” during which
the parasite moved forward,
raising its anterior end off the
substrate, then reversed course,
elevating the posterior end.”

Wetzel et
al., 2003 [9]

T. gondii
tachyzoites

Small molecule
treatment

Unknown targets “parasites... move quickly with
frequent changes in direction”

Carey
et al.,
2004 [13]

T. gondii
tachyzoites

“ADF cKO”
(actin depoly-
merizing factor
conditional
knockout)

Increased filament
stability

“frequent reversals of direc-
tion leading to no net move-
ment... back-and-forth rocking
motions”

Mehta &
Sibley,
2011 [10]

T. gondii
tachyzoites

“DOC2.1 muta-
tion”

Blocked microneme
secretion

“shuffling, a distinct motil-
ity mode in which parasites
abruptly move back and for-
ward”

Farrell,
Thirug-
nanam
et al.,
2012 [14]

P. berghei
sporozoites

“coronin(-)” Loss of filament
crosslinking; pos-
sibly increased
filament stability
due to decreased
ADF recruitment

“often detached from the sub-
strate, frequently moving just
back and forth over a single
adhesion site... In addition...
bending and flexing movements
without moving forward”

Bane et al.,
2016 [15]

P. berghei
sporozoites
(from
hemolymph)

“Wild-type”
sporozoites

N/A “Patch” gliding: “sporozoites
continuously move over a single
spot in a back-and-forth man-
ner at similar speeds in both di-
rections”

Münter
et al.,
2009 [16]
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Organism
& life
stage

Condition Expected effect
on actin

Observed bidirectional glid-
ing phenotype

Reference

P. berghei
sporozoites
(from
hemolymph)

“trap(-)” (trun-
cated adhesin
protein TRAP
[17]) isolated
from mosquito
hemolymph

Unknown; trun-
cated TRAP may
fail to bind an
adaptor (GAC
homolog?) that
regulates F-actin
stability[18]

“Patch” gliding: “sporozoites
continuously move over a single
spot in a back-and-forth man-
ner at similar speeds in both di-
rections”

Münter
et al.,
2009 [16]

P. berghei
sporozoites
(from
midgut)

Mutations in
C-terminal cy-
toplasmic tail of
TRAP

Unknown; mutants
fail to bind an
adaptor (GAC
homolog?) that
regulates F-actin
stability [18]

“Pendulum” gliding: “repeated
cycles of (a) gliding over one
third of a circle, (b) stopping
for usually 1-2 s, and (c) moving
back to the original position”

Kappe
et al.,
1999 [19]

P. berghei
sporozoites
(from
salivary
gland)

Mutations in
actin subdomain
4

Reduced actin fila-
ment turnover

“parasites... frequently paused
and reversed direction during
migration”

Douglas
et al.,
2018 [11]

P. berghei
sporozoites
(from
midgut,
hemolymph)

“cbβ (-)”: cap-
ping protein
subunit b loss of
function

Unrestricted fila-
ment polymeriza-
tion

“cpβ(-) sporozoites display only
non-productive motility pat-
terns, such as bending, flexing
and pendulum movement”

Ganter
et al.,
2009 [12]

4. Experimental Methods and Materials

4.1. Parasite and host cell culture

Toxoplasma gondii tachyzoites were maintained by serial passage in primary human foreskin fibroblasts
(HFFs) in Dulbeccos modified Eagles high glucose medium (DMEM; Gibco 11960-044) with 10% heat-
inactivated fetal bovine serum (FBS; Corning 35-011-CV), 2 mM glutamine (Sigma-Aldrich G7513), 100
U/ml penicillin, and 100 µg/ml streptomycin (Gibco 15140122) at 37◦C in 5% CO2. In brief, to passage
parasites, infected HFF monolayers were suspended in media by scraping, syringe lysed using a 25-gauge
blunt-end needle (SAI Technologies B25-50), and added at a 150-fold dilution to an confluent uninfected
HFF monolayer, every 2-4 days. HFFs were obtained from the neonatal clinic at Stanford University
following routine circumcisions that are performed at the request of the parents for cultural, health, or
other personal medical reasons (i.e., not in any way related to research). These foreskins, which would
otherwise be discarded, were fully deidentified and therefore do not constitute human subjects research.
Uninfected HFFs were maintained in the supplemented DMEM described above, passaged using 0.25%
trypsin-EDTA (Gibco 25200056), and discarded after passage 15.

4.2. Generation of halo-ACT1 and MLC1-halo strains

In brief, halo-TgACT1 or TgMLC1-halo fusions under the control of a weak promoter (from TGGT1 239010,
gift of M. Panas [20]) were incorporated into the genome of the Toxoplasma gondii type I RH hxgprt ku80
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strain [21]. In detail, p239010-halo-C1-HXGPRT and p239010-halo-N1-HXGPRT vectors were created by
replacing a region of the pGRA-3xHA-HPT vector [22] (from the pGRA promoter through the translated
region) with: (1) the TGGT1 239010 promoter and 5’ UTR to drive low expression levels; (2) the HaloTag
sequence (Promega); and (3) a serine-glycine linker and multiple cloning site either C-terminal (“C1”) or
N-terminal (“N1”) to the HaloTag sequence. TgACT1 (TGGT1 209030) or TgMLC1 (TGGT1 257680)
were then synthesized and cloned into the p239010-halo-C1-HXGPRT or p239010-halo-N1-HXGPRT vec-
tor, respectively (Epoch Life Science, Inc., Missouri City, TX). For transfection with p239010-halo-ACT1-
HXGPRT or p239010-MLC1-halo-HXGPRT, RH ∆hxgprt ∆ku80 parasites were mechanically released in
PBS, pelleted, and resuspended in 20 µl P3 primary cell Nucleofector solution (Lonza) with 15 µg DNA,
and electroporated using the Amaxa 4D Nucleofector (Lonza). Transfected parasites were permitted to
infect and grow in confluent HFFs for 48 h, after which time the media was supplemented with 50 µg/ml
mycophenolic acid and 50 µg/ml xanthine for HXGPRT selection. Parasites were passaged 4 times over
10-12 days in selection media before being singly cloned into 96-well plates by limiting dilution. Clones
were expanded and screened for HaloTag expression by incubating intracellular parasites overnight with
50 nM TMR HaloTag Ligand (Promega G8251), washing 5x with PBS to remove unbound dye, fixing
with 4% paraformaldehyde (EMS AA433689M) for 15 min, and imaging fluorescence.

4.3. Single molecule labeling in live parasites

Before infected HFFs were lysed to release parasites for imaging, parasites within infected HFF monolayers
were labeled for 3 h at 37◦C with Janelia Fluor 549 HaloTag Ligand (Promega GA1110) and Janelia Fluor
646 HaloTag Ligand (Promega GA1120) [23] at a concentration of 1-10 pM for single molecule imaging
or 100-500 pM for bulk population imaging. Because Janelia Fluor dyes bleach over time in storage,
dye concentration must be optimized empirically and adjusted on the timescale of months; furthermore,
care should be taken to avoid more than two or three freeze-thaw cycles before use. When subpellicular
microtubule imaging was used to determine parasite polarity, infected HFFs were labeled with 100 nM
siR-tubulin and 10 µM verapamil (Cytoskeleton, Inc. CY-SC002) alongside 1-10 pM Janelia Fluor 549.
Before parasite release, infected HFF monolayers were washed 7x with DMEM to ensure removal of
unbound dye.

4.4. Preparation and TIRF imaging of live extracellular parasites

To release parasites, infected HFFs were scraped and syringe lysed in fresh phenol red-free DMEM
with a 27-gauge needle (SAI Technologies B27-50). Freshly released parasites were placed on 35 mm
#1.5 glass-bottomed dishes (Cellvis D35-20-1.5-N; incubated with 10% FBS before use) with a confluent
monolayer of human foreskin fibroblasts (HFFs) grown on Snapwell Insert polyester membranes (Corning
Costar CLS3801) suspended approximately 0.2 mm above them. Parasites were imaged at 30◦C using
objective-type total internal reflection fluorescence (TIRF) microscopy on an inverted microscope (Nikon
TiE) with a heated Apo TIRF 100 oil objective of numerical aperture 1.49 (Nikon) and controlled using
Micromanager [24]. To enable simultaneous two-color imaging, samples were excited with both 532 nm
(Crystalaser) and 635 nm (Blue Sky Research) lasers, and emitted light passed through a quad-edge
laser-flat dichroic with center/bandwidths of 405 nm/60 nm, 488 nm/100 nm, 532 nm/100 nm, and
635 nm/100 nm from Semrock (Di01-R405/488/532/635-25x36) and corresponding quad-pass filter with
center/bandwidths of 446 nm/30 nm, 510 nm/30 nm, 581 nm/30 nm, 703 nm/30 nm band-pass filter
(FF01- 446/510/581/703-25). Emission channels were then separated as previously described [25] and
recorded on an electron-multiplying charge-coupled device (EMCCD) camera (Andor iXon).

4.5. Jasplakinolide treatment and results

Live extracellular parasites were prepared as in subsection 4.4, with the addition of 1 µM jasplakinolide
(Millipore Sigma J4580) immediately before imaging. In a narrow window of time from approximately 15-
30 min after jasplakinolide addition, protruding bundles of actin filaments were observed circling around
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the periphery of parasites. We note that this recirculating behavior was very sensitive to treatment time
and drug concentration. Over time, most protrusions lost this recirculating behavior and became fixed
in position at the anterior (apical) end, as previously observed [26]. We speculate that this transition
to fixed apical actin bundles occurs as bundles grow long enough (with polymerization favored both by
jasplakinolide and by apically-localized FRM1 [18]) to protrude through the conoid and into the cytoplasm
and can no longer re-orient to contact myosin motors on the outside of the inner membrane complex.
Under ideal treatment conditions, nearly all extracellular parasites observed displayed recirculating actin
protrusions (n ≈ 30 cells); under less ideal conditions (e.g., after more than 30 min treatment, or with
poorly attached parasites), less than 10% of parasites displayed recirculating protrusions (n ≈ 50 cells).

4.6. MLC1 immunofluorescence and super-resolution confocal microscopy

Parasites were released from infected HFF monolayers by scraping and syringe lysis in DMEM with a
27-gauge needle (SAI Technologies B27-50), passed through a 5 µm filter (Millipore Sigma SLSV025LS)
and allowed to settle onto #1.5 coverslips at 37◦C in 5% CO2 for 30 min in DMEM + 1 µM calcium
ionophore A23187 (Sigma C7522). Subsequent staining steps were performed at room temperature:
parasites were fixed with warm 4% paraformaldehyde (EMS AA433689M) for 15 min, washed 3x with
phosphate-buffered saline (PBS), incubated with permeabilization and blocking buffer (PBS-T + 2% BSA
= 0.1% Triton-X-100 and 2% bovine serum albumin in PBS) for 20 min, incubated with mouse anti--
tubulin monoclonal antibody DM1α (Sigma T6199; diluted 1:500) and 2 nM Janelia Fluor 646 HaloTag
Ligand (Promega GA1120) in PBS-T + 2% BSA for 1 h, washed 3x with PBS, incubated with anti-mouse
IgG secondary antibody conjugated to Alexa Fluor 488 (Cell Signaling 4408S) for 20 min, washed 3x with
PBS, and mounted in ProLong Gold Antifade (ThermoFisher P36934). Samples were imaged using an
inverted Zeiss LSM 780 confocal microscope with a 63X/1.4 NA oil objective, 488 nm Ar laser, 633 nm
HeNe laser, and a Zeiss Airyscan detector (32-channel gallium arsenide phosphide photomultiplier tube
(GaAsP-PMT) area detector), in which using each detector element as an individual pinhole combined
with linear deconvolution achieves a spatial resolution below the diffraction limit [27]. All images were
acquired using Zen Black software (Carl Zeiss).

4.7. Soft X-ray tomography

HFF monolayers, 18-20 hours after parasite infection, were washed two times with Hanks balanced
salt solution (HBSS; Gibco 14175095) supplemented with 1 mM magnesium chloride, 1 mM calcium
chloride, 10 mM sodium hydrogen carbonate and 20 mM HEPES, pH 7. HFFs were scraped and passed
through a 27-gauge needle (SAI Technologies B27-50) to release parasites into fresh HBSS at room
temperature. Calcium ionophore A23187 (Sigma C7522) at a final concentration of 1 µM was added to
the sample at room temperature for 10 minutes. Parasites were pelleted, access liquid was aspirated, and
parasites were resuspended in the remaining liquid (≈25 µl) prior to loading into 5 µm-diameter glass
capillaries. Parasites inside capillaries were then vitrified by fast plunge-freezing in 90 K liquid propane.
Capillaries were imaged using the XM-2 cryo soft X-ray microscope (SXM) at the National Center for
X-Ray Tomography at the Advanced Light Source (Lawrence Berkeley Laboratories, Berkeley, CA). The
XM-2 is equipped with a micro zone plate (MZP) with a spatial resolution of 60 nm, and the imaged
capillary was in an atmosphere of helium gas stream cooled by liquid nitrogen. To have a full rotated
tomographic dataset reconstructed, 92 projection images were taken with 2 degree increments. The
exposure time of each projection varied between 200-450 ms, depending on the beam flux and the sample
thickness. Projection images were normalized and aligned, and the tomographic reconstructions were
calculated using iterative reconstruction methods in the AREC-3D package [28]. Additional information
on the soft X-ray tomography method is available within reference [29].
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5. Image Analysis and Single Molecule Tracking

Automated molecule detection and tracking (Supplementary Figure S2) was performed on raw movies
of halo-actin and MLC1-halo molecules in live parasites using u-track software (release 2.2.0) made
available by the Danuser lab [7] and run through MATLAB R2019a from Mathworks, Inc. Key u-track
parameters were as follows: α = 0.05 (sets spot detection threshold relative to background); Gaussian
standard deviation σ = 1.3 pixels = 130 nm (based on an average measured full width half maximum
(FWHM) of 3 pixels for single spots, and the relationship between FWHM and σ for the Gaussian
distribution: FWHM = 2

√
2 ln2 σ ≈ 2.355 σ); search radius = 0-9 pixels, corresponding to a maximum

allowed speed of 9 pixels / 86 ms = 10.5 µm s−1; gap tolerance = 0; minimum track length = 5
frames = 0.43 s. These u-track settings were selected empirically to minimize false positive detection
events and linkages (erroneous inclusion of two different molecules in a single trajectory), but they
necessarily under-report fast-moving population trajectories. After much discussion and consideration
of alternative tracking approaches and algorithms, we came to the realization that every automated
algorithm is benchmarked against the “gold standard” of object tracking by the human brain, and that
manual human tracking of the fast directional actin trajectories apparent by eye was not only a valid
option, but in fact the most accurate one available. Thus, the fast, directional actin population tracks
(Figure 1D-F) were obtained by manual spot tracking of raw images with the Manual Tracking plugin [30]
within Fiji (ImageJ Version 2.0.0-rc-69/1.52p) [31].

Single molecule trajectory outputs (position over time) from u-track or manual tracking were analyzed
using home-written MATLAB programs. To align molecule trajectories from different cells to a “reference
cell” and calculate the orientation of molecule velocities with respect to cell polarity, cell orientation was
determined and trajectories were rotated as follows. First, cell anterior-posterior polarity was determined
for every movie analyzed using either subpellicular microtubule imaging or by tracking the cell posterior
end following twirling events, in which the posterior end can be identified as the end in contact with the
substrate. We note that posterior nuclear position proved to be a consistent polarity indicator as well;
while we did not consider nuclear position alone sufficient information to include a cell in this polarity
analysis, polarity information from nuclear position analysis was always in agreement with microtubule
imaging or twirling analysis. Second, within a home-written MATLAB program, cells were segmented
using a threshold determined by Otsu’s method (MATLAB Image Processing Toolbox) and fit with an
ellipse (regionprops; MATLAB Image Processing Toolbox). Ellipse centroid and orientation (combined
with manually annotated polarity info, giving the ellipse an anterior-posterior polarity) were used to
determine a rotation matrix that, when applied to cell images or molecule trajectories, aligned them to
a “reference cell” with anterior (apical) end pointing up.

All analyses described above were performed on raw images. For display in figures and movies, images
were denoised using noise2void [32].

6. Theoretical Model of Toxoplasma gondii Actin Filament Self-Organization

6.1. Continuum flocking theory: background and model choice

To describe the collective motion and organization of actin filaments, we repurposed a classic contin-
uum active matter model that was originally developed by John Toner and Yuhai Tu, inspired by the work
of Támas Vicsek, to describe the collective behavior of flocking or schooling animals [33, 34, 35]. This
class of theoretical models, known as Toner-Tu or flocking theory, describe collections of “dry,” polar,
self-propelled agents at any lengthscale, from flocks of flying birds to collections of polarized cytoskeletal
filaments. In our case, Toxoplasma gondii actin filaments at the cell surface are propelled along by an un-
derlying carpet of plus-end-directed myosin motors, whose action we can effectively capture as polarized
filament self-propulsion. One final consideration for us, in choosing a useful and appropriate continuum
model for our system, was the distinction between so-called “wet” and “dry” active matter models. In
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wet active matter systems, the total momentum of self-propelled agents and the media they live in is
conserved. Dry active matter are systems without momentum conservation, often due to dominant fric-
tional drag during movement along a surface, or between two walls [36]. In our system of interest, actin
filaments move through a confined space ≈ 25 nm in height between the T. gondii plasma membrane
and the rigid, intermediate filament-reinforced inner membrane complex [1], which we expect to impose
a no-slip boundary condition. To make sure that modeling our T. gondii actin filament network as a dry,
polar system (using Toner-Tu flocking theory) is indeed justified, we now turn to estimating expected
viscous drag and friction scales. In the remainder of this subsection, we present this estimate and find
that frictional drag indeed dominates. In the subsection that follows, we move on to the details of the
Toner-Tu model and its adaptation for our purposes.

One way to formalize the distinction between wet and dry active matter is in terms of a hydrodynamic
length scale,

l =

√
η

γ
(1)

which reflects a competition between the viscosity η and a friction coefficient γ. In dry active matter
systems dominated by frictional drag, l is very small. In a sense, hydrodynamic “communication” through
the intervening fluid medium is only possible over very short distances and can thus be neglected.

In our case, actin filament dynamics play out within an extremely thin layer (≈ 25 nm thick) above
a no-slip boundary. We consider the magnitude of viscosity and of friction for the intervening fluid
(cytoplasm) surrounding our actin filaments. We take 10−3 N·s/m2, the viscosity of water, as a reasonable
estimate for η. Next, we require an estimate for the parameter γ, given our knowledge of actin filament
dynamics and subcellular structure at the Toxoplasma cell surface. We present this estimate in Appendix
Section 10.1. In brief, by understanding in-plane frictional drag as capturing viscous interactions across
the height of a thin three-dimensional flow, we estimate a friction coefficient γ ≈ 1013 N · s/m4.

Following eqn. 1, we estimate a hydrodynamic length scale

l ≈
√

10−3 N·s
m2

1013 N·s
m4

≈ 10−8 m (2)

or 10 nm, a distance smaller than the scale of our agents (filaments) themselves, or their estimated
spacing. Thus, we choose a dry, polar active matter model (Toner-Tu flocking theory) to describe the
collective motion and self-organization of actin filaments at the parasite surface.

6.2. A minimal Toner-Tu flocking theory

The continuum flocking equations developed by Toner and Tu use two field variables to characterize
the evolution of a flock (a collection of birds, or sheep, or actin filaments) in space and time: density
ρ(r, t) and velocity v(r, t). Rather than keeping track of each discrete agent (every bird, sheep, or
filament) over time, we use the powerful approach of coarse-graining. In our case, this means “dividing
up” the Toxoplasma gondii cell surface into a continuous field of boxes, or area elements, and identifying
an average actin filament velocity and density for each box. This continuum approach enables us to
predict the time-evolution and emergence of cell-scale actin filament patterns in the language of our field
variables, filament density ρ and velocity v. Mathematically, the evolution of our two field variables in
space and time is carried out in the language of partial differential equations. We can think of these
partial differential equations as “update rules” that tell us how to use our knowledge of the field variables
ρ(r, t) and v(r, t) at a time t and work out their subsequent values ρ(r, t+ ∆t) and v(r, t+ ∆t) at time
t + ∆t. This update process repeats, one time step after another, to get the full space-time history
of filament density and velocity on the cell surface. We note that, in acknowledgement that our actin
filaments of interest are confined in a thin layer between the inner membrane complex and the plasma
membrane, our density and velocity fields are strictly two-dimensional, confined to the tangent plane of
the cell surface.
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With field variables in hand, we write the governing field equations (i.e. partial differential equations,
or “update rules”) that describe their spatiotemporal evolution. The first governing equation is the
continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0. (3)

Conceptually, all that this equation says is that if we consider an infinitesimal box of material, the change
in the amount of actin within that little box is the difference between the amount that flows in and the
amount that flows out. For the moment we consider the case of strict mass conservation with no sources
or sinks, though we will see below that the biology of Toxoplasma requires us to soften that constraint and
allow for both polymerization and depolymerization of actin filaments. The second governing equation is
a minimal representation of the dynamics of the v field offered by Toner and Tu and given first in direct
notation by

∂v

∂t
= [α(ρ− ρc)− β|v|2]v +D∇2v − σ∇ρ− λv · ∇v (4a)

and then, equivalently, in index notation by

∂vi
∂t

= [α(ρ− ρc)− βvjvj ]vi +D∇2vi − σ
∂ρ

∂xi
− λvj

∂vi
∂xj

, (4b)

where ρc is the critical density above which the filaments move coherently, the square root of the ratio
of α(ρ − ρc) and β sets a filament transport speed scale |v| = vmyosin, the coefficient D tunes filament
alignment with neighbors, σ∇ρ provides an effective pressure that keeps filament density within a physical
range, and the coefficient λ tunes filament velocity self-advection. Note that we are using the summation
convention, which tells us to sum over all repeated indices; for example, a · b = aibi =

∑3
i=1 aibi.

As illustrated in Figure 2 and Supplementary Figure S3, these terms are a mathematical encapsulation
of the “rules” of local filament interactions with other filaments, with myosin motors, and with the
geometry of their environment. Together, they provide an update to filament velocity, over each increment
in time. Put differently, each term captures a “driving force” that acts locally on filament velocity. The
first term on the right, preferred speed, sets the characteristic speed of the actin filaments at 5 µm/s, the
approximate mean speed of the relevant myosin motor, TgMyoA (Figure 1 and [37]). The second term,
neighbor coupling, involving the Laplacian, we can think of as a velocity smoothing term which pushes
a given filament’s velocity (orientation and speed) to better match that of its neighbors. For the case of
T. gondii actin filaments, this neighbor alignment term captures the action of the filament cross-linking
protein coronin [17, 38, 15] and polar alignment through physical collision of moving filaments, as seen in
vitro [39]. The third term is a pressure term that punishes gradients in density, keeping filament density
within a realistic range.

The final term, velocity advection, has analogy to the gradient component of the material time
derivative in the Navier-Stokes equations. In essence, the velocity field advects itself; filaments move
along in a direction dictated by their orientation and velocity, and they bring that orientation and
velocity with them. In the simple case of pure self-advection, λ = 1. For active agents, such as birds in a
flock, λ maybe be further tuned by the behavioral response of the agents to gradients in velocity. In other
words, λ = 1 + ξ, where ξ reflects a behavioral “gradient penalty”; for example, birds may resist flying
quickly into a steep gradient of decreasing velocity, and may slow down. For the case of T. gondii actin
filament self-organization, we choose λ = 1 as discussed in Section 7.2, because our knowledge of this
myosin-driven actin network does not suggest an active ability of filament velocity to respond to nearby
gradients in velocity. However, we maintain the advection coefficient λ in our general presentation of the
theory, for consistency with the Toner-Tu tradition and to provide the most generally useful version of
these minimal flocking equations.

Each term of the four terms in these equations is necessary to capture the basic phenomenology of
flocking. In the absence of the preferred speed term or the velocity advection term, filaments do not
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move. In the absence of the neighbor coupling term, they remain disordered, with no collective motion.
In the absence of the pressure term, aphysical densities emerge (negative densities, or densities higher
than a cystalline packing of filaments).

We hope that the discussion thus far has clearly presented the mathematics and the intuition of a
minimal Toner-Tu flocking theory. We refer the interested reader to reference [8] for additional discussion
of this theory, its formulation in a general surface form using extrinsic differential geometry, and a
numerical exploration of flocking solutions on varied curved surface shapes. Here, we next extend the
minimal flocking theory with new terms specific to Toxoplasma gondii actin biology and present our full
model for actin filament self-organization on the surface of Toxoplasma.

6.3. Extending flocking theory to capture Toxoplasma actin biology: curvature

The original Toner-Tu flocking theory was motivated largely by the motions of animals at macroscopic
scales. For the actin filament self-organization in Toxoplasma, we introduce several new terms in the
velocity and density “update rules.” First, we acknowledge that for our actin filaments of interest,
confined between the parasite plasma membrane and the inner membrane complex, there is an energetic
penalty for filaments whose locally curved environment induces filament bending. Indeed, for actin
filaments of approximately 100 nm in length (l), with a persistence length (Lp) ≈ 15 µm lying at the
surface of a cell of radius R ≈ 1µm, we estimate a bending energy per filament (see eqn. 10.5 in [40]) of

Ebend ≈
Lp l

2R2
kBT ≈ 1 kBT ≈ 4 pN · nm, (5)

comparable to thermal energy and to the rough energy scale of a myosin step (a few pN·nm, estimated
from a stall force of ≈ 0.5 pN [41] and a step size of 5 nm [37]). Given a density of 100 filaments per
µm2 of membrane, this gives us a non-negligible energy of several hundred pN·nm per µm2. Thus, our
first new term captures a driving force that rotates filaments away from the local direction of maximal
curvature, favoring filament alignment in the least-curved orientation.

In the remainder of this subsection, we derive this curvature penalty term. We seek to describe the
dynamics of reorientation of the filaments as they move away from the unfavored direction of maximum
curvature. A phenomenological example of a curvature term that leads to reordering of the actin filaments
was used in the work of Woodhouse and Goldstein on filament ordering in the giant internodal cells of algae
Chara [42]. We consider a similar term, which describes the relaxation dynamics of filament rotation away
from the direction of maximum curvature, toward the direction of minimum curvature. Conceptually,
this curvature penalty term has three components,

curvature update = (kinetic coefficient) · (elastic driving force) · (direction of rotation). (6)

The kinetic coefficient, which we will call ε, is a constant that tunes the contribution of the curvature
term to the full Toner-Tu dynamics. The elastic driving force, which we will call Fκ(v, κ), computes a
curvature-dependent force magnitude as a function of the orientation of vector v and the local curvature.
Lastly, the “direction of rotation” is a geometric function that computes a vector which is orthogonal
to the current filament velocity vector v and which, when added to v, will rotate it away from the
direction of maximum curvature d1 without changing the magnitude of v. This geometric function is

given by −
(
d1 −

(
v
|v| · d1

)
v
|v|

)
, as illustrated in Figure S5. Mathematically, our curvature penalty term

is therefore given by (
∂v

∂t

)

curv

= − ε Fκ(v, κ)

(
d1 −

(
v

|v| · d1

)
v

|v|

)
. (7)

We now focus on Fκ(v, κ), the curvature-dependent elastic driving force. To define an expression
for Fκ, we follow a long-standing tradition in statistical physics in which the driving force is related to
the rate of change of the free energy with respect to the geometric degrees of freedom. For simplicity,
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Figure S5. The geometric component of the curvature penalty term. This sequence provides geometric intuition for the
“direction of rotation” vector which, when added to the filament velocity vector v, will rotate it away from the direction
of maximum curvature d1 without changing the magnitude of v. In step 1, we note the magnitude of the dot product of
two unit vectors, (v/|v| · d1). The pink vector in step 2 has this magnitude, while pointing in direction -v. In step 3 we
note that the orange vector, the sum of the blue and pink vectors, has magnitude sin θ. Step 4 shows the desired
“direction of rotation” vector, which acts on v to rotate it away from the direction of maximum curvature. We note that
in the full curvature penalty term, eqn. 7, this vector is scaled by the kinetic coefficient and elastic driving force, ε · Fκ.

we describe the orientation of filaments by the single parameter θ, the angle measured relative to the
direction of maximum curvature, d1. Thus, our starting point is the dynamical equation [43]

∂θ

∂t
= −Γ

∂(Ebend)

∂θ
, (8)

a kind of relaxation dynamics which assigns a linear relationship between the temporal update of the
geometric coordinate θ and the rate of change of the free energy Ebend with respect to θ (the driving
force). We can then define this energy for all orientations of an actin filament of length L using an
equation for elastic beam bending [44, 40],

Ebend(θ) =
EIL

2
κ2, (9)

in which a beam of length L is bent into an arc of circle of radius R with curvature κ = 1/R. The
combination EI is known as the flexural rigidity and is the product of a material factor E (the Young
modulus) and a geometric factor I (the areal moment of inertia).

For a general surface, the curvature tensor can be written in diagonal form as

κ =

[
κ1 0
0 κ2

]
(10)

where κ1 and κ2 are the maximum and minimum curvatures, respectively, and correspond to two orthog-
onal directions, d1 and d2. To be clear, we can rewrite κ1 = 1/R1 and κ2 = 1/R2, where R1 and R2 are
the radii of the circles that would best mimic our surface of interest.

To determine the bending energy as a function of filament orientation, we must know κ(θ), the local
curvature specifically in the direction that the velocity vector is currently pointing. This quantity is a
weighted average of the two principal curvatures and can be written as [45]

κ(θ) = κ1 cos2 θ + κ2 sin2 θ. (11)

Thus, the bending energy as a function of the filament orientation θ is given by

Ebend(θ) =
EIL

2
(κ1 cos2 θ + κ2 sin2 θ)2. (12)
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We now recall from eqn. 8 that the driving force we seek is linearly related to the rate of change of energy
with respect to filament orientation, leading us to

∂θ

∂t
= −Γ

∂(Ebend)

∂θ
= −2ΓEIL (κ1 cos2 θ + κ2 sin2 θ) (κ2 − κ1) cos θ(− sin θ). (13)

Folding Γ, E, I, and L into the kinetic coefficient ε leads us to

∂θ

∂t
= ε(κ1 cos2 θ + κ2 sin2 θ)(κ2 − κ1) cos θ sin θ, (14)

the curvature-dependent driving force which we recall reflects a reduction in the free energy of bending
due to this realignment. Finally, we combine this driving force with the direction of rotation vector,

−
(
d1 −

(
v
|v| · d1

)
v
|v|

)
. We note that, as shown in Figure S5, this vector has a magnitude of sin θ.

In the final combined curvature term, we want this geometric vector to be of unit length, so that the
magnitude of the curvature update is set solely by the kinetic coefficient and elastic driving force. Dividing
by sin θ and translating back into the language of v, recalling that cos θ = v

|v| · d1, leads to

(
∂v

∂t

)

curv

= −ε
(
κ1

(
v

|v| · d1

)2

+ κ2

(
1−

(
v

|v| · d1

))2
)

(κ2−κ1)

(
v

|v| · d1

)(
d1 −

(
v

|v| · d1

)
v

|v|

)
.

(15)
To reach the convenient shorthand used in eqn. 7, we can define

Fκ(v, κ) =

(
κ1

(
v

|v| · d1

)2

+ κ2

(
1−

(
v

|v| · d1

))2
)

(κ2 − κ1)

(
v

|v| · d1

)
. (16)

We note also that our use of the commercial finite element method software COMSOL Multiphysics R©makes
implementing this term relatively straightforward, as the maximum and minimal principal curvature di-
rections and the maximum and minimum curvatures are built-in geometric variables. For the convenience
of COMSOL users among our readers, we translate our variable names into the COMSOL built-ins: κ1

= |curv1|; κ2 = |curv2|; d1 = (tcurv1x, tcurv1y, tcurv1z).
The full dynamics of the velocity field in the Toxoplasma actin self-organization theory, now amended

to account for the curvature reorientation dynamics, is given by

∂v

∂t
= [α(ρ− ρc)− β|v|2]v +D∇2v − σ∇ρ− λv · ∇v − εFκ(v, κ)

(
d1 −

(
v

|v| · d1

)
v

|v|

)
. (17)

Toy Model of the Curvature Force: The Cylinder

For the interested reader, in the remainder of this sub-section we consider a toy model of curvature-
driven filament alignment on the surface of a simpler shape: a cylinder. This allows us to derive a
specific expression for the elastic driving force in terms of the cylinder radius, R, rather than in the
language of two arbitrary principle curvatures. On a cylindrical surface, we again characterize the
orientation of filaments by the single parameter θ, the angle measured relative to the circumferential
direction of the cylinder. We can also define a specific curvature tensor for the cylinder,

κ =

[
0 0
0 1

R

]
. (18)

Recalling that to work out the curvature in any direction d other than that of the principal curvatures,
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we can use the weighted average already given above as

κ = dTκd = κ1 cos2 θ + κ2 sin2 θ. (19)

Using this averaging operation, we find the curvature when the actin filaments are oriented at an angle
θ with respect to the circumferential direction as

κ(θ) =
1

R
cos2 θ. (20)

We see that this has the right limits in that for θ = 0 we recover our usual notion of the radius of the
cylinder and for θ = π/2, we find that the curvature is zero, corresponding effectively to a radius of
curvature that goes to infinity.

We can now find the energy for all orientations of the actin filaments of length L, Young modulus
E, and areal moment of inertia I, oriented at an angle θ, using

Ebend(θ) =
EIL

2
κ2 =

EIL

2R2
cos4 θ. (21)

Given this energy as a function of the geometric coordinate θ, we can now compute the change in free
energy during reorientation of the filaments as

∂(Ebend)

∂θ
=

EI

2R2
4L cos3 θ(− sin θ). (22)

Finally, given this expression for the energy, we can compute the dynamical equation for the evolution
of θ using eqn. 8, resulting in

∂θ

∂t
= Γ

2EIL

R2
cos3 θ sin θ. (23)

To get a feeling for this, Figure S6 shows how the driving force depends upon the angle θ. The blue
curve (κ1 = 1 µm−1;κ2 = 0 µm−1) corresponds to the driving force for a cylinder. The other curves
illustrate how the driving force’s dependence on θ changes for different geometries, where the maximum
and minimum curvatures are not as different.

6.4. Extending flocking theory to capture Toxoplasma actin biology: filament polymerization and depoly-
merization

Our second addition to the minimal Toner-Tu theory are density source and sink terms, which are
usually not included for macroscopic flocks or herds. Although the total number of animals in a school,
flock, or herd can of course change over time as animals are born and die, the time scales over which
these changes happen are long compared to the time scale of the flocking behavior itself. They can thus
be neglected when accounting for macroscopic changes to density or velocity fields during flocking. In
the case of Toxoplasma actin filament self-organization, however, both the time scales of actin filament
polymerization and depolymerization (see Appendix Section 10.2) and the time scale of filament transport
across the entire cell surface are on the order of seconds (see Section 7.2). Moreover, we know that T.
gondii actin polymerization is favored specifically at the anterior end of the cell (the conoid) by the
formin FRM1 [46, 18], and that filaments are further stabilized by the actin-binding protein GAC during
anterior microneme secretion events at the anterior end [18]. Conversely, T. gondii actin depolymerization
is promoted by proteins like profilin [47] and actin depolymerizing factor (ADF) [10], which are not known
to be spatially restricted.

In order to mathematicize this biological intuition and capture the short time scale dynamics of actin
filaments, we amend the continuity equation. In its simplest form, the continuity equation acknowledges
only one way to change the quantity of molecules in a material volume element: by molecules moving in
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Figure S6. Physics of reorientation of actin filaments due to curvature. The graph shows the driving force for
reorientation (∂θ/∂t, eqn. 14, with ε = 6 µm3/s2) as a function of the filament orientation angle θ with respect to the
direction of maximum curvature. The blue curve shows the driving force anywhere on a cylindrical surface, where κ2 = 0,
and θ is defined with respect to the circumferential direction. The red and yellow curves show the driving force at a point
on any arbitrary surface with local curvature defined by κ1 and κ2.

and out of that element, to and from neighboring volume elements. To incorporate the reality of filament
polymerization and depolymerization, we must allow sources and sinks of filament density. At the cell
anterior, we add both a source term c and a degradation term −γρ, leading to an amended version of the
continuity equation that can be written as

∂ρ

∂t
= −∇ · (ρv)− γρ+ c. (24)

Actin filament density is added (polymerized) at a constant rate c and lost (depolymerized) at a density-
dependent rate γρ. Over the rest of the cell surface, outside the conoid, polymerization is not favored
but depolymerization still occurs. Thus,

∂ρ

∂t
= −∇ · (ρv)− γρ. (25)

The Toner-Tu equations in conjunction with these generalized versions of the continuity equation consti-
tute the full conceptual formulation of the problem of actin dynamics for Toxoplasma, as summarized in
Figure S3.

7. Parameter Choices and Dimensionless Ratios

One tool for developing intuition for partial differential equations, such as the Toxoplasma actin
self-organization equations presented above, is to reformulate these governing equations in dimensionless
form. In this section, we first explore the dimensionless version of our equations and develop intuition
for the dimensionless ratios they present. We then estimate and define parameter values for the specific
case of the Toxoplasma gondii actin surface layer in “real-world” units. A parallel discussion of the
dimensionless Toner-Tu equations and parameter estimates for macroscopic herding animals is presented
in our manuscript on wildebeest herding on arbitrary curved surfaces [8].
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7.1. Dimensionless ratios in the theory

We seek here to explain in an accessible way the process of reformulating the governing equations
in dimensionless form. We begin by explicitly defining the units of the two key field variables ρ and v.
The density field describes the number of filaments found per unit area in the thin surface layer of the
Toxoplasma cells. This implies that we have

[ρ] =
1

L2
, (26)

where we use the notation that [thing] means “units of thing,” and L and T are units of length and time,
respectively. Similarly, the field v has units given by

[v] =
L

T
. (27)

With these definitions in hand, we can now explore the units of the various terms that appear in the
Toner-Tu equations given in eqn. 17, and then define dimensionless variables that will allow us to recast
the equations in dimensionless form. The time derivative of the v-field results in a quantity with units

[
∂vi
∂t

] =
L

T 2
. (28)

Thus, all the other terms in the Toner-Tu equations must have these same units. We can determine the
units of the advection term using

[λvj
∂vi
∂xj

] =
L

T 2
. (29)

For this to be true, we must have

λ× L

T
× 1

T
=

L

T 2
(30)

which implies that λ is dimensionless,
[λ] = 1. (31)

To evaluate the units in the velocity selection term we note that we have

[α× ρ× v] = [α]× 1

L2
× L

T
=

L

T 2
(32)

which implies that

[α] =
L2

T
. (33)

Similar reasoning allows us to determine the units of the quantity β using

[βv3] = β
L3

T 3
=

L

T 2
. (34)

This implies that

[β] =
T

L2
. (35)

The neighbor coupling diffusion-like term tells us

D
∂2v

∂x2
= D

L/T

L2
=

L

T 2
(36)
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which gives us the dimensions of D as

D =
L2

T
. (37)

We next tackle the pressure term which requires

[σ
∂ρ

∂x
] = σ

1

L3
=

L

T 2
. (38)

This implies that

[σ] =
L4

T 2
. (39)

Lastly, the curvature term demands that

ε
1

L2
=

L

T 2
(40)

which lead us to conclude that

[ε] =
L3

T 2
. (41)

We now have a clear picture of the units of each of the material parameters that appears in the Toner-Tu
T. gondii actin self-organization theory, and we move on to defining our dimensionless variables. For
example, for the positional coordinate, we take

x∗ =
x

L
, (42)

where L is a characteristic length scale in the problem, which we take to be the cell size, L ≈ 5 µm.
Similarly, we use a characteristic velocity scale U ≈ 5 µm/s, set by myosin A speed, to define the
dimensionless velocity as

v∗ =
v

U
. (43)

The density can be rescaled by using the critical density ρc as our scaling variable, resulting in

ρ∗ =
ρ

ρc
. (44)

Recalling that curvature has units of 1/L, we define our scaled curvature variable through

κ∗ = Lκ. (45)

Lastly, in light of the definitions above, we can define a time scale L/U , the time it takes for a myosin-
transported actin filaments to cross the entire cell, culminating in the definition

t∗ =
t

L/U
. (46)

Using the definitions given above, we can now rewrite the Toner-Tu actin self-organization equations
using the dimensionless versions of t, x, ρ and v as

U2

L

∂v∗i
∂t∗

= ρcUα(ρ∗−1)v∗i−βU3|v∗|2v∗i−
σρc
L

∂ρ∗

∂x∗i
+
DU

L2
∇2
∗v
∗
i−

λU2

L
v∗j
∂v∗i
∂x∗j
− ε

L2
Fκ(v∗, κ∗)

(
(d1)i −

v∗i v
∗
j (d1)j

v∗kv
∗
k

)
.

(47)
We then divide everything by U2/L, resulting in five dimensionless parameters and full dynamical equa-
tions of the form

∂v∗i
∂t∗

=
ρcLα

U
(ρ∗−1)v∗i−LUβ|v∗|2v∗i−

σρc
U2

∂ρ∗

∂x∗i
+
D

UL
∇2
∗v
∗
i−λv∗j

∂v∗i
∂x∗j
− ε

LU2
Fκ(v∗, κ∗)

(
(d1)i −

v∗i v
∗
j (d1)j

v∗kv
∗
k

)
.

(48)
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To write the dimensionless version of the continuity equation, we use the same definitions of di-
mensionless variables given above and the same strategy for replacing dimensionful variables with their
dimensionless counterparts. We find that the generalized continuity equation takes the form

∂ρ∗

∂t∗
= −∇∗ · (ρ∗v∗)−

γL

U
ρ∗ +

L

Uρc
c. (49)

Writing the Toner-Tu equations in this form gives us a handle on the meaning of the different terms.
The two components of the velocity selection term have dimensionless parameters given by

velocity selection α term =
αρcL

U
=

L/U

1/(αρc)
=

time for filament to cross cell

time for speed to increase to vmyosin
(50)

and

velocity selection β term = βLU =
L/U

1/(βU2)
=

time for filament to cross cell

time for speed to decrease to vmyosin
. (51)

Each of these terms provides intuition about how quickly the filaments return to the steady state mean-
field speed vmyosin given some perturbation that disturbs them from that value. Recall that L/U (the
“time for filament to cross cell”) is roughly the time it takes for an actin filament to be transported by
myosin across the length of the cell. The pressure term can be rewritten as

pressure term =
ρc

U2/σ
=

critical density

typical density excursion away from ρ0
. (52)

Increasing σ decreases density variance; in other words, densities that emerge are within a more narrow
range around the mean density ρ0. The neighbor coupling term that carries out democratic velocity
smoothing has the dimensionless prefactor

democracy term =
D

UL
=

L/U

L2/D
=

time for filament to cross cell

time for velocity to diffuse across cell
, (53)

analogous to the Péclet number. The velocity self-advection term prefactor λ, which for our case is 1,
can be written as

advection term =
λL/U

L/U
=

time for velocity advection across cell

time for filament to cross cell (density advection)
. (54)

Finally, the curvature penalty term can be written as

curvature penalty ratio =
ε

LU2
=

L/U

UL2/ε
=

time for filament to cross cell

time for filament to rotate away from maximum curvature
.

(55)
To interpret this ratio, we remember that κ = 1/L is a typical cell curvature, that the curvature-induced
elastic driving force scales with κ2, and that v/U is a unit vector indicating the orientation of a filament.
Thus, ε/UL2 gives a curvature-dependent rate of rotation or relaxation for filament orientation, and
UL2/ε gives a time scale for curvature-dependent rotation.

For each of these cases, the value of the dimensionless ratio gives us a sense of how large a contribution
the term of interest will make in the incremental update to v(t). That is, if we think of the numerical
solution to the equations, during every time step ∆t, v(t) will get updated at every point in space.
How much v(t) changes depends upon all the different contributions in the governing equation. These
dimensionless ratios measure the relative importance of each term, serving roles analogous to the Reynolds
number in thinking about the Navier-Stokes equations and the Péclet number in the context of coupled
diffusion-advection problems.
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Next, we turn to the two dimensionless ratios in the density governing equation. The term multiplying
ρ∗ on the right side of eqn. 49 involves the ratio of two very important time scales, namely,

time for filament to cross cell

time to depolymerize actin filament
=
L/U

1/γ
. (56)

Intuitively, we expect that when this dimensionless ratio is of order unity or larger (γ > U/L), then
a rearward steady-state flow can be achieved because the actin filaments do not live long enough to
accumulate at the cell posterior and force a return orbit.

The actin production rate is also given by a dimensionless ratio of the form

actin density production rate

actin density transport rate
=

c

ρcU/L
. (57)

7.2. Parameter choices for modeling Toxoplasma actin self-organization

In this subsection, we estimate parameter values for the specific case of Toxoplasma gondii surface
F-actin organization, and we define the parameter values used in the simulations reported in the main
text. We also discuss the transition from the recirculating to the unidirectional F-actin state, using
estimates and calculations to sanity check our parameter choices for filament polymerization and depoly-
merization. To determine our parameters, we use our knowledge of Toxoplasma gondii actin biology,
order-of-magnitude estimates, and a principle of balancing terms.

Based on published electron microscopy of actin filaments from gliding Toxoplasma gondii [9], we
estimate a rough density of 150 filaments/µm2. This average density will serve as the initial uniform
density in our simulations,

ρ0 = 150
1

µm2
. (58)

We next estimate ρc, the critical density above which actin filaments interact with their neighbors and
collectively organize. Actin filaments in T. gondii are thought to be of order 100 nm in length [48, 49].
To estimate the critical density, we consider the density scale at which filaments can explicitly interact
with neighboring filaments. If we imagine that each filament is free to rotate, sweeping out a circular area
with diameter 100 nm, these circles will begin to overlap when more than 10 x 10 filaments are packed
within a 1 µm x 1 µm square. Thus, we estimate that filaments collectively organize above a density

ρc = 100
1

µm2
. (59)

To get a feel for this density, picture 10 rows of 10 filaments, each of length 0.1 µm, in a 1 µm by 1 µm
square.

We next move to the parameters of the governing equation for velocity, where a principle of balancing
terms will play an important role. That is, in order to explore the contributions of all terms in the
velocity equations, we balance their magnitudes to ensure that each contributes roughly equally to the
overall velocity update. To get an initial estimate of the scale of that update, we estimate the typical
change in velocity as

∂v

∂t
≈ 10 µm/s

1 s
≈ 10 µm/s2, (60)

considering that a filament reaching the end of the cell at roughly 5 µm/s will reverse directions (and
head back up the cell at velocity -5 µm/s) over a time scale of roughly one second. Hence, the acceleration
is estimated to be ≈ 10 µm/s2. Now that we have this as the typical scale of the change in velocity, we
can examine each term in the governing equation and determine its material parameter by demanding
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that it yield a contribution of comparable magnitude. Let’s try this out for the velocity selection terms.
First, we have

10 µm/s2 = α(ρ− ρc)v ≈ α× 50
1

µm2
× 5 µm/s (61)

which leads to the conclusion that
α = 0.04 µm2/s. (62)

To determine the parameter β we adopt the same strategy, with

10 µm/s2 = βv3 ≈ β × (5 µm/s)3 (63)

which leads to the conclusion that
β = 0.08 s/µm2. (64)

We can now apply this thinking to make an estimate of the neighbor coupling coefficient using the equality

10 µm/s2 = D
∂2v

∂x2
≈ D5 µm/s− (−5 µm/s)

(1 µm)2
, (65)

where we again imagine a change in filament velocity from 5 µm/s to -5 µm/s and take 1 µm to be the
length scale of such gradients in the velocity, leading to an estimate for the neighbor coupling coefficient
of

D = 1 µm2/s. (66)

To find the parameter σ that tunes the pressure term, we estimate a density gradient scale of ρ − ρc =
50 1/µm2 and make the correspondence

10 µm/s2 = σ
∂ρ

∂x
≈ σ

50 1
µm2

1 µm
(67)

which leads to a choice of
σ = 0.2 µm4/s2. (68)

Our final term in the Toner-Tu equations themselves concerns the penalty for filament alignment in a
direction of high curvature. Recalling eqn. 15 and estimating values of 4 µm−1 for κ1, 1 µm−1 for κ2,
and 1/

√
(2) for v

|v| · d1, we have

10 µm/s2 ≈ −ε(2.5 1

µm
)(1

1

µm
− 4

1

µm
)(

1√
2

)(1− 1√
2

) (69)

which leads us to
ε = 6 µm3/s2. (70)

The advection term warrants special discussion. Following the tradition of Toner and Tu [34], the dimen-
sionless coefficient λ does not need to be equal to 1 for the case of flocking animals. If λ = 1, this term
simply enforces the material time derivative; in other words, the velocity field advects itself, as in the
Navier-Stokes equation. Flocking birds or sheep, however, can display behaviors - like slowing down when
they notice a gradient of decreasing velocity in the birds ahead of them - that modify the parameter λ
away from a value of 1. In order to show the theory in its most generally useful form, we have maintained
λ throughout as a tunable parameter. However, for our simulations of actin filament self-organization, we
do not hypothesize any behavioral response to the velocity gradient, as described above for bird flocks.
Thus, we have

λ = 1. (71)



26

Using a principle of balancing terms, we have made a first guess at each of the parameters appearing in
the Toner-Tu formulation for Toxoplasma. Note that the main purpose of the use of the Toner-Tu theory
in the context of our work on Toxoplasma was to understand what kinds of behaviors are possible. From
that point of view, getting a sense of the characteristic scales of the different parameters suffices. That
said, we can imagine explicit experimental strategies aimed at measuring and ultimately controlling the
parameters in the theory, and we believe this represents an exciting direction for future work.

Finally, we turn to estimating the parameters c and γ of the equation for actin filament density,

∂ρ

∂t
= −∇ · (ρv)− γρ+ c, (72)

where the two terms on the far right govern depolymerization and polymerization of filaments, respec-
tively. From the previous section, we remember a key dimensionless ratio,

time for filament to cross cell

time to depolymerize actin filament
=
L/U

1/γ
. (73)

Intuitively, we expect that a transition between recirculating and unidirectional F-actin flow could arise
when this dimensionless ratio is of order unity. Thus, we can estimate that

γ =
U

L
≈ 5 µm/s

5 µm
' 1 s−1, (74)

or a bit smaller, given our rounding down of cell length. In Figure 4, we find interesting changes in
behavior as we sweep through a range of values for γ from 0.2 s−1 to 0.7 s−1, and in our estimate for c
below, we use a value of γ ≈ 0.5 s−1.

The actin filament polymerization rate is also given by a dimensionless ratio of the form

actin density production rate

actin density transport rate
=

c

ρcU/L
. (75)

A rough estimate of the parameter c can be gotten by considering a simplified scenario in which density
is uniform across the cell surface, and is in steady state, unchanging in time. Importantly, we must
remember that actin polymerization is promoted specifically at the cell anterior, in the T. gondii conoid
[46, 18]. In our model, filament density production at rate c is restricted to the conoid region, as shown
in Supplementary Figure S3. This region has a surface area Aconoid, which is approximately 1/20th of
Atot, the total surface area of the cell. Thus, the steady state density balance for filaments will take the
form

− γρssAtot + cAconoid = 0. (76)

We can solve this for the steady-state filament density,

ρss =
c

γ

Aconoid
Atot

. (77)

Setting the steady-state filament density equal to our estimated average density, ρ0, we obtain an estimate
for our filament polymerization coefficient,

c = γρ0
Atot

Aconoid
≈ 0.5 s−1× 150 µm−2× 20 ≈ 1500 µm−2 s−1. (78)

We use this value for c in Figure 4A, and in Figure 4B we sweep through a range of values for c from 0 to
2000 µm−2 s−1. In Section 10.2 of the Appendix, we compare the rates of filament polymerization and
depolymerization determined above to data and estimates on actin dynamics in well-studied biological
systems, and we find them to be similar. While the rates proposed above seemed large to us at a first
glance, the more considered deliberation presented in the Appendix convinced us that these rates are in
a reasonable range.
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8. Deriving a Tangential Formulation of the Filament Self-Organization Equations for a
Curved Surface

Thus far, our treatment of the actin filament self-organization equations presented here has ignored
the fact that in our T. gondii case of interest, the “flock” of actin filaments is moving around on the curved
surface of the cell. Our mathematics must account for this geometry; for example, the evaluation of the
derivatives used in the governing partial differential equations requires a knowledge of the local curvature.
In this section, we recast our governing equations in a tangential formulation for curved surfaces, using an
extrinsic differential geometry approach rather than a more traditional intrinsic one. The presentation
here is abridged; for a more thorough discussion of this general curved-surface reformulation of the
Toner-Tu theory, we refer the reader to our manuscript on animal herding on arbitrary curved surfaces
[8].

Traditional formulations of the differential geometry of surfaces begin with the parametrization of
a surface of interest using a series of points given by r(u, v), where u and v are the parameters that
characterize the surface of interest. The surface of a cylinder of radius R, for example, can be represented
by

r(θ, z) = (x(θ, z), y(θ, z), z(θ, z))

= (R cos θ,R sin θ, z).
(79)

However, the complex shape of the Toxoplasma gondii cells of interest here does not conform to the
simple parameterization of highly idealized geometries. While motile Toxoplasma gondii tachyzoite shape
is stereotypical and consistent across cells, it is highly asymmetric, with features like a crescent-like bend
and a narrow protrusion (the conoid) at the anterior cell end. In order to understand the contributions
of the real-world, biological geometry of these cells, we want to solve our self-organization equations on
their true asymmetric shapes. This is clearly not possible analytically.

To move toward an ultimate goal of solving our equations numerically using the finite element method,
we can reformulate them using an extrinsic differential geometry approach; we carry out the mathematics
in the full three-dimensional setting of R3, while using a knowledge of the normal vector n = (n1, n2, n3)
everywhere on the surface of interest to project the governing equations onto the surface. For a full
description of the tangential surface formulation of flocking governing equations on an arbitrary curved
surface, the reader is directed to our recent preprint [8]. Central to this extrinsic geometry approach is
the projection operator, defined as

Pij = δij − ninj . (80)

The curved space or tangential version of the pressure term σ∇ρ, for example, requires projecting the
full 3D gradient of the density onto the tangent plane. We follow Jankuhn et al. [50] in introducing the
notation ∇Γ for the projection of the gradient onto the surface of interest. Mathematically, this amounts
to computing

(∇Γρ)i = (δij − ninj)
∂ρ

∂xj
. (81)

We again refer the reader to [8] for a detailed explication of the use of tangential differential operators
to generate surface-projected versions of all the other terms in the Toner-Tu equations. Here, we modify
the curvature penalty term to its curved-surface implementation, since it is an original contribution to
the Toxoplasma actin self-organization equations and not included in reference [8]. We first define v‖,
the in-plane velocity,

v
‖
i = Pijvi = vi − nivinj . (82)

The curved-surface formulation of the curvature penalty update, derived for the plane in Section 6.3, can
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now be written in component form as

(
∂v
‖
i

∂t

)

Γ,curv

= −ε Fκ(v
‖
i , κ)

(
(d1)i −

v
‖
i v
‖
j (d1)j

v
‖
kv
‖
k

)
. (83)

The tangential curved-surface form of the full governing equations for velocity is

∂v
‖
i

∂t
= [α(ρ− ρc)− βv‖j v

‖
j ]v
‖
i − σ

(
∂ρ

∂xi
− ninj

∂ρ

∂xj

)
+DPil

(
∂Glj
∂xj

− njnk
∂Glj
∂xk

)

− λ
[(

∂v
‖
i

∂xj
− nlnj

∂v
‖
i

∂xl

)
− nink

(
∂v
‖
k

∂xj
− nlnj

∂v
‖
k

∂xl

)]
v
‖
j − ε Fκ(v

‖
i , κ)

(
(d1)i −

v
‖
i v
‖
j (d1)j

v
‖
kv
‖
k

)
,

(84)

where d1 is a unit vector in the direction of maximum local curvature, Fκ is defined in eqn. 16, and G
is the surface velocity gradient tensor which in component form can be written as

Gij =

(
∂v
‖
i

∂xj
− nlnj

∂v
‖
i

∂xl

)
− nink

(
∂v
‖
k

∂xj
− nlnj

∂v
‖
k

∂xl

)
. (85)

Similarly, the curved-surface formulation of the governing equation for density can be written as

∂ρ

∂t
= −∂(ρv

‖
i )

∂xi
+ ninj

∂(ρv
‖
i )

∂xj
− γρ+ c. (86)

We now have a complete formulation of our self-organization governing equations for the general surface
context, requiring only a description of the surface in the language of normal vectors.

9. Numerically Solving the Filament Self-Organization Equations on the Toxoplasma Cell
Surface

In order to solve the curved-surface formulation of our actin filament self-organization equations for
general initial conditions and on general geometries, like the surface of the Toxoplasma gondii cell, we
turn to the finite element method (FEM). More specifically, we make use of the custom PDE solver
capabilities of the commercial FEM software COMSOL Multiphysics R© [51]. The finite element method
enables us to represent the cell surface as a mesh of triangles and solve our dynamical equations at the
nodes of those triangles, then interpolate between them. In this section, we first detail the creation of
surface meshes compatible with the finite element method from the soft X-ray tomograms of extracellular
Toxoplasma tachyzoites described in Section 4.7. We then discuss our use of the finite element method
to numerically solve the tangential self-organization equations on these surface meshes.

9.1. Spherical harmonic shape analysis of Toxoplasma cells and mesh generation

Many fields of study are now dependent upon fast and reliable representations of surfaces. One
particular tool for doing so, called SPHARM-PDM, converts image segmentations into a mathematical
representation of shape in the language of spherical harmonics, and then into triangulated surfaces [52].
This approach has proven useful for shape analysis and comparison in the macroscopic contexts of ar-
chaeology and medical imaging [53], and in this study we use it at microscopic scales, to describe the
shape of single cells. In brief, the SPHARM tool maps the closed surface of an object of interest (which
must have spherical topology) to the surface of a sphere, preserving area and minimizing distortion [52].
This mapping enables a mathematical description of the surface of interest as a series of spherical har-
monics [54]. In essence, the SPHARM description is a list of coefficients, which weight a series of basis
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3 = l1 = l 51 = l2 = l
Figure S7. The surface of an extracellular T. gondii tachyzoite cell, represented by a series of spherical harmonic modes.
Each panel shows the cell shape representation when carried to the order of expansion indicated by the value of `. For

example, the right-most representation is r(θ, ϕ) =
∑15
l=0

∑l
m=−l c

(i)
lm Ylm(θ, ϕ).

functions: the spherical harmonics. The spherical harmonics Ylm(θ, ϕ) are solutions to Laplace’s equation
on the surface of a sphere and form a “basis” from which we can represent any function parametrized by
θ and φ as

r(θ, ϕ) =



x(θ, ϕ)
y(θ, ϕ)
z(θ, ϕ)


 =

∞∑

l=0

l∑

m=−l



c
(x)
lm

c
(y)
lm

c
(z)
lm


 Ylm(θ, ϕ). (87)

All the character of a given closed surface is captured in the coefficients c
(i)
lm, where the superscript i tells

us which component of the vector r(ϕ, θ) is being considered. In other words, different closed surfaces

are described using the same series of harmonics (Ylm(θ, ϕ)), but the series of coefficients c
(i)
lm will differ,

giving more or less weight to a given harmonic in the overall representation of a given surface. To obtain
these coefficients, the orthonormality of the spherical harmonics is used to pick off a given coefficient by
multiplying both sides of eqn. 87 by Y ∗l′m′(θ, ϕ) and integrating over θ and ϕ to obtain

c
(x)
l’m’ =

∫ 2π

0

dϕ

∫ π

0

sin θ dθ Y ∗l′m′(θ, ϕ)x(θ, ϕ). (88)

Using these ideas, the surface of a representative Toxoplasma gondii tachyzoite cell was broken up
into a series of weighted spherical harmonic modes. We note that Toxoplasma gondii tachyzoites have a
consistent, stereotyped shape and size. First, reconstructed 3-dimensional soft X-ray tomography images
of extracellular, activated T. gondii tachyzoite cells were segmented in ChimeraX [55] and converted into
binary image stacks. Within the 3D Slicer package[56], images of one representative cell were converted
to a label map read in by the SPHARM-PDM Generator module, used within the SlicerSalt package [57].
As described above, a SPHARM shape description was generated in the language of spherical harmonics.
Including a larger number of modes in the shape description will better capture the original surface shape,
as shown in Figure S7. For our representations, we used ` = 15 modes. The surface thus represented was
sampled into a triangular mesh (PDM), which is compatible with the finite element method and was used
to solve the governing partial differential equations for the density and velocity fields within COMSOL
Multiphysics R©.

9.2. Solving the tangential self-organization equations in COMSOL Multiphysics R©
To solve our custom surface partial differential equations (eqns. 84 and 86), we used the COMSOL

Multiphysics R© General Form Boundary PDE interface and took advantage of COMSOL’s built-in tan-
gential differentiation operator, dtang(f,x). We also made use of the normal vector (nx, ny, nz), a built-in
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geometric variable, and the curvature variables discussed in Section 6.3. For a thorough and practical in-
troduction to the finite element method, we recommend reference [58]. For additional details on rewriting
the curved-surface Toner-Tu equations in a form convenient for standard finite element method solvers
and for implementing specifically in COMSOL Multiphysics R©, we refer the reader to reference [8]. For
each simulation, we initialized with uniform density field ρ0 = 150 1/µm2 and a disorganized velocity
field, in which every node’s velocity orientation was drawn randomly from a uniform distribution of angles
between 0 and 2π and had magnitude v(0) = 5 µm/s ≈ vmyosin. Other parameters are defined and dis-
cussed in detail in Section 7. Our standard mesh size involved 660-794 triangular elements. To avoid the
accumulation of out-of-plane components in v from numerical error, we implemented a weak constraint
of n · v = 0. Similarly, in the model with no filament turnover, we implemented a global constraint on
the total integrated density ρ on the surface, ensuring it stayed at its initial value. Default COMSOL
solvers and settings were used: implicit backward differentiation formula (BDF) for time stepping and
multifrontal massively parallel sparse direct solver (MUMPS) for the linear direct spatial solver.

10. Appendix

10.1. Dry vs. wet active matter: estimating frictional drag from a fixed surface

As discussed in section 6.1, the field of active matter has distinguished so-called wet and dry active
matter. Qualitatively, the distinction centers on whether there is hydrodynamic coupling between the
active agents through the intervening medium that they occupy. In wet active matter, fluid mediated
coupling between active agents is significant. In dry active matter, these viscous forces are negligible
relative to frictional drag, commonly due to the presence of a “no slip” boundary, as when filaments move
over a fixed glass slide during a traditional in vitro gliding assay. To help assess whether the dynamics
of our Toxoplasma gondii surface actin are in the wet or dry regime, we sought an order-of-magnitude
estimate of frictional drag, for comparison to viscous forces.

For an actin filament moving in the thin ≈ 25 nm layer between the plasma membrane and the inner
membrane complex, we can compute the way that the filament entrains the surrounding fluid using the
driven Stokes equations with friction,

− η∇2v +∇π = Fmyosin − γv, (89)

where the external force is composed of a driving by myosin motors, Fmyosin and a frictional drag, γv,
leading to a fluid velocity v. Note that the units of all of these terms are force/volume. Next, we
compare the relative magnitudes of the friction and viscous terms to determine if our system is indeed
in the “dry” active matter regime in which

γv� η∇2v. (90)

If so, friction is quantitatively much stronger than the viscous drag due to interactions between adjacent
fluid elements. We can rewrite that condition as

γ

η
� ∇

2v

v
. (91)

To understand the source of friction in our two-dimensional system and estimate its magnitude, we
must remember that our two-dimensional flow is in fact an approximation of a very thin, but three-
dimensional flow as shown in Figure S8. Instead of a thin 3D fluid layer with viscous internal forces in all
three directions, we have a two-dimensional flow in which internal viscous interactions across the third
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Figure S8. Effective theory of two-dimensional fluid motion. In the Toxoplasma cell, the actin filaments are moving in a
thin layer between the plasma membrane and the inner membrane complex. That thin layer of fluid motion results in
internal shear stresses. The effective theory used in our Toner-Tu description is an idealized two-dimensional fluid where
the fluid coupling to the no slip boundary conditions in the 3D thin film is replaced by a friction force. Essentially, viscous
stresses in the direction perpendicular to the inner membrane complex, idealized here as a fixed plate, are replaced with
an in-plane friction.

dimension, x3, are captured as a friction with the fixed substrate. To estimate this friction coefficient,
we approximate the viscous term in x3 using

force

volume
=

∂σ

∂x3
≈ σ

h
≈ η v

h2
. (92)

Equating this internal shear force in x3 with a two-dimensional frictional drag allows us to make the
approximation

η
v

h2
= γv =⇒ γ =

η

h2
≈ 10−3 N · s/m2

(10−8 m)
2 ≈ 1013 N · s

m4
, (93)

providing an estimate for the friction coefficient in terms of the known viscosity and the thickness of the
fluid layer.

We can now check to see whether we are in the regime of dry active matter implied by eqn. 90. Using
10−3 N·s

m2 , the viscosity of water, as a reasonable estimate for η, and plugging in the relevant numbers, we
find the scale of frictional drag to be

γv ≈
(

1013 N · s
m4

)(
10−6 m

s

)
≈ 107 N

m3
(94)

and the scale of viscous forces to be

η∇2v ≈
(

10−3 N · s
m2

)(
10−6 m/s

(10−6 m)
2

)
≈ 10−3 N

m3
. (95)

Thus,
γv� η∇2v, (96)

consistent with the dry active matter limit entertained here and the choice of a Toner-Tu model.
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10.2. Estimates of F-actin polymerization and depolymerization rates

To get a feeling for the polymerization (filament production) rate c, we consider actin dynamics in
better-studied systems, where we can use published measurements and the BioNumbers database [59] to
perform better-informed order-of-magnitude estimates.

First, we consider the comet tail behind motile Listeria monocytogenes bacteria as they hijack the host
cell actin machinery to propel themselves at a speed that is dictated by their comet tail actin dynamics.
For this estimate, we assume a modest speed of 1/10 of a body length each second, or v ≈ 200 nm/s. We
estimate that the propulsion is due to a collection of aligned actin filaments behind the bacterium with
a mean spacing of ≈ 50 nm [60] resulting in a comet tail with a cross-sectional profile of 20 × 20 = 400
filaments, or a 1000 nm × 1000 nm area. We assume that each of these filaments is 100 nm in length.
Thus, to move at a speed of ≈ 200 nm/s (2 filaments/s), the total filament polymerization rate must be

actin production rate ≈ 2× 400
filaments

µm2 · s . (97)

Using this result, we make the order-of-magnitude estimate for the Toxoplasma gondii actin polymeriza-
tion rate of

c ≈ 103 filaments

µm2 · s , (98)

implying a steady-state density

ρss =
c

γ

Aconoid
Atot

≈
103 filaments

µm2 s

0.5 s−1

1

20
≈ 100

filaments

µm2
. (99)

This number matches our estimated critical filament density, ρc ≈ 100 µm−2.
Considering an actin comet tail of steady-state length ≈ 5 µm, we can also estimate a filament lifetime

of 1/γ ≈ 5 µm / 0.2 µm s−1 ≈ 25 s. Since actin filaments in Listeria comet tails are stabilized and
bundled by actin-binding proteins [61], this estimate of γ ≈ 0.04 s−1 likely represents a far lower bound
on filament turnover rate for Toxoplasma gondii, where filaments are not thought to form stable bundles,
and the activity of actin depolymerizing factor (ADF) is important to gliding motility [10].

For another simple estimate of depolymerization rate, we can consider actin off rates, measured in
vitro to be ≈ 7 monomers/s [62]. Given a filament length of 100 nm ≈ 14 monomers, we estimate a
filament lifetime for Toxoplasma actin of

filament lifetime =
1

γ
≈ 14 monomers

7 monomers/s
≈ 2 s, (100)

or a filament turnover rate of γ ≈ 0.5 s−1, which matches our estimates for γ in Section 7.2. We expect
proteins such as ADF to increase filament turnover in Toxoplasma gondii, further increasing γ. Thus, our
final estimate for a reasonable range for Toxoplasma gondii filament lifetime is between 0.2 s and 10 s,
which is equivalent to a range of filament turnover rate γ between 0.1 filaments/s and 5 filaments/s. We
note that cells may actively tune depolymerization rate over an order of magnitude through the activity
of proteins like ADF [63].
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