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ABSTRACT The ejection of DNA from a bacterial virus (i.e., phage) into its host cell is a biologically important example of the
translocation of a macromolecular chain along its length through a membrane. The simplest mechanism for this motion is
diffusion, but in the case of phage ejection a significant driving force derives from the high degree of stress to which the DNA is
subjected in the viral capsid. The translocation is further sped up by the ratcheting and entropic forces associated with proteins
that bind to the viral DNA in the host cell cytoplasm. We formulate a generalized diffusion equation that includes these various
pushing and pulling effects and make estimates of the corresponding speedups in the overall translocation process. Stress in
the capsid is the dominant factor throughout early ejection, with the pull due to binding particles taking over at later stages.
Confinement effects are also investigated, in the case where the phage injects its DNA into a volume comparable to the capsid
size. Our results suggest a series of in vitro experiments involving the ejection of DNA into vesicles filled with varying amounts
of binding proteins from phage whose state of stress is controlled by ambient salt conditions or by tuning genome length.

INTRODUCTION

A crucial first step in the life cycle of most bacterial viruses

(i.e., phage) involves binding of the virion to a receptor

protein in the host cell membrane followed by injection of

the phage DNA. The viral genome is typically;10 mm long,

and its translocation from outside to inside the host cell is

accomplished over times that vary from seconds to minutes.

The wide range of mechanisms responsible for injection of

phage genomes has recently been systematically reviewed

(1–3), including many references to the last few decades of

relevant literature. In this article, we formulate a general

theory of chain translocation that takes into account many of

the physical phenomena involved in actual phage life cycles.

These phenomena include: diffusion of the DNA chain along

its length; driving forces due to stress on the DNA inside the

viral capsid; resisting forces associated with osmotic pres-

sure in the host cell; cell confinement effects that constrain

the injected chain; and ratcheting and pulling forces asso-

ciated with DNA-binding proteins in the host cell cytoplasm.

Considerable effort has been focused on the energetics of

packaging and ejecting DNA in phage. In particular, the-

oretical work (4–11) has shown that the dominant source of

stress on the DNA in the capsid results from strong repulsive

interactions between neighboring portions of double helix

that are confined at average interaxial spacings as small as

2.5 nm. Another major contribution comes from the bending

stress that arises from the capsid radius being smaller than

the DNA persistence length. The force needed to package the

genome against this resistance is provided by a virally en-

coded motor protein that pushes in the DNA along its length.

Recent laser tweezer measurements (12) have confirmed that

this force increases progressively as packaging proceeds, i.e.,

as the chain becomes more crowded and bent, reaching

values as large as 50 pN upon completion. Conversely, the

force ejecting the DNA upon binding of the phage to its

membrane receptor has been shown (13,14) to decrease

monotonically from tens of picoNewtons to zero as crowding

and bending stress are progressively relieved. In this article,

we consider the dynamics of phage ejection and attempt to

distinguish the relative importance of these large, varying,

internal forces and the binding particles in the external so-

lution (bacterial cytoplasm).

It is useful at the outset to consider the simple diffusion

limit of the translocation process. More explicitly, consider

the case in which a chain is threaded through a hole in a

membrane dividing one solution from another. If the chain is

free, i.e., in the absence of pushing or pulling forces and of

binding particles, it will simply diffuse along its length, ex-

periencing a friction associated with its passage through the

membrane and the viscosity of the solution. The time

required for its translocation from, say, the left to the right

will be L2/2D ¼ td, where L is the length of the chain and D
is its effective translational diffusion coefficient.

Suppose now that particles are added to the right-hand

solution, which binds irreversibly to the chain at regularly

spaced sites as soon as they diffuse into the solution. Then, if

s is the spacing between these binding sites, the diffusion of

the chain will be ratcheted each time another length s has

entered the solution (15–17), corresponding to the fact that

the chain cannot move backward through the hole at a site

where a particle is bound. Accordingly, the time it takes

for the entire chain to appear on the right is simply given by

s2/2D—the time required for diffusion between a pair of

neighboring binding sites—times the total number of sites,

L/s. It follows that the overall translocation time in the

presence of perfect ratcheting is reduced by a factor of s/L
over that for free diffusion. When the binding of particles is
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reversible—they do not remain bound indefinitely, thereby

allowing some sites to diffuse backward through the hole—

the translocation time is increased by a factor of (1 1 2K)
compared to perfect ratcheting, where K is the ratio of off-

and on-rates for particle binding (15,16). Finally, note that

the ideal ratcheting time of Ls/2D corresponds to a velocity

of 2D/s and hence, by the Stokes-Einstein relation, to a force
of 2 kBT/s pulling the chain into the particle-containing

solution (18).

When the particle binding is reversible, however, it turns

out that there can be a differentmechanism from the ratcheting

dynamics, one that can significantly shorten the translocation

time below Ls/2D ¼ tidealratchet. This effect requires that the

diffusive motion of the chain is slow enough and is due to the

fact that the entropy of reversibly bound particles increases

when there is more chain for them to explore. As a result, the

entropy is an increasing function of chain length available in

the right-hand solution. Indeed, in the limit of fully equili-

brated binding, the system is equivalent to a one-dimensional

Langmuir adsorption problem (18,19) (P. G. de Gennes,

private communication, 2002; see also Reversible Force from

the Binding Proteins, this article) . More explicitly, the one-

dimensional Langmuir pressure can be written in the form

P1D¼ (kBT/s) ln f11 exp ((e1 m)/kBT)g, where e. 0 is the

energy lowering of the adsorbing particles upon binding and

m is their chemical potential in solution. Note that in the limit

of large binding energy ((e 1 m)/kBT � 1), this pressure

reduces simply to (e1m)/s, which—because pressure is force

in a one-dimensional system—can be directly interpreted as

the force pulling on the chain due to the reversible binding of

particles. Note further, in the large binding energy limit, that

this force is necessarily large compared to the ideal ratcheting

force, 2 kBT/s (18).
Ambjornsson and Metzler (19) have recently clarified the

various timescales that determine the different regimes of

chain translocation in the presence of chaperones, i.e., bind-

ing particles. The first, t0, is the time needed for the chain to

diffuse a distance of order s, the separation between binding

sites. The second and third are tocc and tunocc, the char-

acteristic times that a binding site remains occupied and un-

occupied, respectively. The values tocc and tunocc are related

by the equilibrium relation,

tocc

tunocc
¼ exp

e1m

kBT

� �
: (1)

Finally, tunocc can be approximated by the typical time it

takes for a particle to diffuse a distance of order Rð;c
�1=3
0 Þ

between binding free particles,

tunocc ¼
R

2

2D0

’ 1

D0c
2=3

0

; (2)

whereD0 is the diffusion coefficient of the particles, and c0 is
their number density. One can then distinguish between three

different regimes:

1. Diffusive regime: t0 � tunocc, tocc. Here, the binding

particles are irrelevant to the chain translocation because

the chain diffuses its full length in a time too short for the

particles to bind.

2. Irreversible binding regime: tunocc � t0 � tocc. Here,

particles bind essentially irreversibly on a timescale short

compared to the time it takes for the chain to diffuse a

distance between binding sites. We shall refer to this as

the ratcheting regime.

3. Reversible binding regime: tunocc, tocc, � t0. Here,

diffusion of the chain along its length is slow compared

to the time required for an on/off equilibrium of the bind-

ing particles to be achieved. We shall refer to this as the

Langmuir regime.

It is also important to clarify some relevant length scales

involved in the problem. Specifically, we distinguish be-

tween two extremes of how the separation, s, between bind-

ing sites compares with the range, d, of the attractive

interaction between binding particle and the chain. Pure and

perfect ratcheting will arise when tunocc � t0 � tocc, in-

dependent of the relative values of d and s. Imperfect

ratcheting will arise when tunocc, tocc, � t0, but d � s. The
translocation time for the imperfect ratchet is higher than the

perfect ratchet by a factor of (1 1 2K). Finally, when tunocc,

tocc, � t0 and d � s, we will have a Langmuir force acting

on the chain. Note that, if the binding free energy between

DNA and the binding proteins is very large, thenK� 1. Also,

when the range of attraction d is comparable to the spacing

between the binding sites s, the reversible binding of the

proteins will result in a Langmuir force on the DNA chain. In

the rest of the article we use K� 1 and d� s. A schematic of

the role of these various effects is shown in Fig. 1.

Before proceeding further, it is instructive to make some

numerical estimates. Within this simple translocation model

all timescales are naturally referenced to that for pure

FIGURE 1 Schematic showing the various physical effects that assist bare

diffusion in the process of phage DNA ejection. The DNA cross-section is

not shown to scale: its diameter is 2–3 nm, as compared with a capsid radius

that is 10 times larger. The spring denotes schematically the stored energy

density resulting in a force F acting along the length L�x of chain remaining

in the capsid. The small spheres denote particles giving rise to an external

(cytoplasmic) osmotic pressure Posmotic, and the green particles labeled i
and i 1 1 are successive binding particles. (The schematic and the model

were inspired by Fig. 10.10 in (17).)
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translational diffusion of a chain along its length, and hence

to the diffusion coefficient D introduced earlier. In reality,

however, the DNA ejection process is enormously more

complicated, since the chain moving through the tail of the

phage is feeling not only the friction associated with the few

hydration layers surrounding it but also the viscous effects

arising from interaction with the inner surface of the tail just

nanometers away. Furthermore, this chain portion is con-

nected to the lengths of chain inside the capsid and outside in

the cell cytoplasm. The chain remaining inside the capsid

moves by reptating through neighboring portions of still-

packaged chain and/or by overall rotation of the packaged

chain. All of these latter motions involve viscous dissipation

that is insufficiently well-characterized to enable realistic

estimates of diffusion timescales, even though one can dis-

tinguish between the different dependences on chain length

for each of these dynamical processes (9,20). If the dominant

source of dissipation is due to the friction/attraction between

the DNA and the phage tail, the diffusion coefficient will be

independent of the amount of DNA ejected (21). On the

other hand, the diffusion coefficient D, in general, may

depend on the amount of DNA ejected. To keep the matters

simple, we assume that it is possible to define an effective dif-

fusion coefficient D, and define the unit of time, td ¼ L2/2D.
This way we can make predictions of how the ejection time-

scales with the genome length, for example, without knowing

what the actual value of D is, although in the end it may be

found that this picture of diffusion is too simple and a length-

dependent diffusion coefficient will have to be involved.

A strong upper bound for D can be obtained by con-

sidering the part of the dissipation arising as the chain moves

through the tail portion of the virus. Taking into account only

the friction between the DNA and the fluid in the tail we

have, for example (20,22), z ¼ 2p lh/ln(D/d). Here z is the

friction coefficient, l is the length of the tail, h is the viscosity

of water, D is the inner diameter of the tail, and d is the di-

ameter of the double-stranded DNA. Taking l¼ 100 nm, h¼
10�9 pN – s/nm2, D ¼ 4 nm (23), and d ¼ 2 nm, we find

z ¼ 9 3 10�7 pN – s/nm and hence a diffusion coefficient

(D ¼ kBT/z) of 5 3 106 nm2/s. For a typical phage genome

length (L) of 10 mm, this in turn leads to a diffusional

translocation time (td ¼ L2/2D) of;10 s, not unlike ejection

times measured for phage l (24) (P. Grayson, private

communication, 2005). Recall, however, that this estimate is

based on a value for D that is a strong upper bound, because

of all the viscous dissipation contributions that were

neglected, suggesting that the actual unassisted diffusional

time is likely several orders-of-magnitude larger than this

10-s estimate. Indeed, the outcome of the work presented

below is that the translocation time is shortened beyond td by

several orders of magnitude by a combination of effects dom-

inated by pressure in the capsid and binding particles in the

external solution. This simple estimate provides us with an

interesting insight into the dissipation mechanisms involved,

and suggests two possibilities:

1. The friction of water (and hence, dissipation) is much

larger at such short length scales.

2. As mentioned above, there are several other dissipation

mechanisms, which are not taken into account.

The outline of the article is as follows. In the next section

we include the effect of capsid pressure by formulating a

Fokker-Planck description of translocation driven by a com-

bination of diffusion and spatially varying force, i.e., a force

pushing the chain from one side that depends on the length of

chain remaining on that side (corresponding to the portion

still in the capsid and hence experiencing stress due to

crowding and bending). We evaluate the mean-first-passage-

time (MFPT) for translocation of an arbitrary length and

thereby calculate the length ejected as a function of time,

using estimates of the spatially varying ejection force from

recent theories of phage-packaging energetics. We find that

the translocation times are 2–3 orders-of-magnitude faster

than the diffusional time. We also treat the case of ejection

into a volume comparable to the capsid size (mimicking, say,

studies in which phage are made to eject into small vesicles

that have been reconstituted with receptor protein (25,26))

and find the dependence of ejection time on the relative sizes

of the phage capsid and the vesicle. In DNA Ejection in the

Presence of DNA Binding Proteins, we treat the further

speedup in translocation due to ideal ratcheting and the

Langmuir force arising from the reversible particle binding,

respectively. We find that the simple ratcheting effect is

small compared to that arising from the entropic force of

reversible particle binding. The effect of reversible particle

binding decreases the translocation time by another order of

magnitude beyond that due to capsid pressure effects. Fi-

nally, these particle binding effects are shown to be sufficient

to work against resistance forces due to external (i.e.,

cytoplasmic) pressure. In the final section (Discussion and

Conclusion), we conclude with a discussion of related work

by others, of additional contributions to ejection dynamics

that will be studied in future theoretical work (in particular,

the effect of RNA polymerase acting on the ejected DNA),

and of experiments planned to test the various predictions

made in this work.

KINETICS OF EJECTION DRIVEN BY
PACKAGING FORCE

As discussed in the Introduction, we focus here on a chain

that has been confined in a viral capsid and is ejected from it

through a hollow tail just big enough to accommodate its

diameter. To elucidate the essentials of this ejection process,

we describe the translocation of the chain as a diffusion-in-

a-field problem (21,27,28). In this case, involving the trans-

location of a linear polymer along its length, the diffusion

coordinate is a scalar, i.e., the length of chain x that has been
ejected from the tail of the virus. The external field is de-

scribed by the potential energy U(x) that gives rise to the
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force F(x) ¼ �dU(x)/dx, pushing on the chain when a length
x of it has been ejected. This force is due to the remaining

chain length L�x being confined inside the capsid and

thereby subjected to strong self-repulsion (Urep) and bending

(Ubend). The corresponding potential U(x) ¼ Urep(L�x) 1
Ubend(L�x) is the free energy calculated in recent theories

of DNA packaging in viral capsids (7,8,11). This energy is

seen to decrease dramatically as ejection proceeds (i.e., as x
increases), and so does the magnitude of its slope that con-

stitutes the driving force for ejection.

The one-dimensional dynamics of a diffusing particle in

the presence of an external field is a classic problem in sto-

chastic processes (29), and, as argued above, can be tailored

to treat the translocation of phage DNA under the action of

an ejection force F(x) ¼ �dU(x)/dx. Accordingly, the

probability p(x, t) of finding a length x ejected at time t is
given by the Fokker-Planck equation

@pðx; tÞ
@t

¼ @

@x
D
@pðx; tÞ

@x
1

D

kBT

@UðxÞ
@x

pðx; tÞ
� �

: (3)

As a part of this stochastic description of the translocation-

under-a-force process, it is natural to define a mean-first-

passage-time (MFPT), t(x), which gives the average time it

takes for a length x to be ejected in the presence of the

external field U(x), namely (30),

tðxÞ ¼ 1

D

Z x

0

dx1 exp �Uðx1Þ
kBT

� �Z x

x1

dx2 exp
Uðx2Þ
kBT

� �
: (4)

It is useful to consider several limits of this general equa-

tion, the first corresponding to the familiar case of no exter-

nal field. From U [ 0, the integrals in Eq. 4 reduce trivially

to x2/2D, giving the expected diffusion time, t(x) ¼ x2/2D.
For the case of constant force, i.e., U ¼ �Fx 1 constant,

the integrals in Eq. 4 can also be evaluated analytically,

giving (16)

tConstant ForceðxÞ ¼
x
2

D

exp½�bFx�1bFx � 1

ðbFxÞ2
: (5)

Here we have written b for 1/kBT, and taken F ¼ �dU(x)/
dx . 0 to denote the constant force driving translocation of

the chain to the right (see Fig. 1). In DNA Ejection in the

Presence of DNA Binding Proteins, we will apply Eq. 5

locally, over each segment of length s associated with a

binding site, to calculate the ideal ratcheting corrections to

force-driven translocation. Note that simple and ratcheted

diffusion are overwhelmed by force-driven translocation

when bFL � 1 and bFs � 1, respectively.

In the most general instance of spatially varying external

field U(x), as in the case of capsid-pressure-driven translo-

cation, the integrals in Eq. 4 must be evaluated numerically.

In this way we calculate t(x) from Eq. 4 for the U(x)
determined from a recent treatment (7,11) of the packaging

energetics in phage capsids. This provides a one-to-one cor-

respondence between each successive time t(x) and the frac-

tion of chain ejected x(t)/L at that instant.

In Purohit et al. (7,11), the shape of the l-phage capsid is

approximated as spherical, and the DNA inside the capsid is

assumed to be organized in a hexagonally packed inverse-

spool. The potential U(x) is expressed as a combination of

the bending energy and the repulsive interaction between the

DNA strands, and is given by

UðxÞ ¼ UrepðL� xÞ1UbendðL� xÞ
¼

ffiffiffi
3

p
F0ðL� xÞðc2 1 cdÞexpð�d=cÞ

1
2pkbTjffiffiffi

3
p

d

Z Rout

Rin

NðrÞ
r

dr: (6)

The values F0 and c are experimentally determined con-

stants (31) describing the interaction between neighboring

DNA strands, j is the persistence length of DNA, d is the

interstrand spacing, Rout and Rin are the radius of the capsid

and the inner radius of the DNA spool, respectively, and N(r)
is the number of hoops of DNA at a distance r from the spool

axis. We are interested in finding the internal force on the

phage genome as a function of genome length inside the

capsid. We do so using Eq. 6 and simple geometrical con-

straints on the phage genome inside the capsid. The number

of loops N(r) in Eq. 6 is given by z(r)/d, where

zðrÞ ¼ ðR2
out � r2Þ1=2 is the height of the capsid at distance

r from the central axis of the DNA spool. The actual volume

available for the DNA—V(Rin, Rout)—can be related to the

genome length L�x in the capsid, and the interstrand spacing
d, giving an expression for Rin in terms of d, Rout, and L�x.
This relation can be substituted for Rin in Eq. 6, which then

can be minimized with respect to d to give the equilibrium

interstrand spacing as a function of the genome length L�x
inside the capsid. In this way we determine the total packing

energy as a function of genome length inside the capsid

(L�x) or as a function of the DNA length ejected x, i.e., U(x).
Using this result and Eq. 4, we can evaluate the MFPT, t(x),
for the DNA ejection in l as a function of the length ejected.

The corresponding fraction ejected, x(t)/L, is shown as a

function of time in Fig. 2, with the label ‘‘no confinement’’;

note that time here is measured in units of L2/D.
The value of D can be estimated on the basis of this simple

model by the following procedure. The experiment by

Novick and Baldeschwieler (24) showed that in a buffer

containing 10 mM of Mg12 it took ;50 s for phage l to

completely eject its genome. The values for F0 and c in

buffers containing Mg21 have been measured (31). Since the

values measured for 5 mM and 25 mM Mg21 were not

significantly different, we assume that the forces at 10 mM

will be identical, i.e., F0 ¼ 12,000 pN/nm2 and c ¼ 0.3 nm.

Using these values in Eq. 4 and numerically evaluating it for

x ¼ L ¼ 48,500 3 0.34 nm, we find the total time for l to

eject its genome of 48.5 kbp is t� (105 nm2/D) s. Then, since

this value is experimentally estimated to be ;50 s (24), we

infer that D � 103nm2/s. This is approximately three orders-

of-magnitude smaller than the D estimated in Introduction,

consistent with all the sources of dissipation that were left
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out of that estimate. Note that once the parameter D has been

fixed, there are no other free parameters in the model and

hence all further deductions from the model are predictive.

As will be shown below, the model developed thus far

predicts the dynamics of in vitro ejection of phage DNA into

lipid bilayer vesicles.

An interesting application of our estimates is to experi-

ments in which viruses eject their DNA into lipid vesicles

(2,24,26,32). Here lipid vesicles are reconstituted with the

receptors recognized by the phage of interest, and then mixed

with a solution of the phage. The phage binds to the receptor

and ejects its DNA into the vesicle. We argue that the amount

of DNA ejected into the vesicle and the corresponding time

depends on the radius of the vesicle. In particular, if the vesicle

has a radius comparable to that of the viral capsid, therewill be

a buildup of pressure inside the vesicle due to the ejected

DNA. Ultimately, the ejection process will come to a halt

when the force on the DNA from the capsid equals the force

from the vesicle side—this can be thought of similarly from

the free energy perspective as a free-energy minimizing con-

figuration. Hence, the ejection will not, in general, be complete.

We can work out the ejection rate for this process as

follows. If x is the length of genome ejected into the vesicle,

we denote the free energies of the DNA inside the viral

capsid and the vesicle by Ucapsid(L�x) and Uvesicle(x), re-
spectively. The total free energy will be given by

UðxÞ ¼ UcapsidðL� xÞ1UvesicleðxÞ: (7)

As explained before, we already know Ucapsid(L�x) (see
Eq. 6); the expression forUvesicle(x) can be obtained similarly

by assuming that the vesicle is like a spherical capsid and the

DNA configuration inside is similar to that inside the viral

capsid. Our assumed structure for the DNA in the vesicle is a

highly idealized model, though we note that electron micros-

copy on such vesicles demonstrates that DNA within them

can adapt to highly ordered configurations (26). In the limit

where the vesicle radius is large compared to that of the

phage capsid we will recover the free injection result (DNA

ejecting from phage into the surrounding solution).

The injection process will stop when the total free energy

reaches a minimum, i.e., the total force on the DNA is zero.

The predicted time for DNA injection is given by Eq. 4. We

have worked out the kinetics of the ejection for bacterio-

phage l (radius� 29 nm) ejecting its genome into vesicles of

radius 29, 50, and 100 nm. The phage is taken to be sus-

pended in a solution of Mg12 ions, and similarly the vesicle,

with concentration that approximately gives the same values

for F0 and c, as discussed earlier. This yields a prediction for
the kinetics of injection for different vesicle radius. It can be

seen from Fig. 2 that when the size of the vesicle is com-

parable to the capsid size there is only a partial ejection of the

DNA. When the vesicle size is almost twice the size of the

capsid, nearly the entire genome is ejected, except for the last

part of the DNA, which takes extra time because of the re-

sistance offered to it from the DNA inside the vesicle.

Finally, when the vesicle is more than three times the size of

the capsid, DNA gets completely ejected from the phage

capsid as if there were no vesicle. It is interesting to note that

in the initial stages of ejection, all the curves for various

vesicle sizes fall on one another because there is no resis-

tance to the injection, but as the ejection proceeds, each curve

reflects a different resistance.

It is also possible that the arguments given above for in

vitro ejection into vesicles could be relevant to thinking

about ejection into the crowded environment of a bacterial

cell (33,34). As a result of the crowding within the host

bacterium, the viral DNA may be subject to confinement

effects like those induced by vesicles.

DNA EJECTION IN THE PRESENCE OF DNA
BINDING PROTEINS

The Escherichia coli cell has as many as 250 types of DNA

binding proteins (35). Some fraction of these proteins likely

binds either specifically or nonspecifically to the phage

genome as it enters the host bacterium. Accordingly, we

consider what happens if the phage DNA is swarmed with

binding proteins upon its entry into the host cell. Depending

on the binding on/off rates, binding site density, and the

strength of binding, we have a corresponding speedup of the

DNA injection into the bacterial cell, relative to the pure

force-driven case. In this section we explore this effect and

see how, in addition to the speedup, it helps the phage inject

its DNA against the osmotic pressure in the host cell.

Throughout the following analysis of particle binding

effects, we assume that the chain is stiff on length scales

(e.g., tens of nanometers for double-stranded DNA genomes)

large compared to the size of the relevant binding particles

(typically a few nanometers). We also assume that the bind-

ing particles are comparable in size to the distance between

FIGURE 2 Ejection time for phage-l injecting its genome into vesicles

of radius 29, 50, and 100 nm. The capsid radius of the phage is 29 nm. It can

be seen that the amount of DNA injection increases as the ratio of the vesicle

radius to the capsid radius increases. On the timescale depicted here, there

will be essentially no ejection due to pure diffusion (which takes place

instead at times of order 1, in units of L2/D).
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sites; for an estimate of Langmuir forces in the more general

case of larger binding particles, see Ambjornsson and

Metzler (19).

DNA ejection due to the ratchet action

Consider a scenario (discussed in the Introduction; tocc, �
t0 � tunocc) in which host cell binding proteins irreversibly

bind on to the DNA at a rate much faster than the trans-

location rate. In such a case, once a binding site is inside the

cell, it is immediately occupied by a binding protein. If the

protein stays bound long enough, compared to the translo-

cation time, it will prevent thermal fluctuations from re-

tracting the DNA back into the capsid. As a result, the DNA

will diffuse only between consecutive binding sites, instead

of along its complete length. Depending on the spacing be-

tween the consecutive sites, it will bring about a speedup in

the translocation compared towhen it is only force-driven (16).

For simplicity, we assume that the protein binding sites are

uniformly distributed along the length of the genome. If the

distance between the consecutive binding sites, s, is small

compared to the genome length, i.e., L � s, we can assume

that the internal force on the genome due to the packaged

DNA is effectively constant while the DNA chain is dif-

fusing between binding sites. In that case the MFPT, ti, for
the DNA to translocate the distance s between the binding

sites i�1 and i, is simply given by Eq. 5, with x replaced by s,
and F replaced by Fi. The internal force F is of course a

varying function of ejected length x, but to a good ap-

proximation is constant over each interval of length s. The
subscript i on the force F denotes this approximately constant

force on the DNA chain when the translocation is taking

place between the i�1 and ith binding sites, i.e., when length
(i�1)s has been ejected.

The total translocation time for ejecting length x of the

DNA is given by a sum over the MFPTs for all the sections

of length s, along the length x ejected. The MFPT as a func-

tion of x is given by

tðxÞRatchet1UðxÞ ¼ +
x=s

i¼1

tiðFiÞjEq: 5: (8)

The corresponding plot for the fraction ejected, x(t)/L, as
a function of time is shown in Fig. 3 for s ¼ 20 nm: the

ratcheting reduces the injection time by half as compared to

when the ejection results exclusively from the internal force.

From Eq. 5 it can be seen that the time will decrease expo-

nentially as the spacing s decreases. The important qualitative

consequence of the ratchet is that it helps (see Binding Proteins

Enable DNA Ejection against Osmotic Pressure) internaliza-

tion of the complete phage genome against osmotic pressure,

when internal force alone is insufficient.

Reversible force from the binding proteins

Consider another extreme scenario (also discussed in the

Introduction; tocc, tunocc � t0) where DNA injects into a

reservoir of binding particles and the rate of translocation is

slow compared to the time required for the particles to bind

and unbind from the DNA. In this case, the binding proteins

will come to equilibrium with the DNA. If, in addition, the

range of attraction, d, of the binding sites with the proteins is

comparable to the spacing, s, between the binding sites, there
will be an adsorption force pulling on the DNA, given by

Zandi et al. (18) (P. G. de Gennes, private communication,

2002; see also Introduction),

F ¼ kBT

s
ln 11 exp

e1m

kBT

� �� �
:

� DG

s
;DG � kBT: (9)

Here m is the chemical potential maintained by the re-

servoir of binding proteins, e is the binding energy of the

proteins with the DNA, and e1 m¼ DG(. 0) is the binding

free energy for the proteins. This adsorption force is the one-

dimensional Langmuir pressure discussed in the Introduc-

tion. The origin of this equation can be seen by a simple

derivation (36). Consider a stiff DNA segment of length l
with binding sites separated by spacing s. The total number

of binding sites on the piece of DNA is, hence, l/s ¼ M. The

DNA is surrounded by binding proteins at chemical potential

m. The grand partition function of the DNA and binding-

proteins system is then given by

J ¼ +
M

i¼0

M!

i!ðM � iÞ! exp
iðe1mÞ
kBT

� �
;

¼ 11 exp
e1m

kBT

� �� �M

; (10)

and the grand free energy is

FIGURE 3 The fraction of DNA injected in phage l as a function of time

(in units of L2/D) in the presence of binding particles that form a ratchet. The

DNA injection purely due to the internal force is used as a benchmark, and

the spacing between the binding sites s ¼ 20 nm. It can be seen that the

ratchet reduces the translocation time. The time required to internalize the

genome solely by the ratcheting mechanism (see lower, straight line) is

approximately twice the time taken for the purely internal force-driven

mechanism.

416 Inamdar et al.

Biophysical Journal 91(2) 411–420



G ¼ �kBT lnJ ¼ �MkBT ln 11 exp
e1m

kBT

� �� �
: (11)

It follows that the force acting on the DNA is

F ¼ �@G

@l
;

¼ �1

s

@G

@M
;

¼ kBT

s
ln 11 exp

e1m

kBT

� �� �
:

Note that, as mentioned in the Introduction, we assume that

the range of attraction d between the binding proteins and the

DNA is comparable to the spacing s between the binding sites.
If we further take the limit where e 1 m ¼ DG � kBT, we
recover Eq. 9 for the force. This force has been observed by

Zandi et al. (18) in their Brownian dynamics simulation, and is

not the same as the ratcheting case because of the different

timescales (as noted in the Introduction) involved in the two

processes (19). Even though DG� 0, in this case we have t0
� tocc,tunocc, which is different than when ratcheting occurs

(tocc� t0� tunocc). The Langmuir force is an entropic force

acting on the DNA as opposed to the Brownian ratchet, which

results only in the rectification of the motion.

To evaluate the MFPT we follow exactly the same process

as in Kinetics of Ejection Driven by Packaging Force. The

total force acting on theDNA is the sumof the internal pushing

force and the external pulling Langmuir force. The total free

energy involved with these two effects is given by U(x) ¼
Ucapsid(L�x)1 DG/s3 x. The MFPT, t(x), to inject x amount

of DNA is then given by Eq. 4. We take a typical value of

nonspecific DNA-protein binding free-energy of DG¼ 8 kBT
(37). The plot of DNA fraction ejected, x/L, against the

corresponding ejection time, t(x), is shown in Fig. 4 for s¼ 20

nm. It can be seen that the Langmuir force speeds up the

genome translocation by almost an order of magnitude. Not

only that, but even if we do not have an internal force, this

mechanism (see Fig. 4, Pure Langmuir) will inject the

complete genome faster than the internal force-driven mech-

anism. This is because after;50% ejection, the internal force

begins to drop below the constant value of theLangmuir force.

Indeed, from Fig. 4, we see that it is at an ejected fraction

of;0.5 that the slope of the internal-force curve drops below

the constant slope (rate) of the Pure-Langmuir plot.

The two cases we described are really two extreme cases for

the treatment of the role ofDNAbindingproteins. In reality, the

rate of binding and the equilibration times may not be very fast

(compared to translocation times) and the translocation rates

would lie somewhere in between the rates evaluated in this

section; for these cases it is necessary to treat the dynamical

coupling between particle binding and chain diffusion (18).

Binding proteins enable DNA ejection against
osmotic pressure

Due to macromolecular crowding (33), the E. coli bacterium
has internal osmotic pressures of ;3 atm (38). The work of

Evilevitch et al. (13) and Grayson et al. (14) showed for phage l

that the ejection process can be partially/completely inhib-

ited by an application of osmotic pressure. Hence, it appears

that if the phage were to rely entirely on the driving force due

to the packaged DNA to eject its genome, the timescale for

full ejection would be prohibitively long. On the other hand,

since we know that the genome is completely internalized it

seems likely that the particle-binding mechanisms described

above may play a role in in-vivo DNA translocation. In this

section we will see that the task can be accomplished by the

Brownian ratchet and the one-dimensional Langmuir force

mechanism discussed above in DNA Ejection Due to the

Ratchet Action and Reversible Force from the Binding

Proteins.

To see how the Brownian ratchet can internalize the

genome against the osmotic pressure, we use the following

procedure. If the osmotic pressure in the host cell is Posmotic,

the resisting force acting on the DNA can be approximated

(8,11) by Fosmotic ¼ PosmoticpR
2
DNA, where RDNA is the

radius of the DNA (;1 nm). For an osmotic pressure of 3

atm, the osmotic force is then estimated to be;1 pN. We can

now replace the term F in Eq. 5 with Fi�Fosmotic to evaluate

the MFPT, ti for the injection of the DNA segment between

binding sites i�1 and i. This time ti is then summed over all i,
as in Eq. 8, to give the time t(x) and hence x(t)/L. This
fraction is plotted in Fig. 5 for the case of spacing s ¼ 20 nm

between binding sites, and for an osmotic pressure of 3 atm.

It can be seen from the figure (bottom curve) that the time

required for internalizing the genome is comparable to the

time it takes for phage to inject its genome purely by the

internal force, when there is no osmotic pressure. The in-

ternal force for l (data not shown) at;50% DNA ejection is

FIGURE 4 The fraction of DNA injected in phage l in the presence of

binding proteins that bind reversibly, as a function of time (in units of L2/D.)

The presence of reversible binding proteins results in a pulling Langmuir

force (see text). This pulling force significantly enhances the DNA ejection

rate over that of the purely force-driven mechanism, by almost a factor of 10.
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;1 pN, i.e., of the order of Fosmotic. It can be seen from Fig. 5

that the slope of the curve showing ejection in the presence

of ratcheting and osmotic pressure starts decreasing at that

percentage of ejection. The average force produced by a

Brownian ratchet is 2 kBT/s � 0.4 pN for s ¼ 20 nm (16,18).

At 60–70% ejection, the internal force is ;0.5 pN; the total

driving force is then ;0.5 1 0.4 ¼ 0.9 pN, which is almost

the same as Fosmotic. This force hence works to eject the

genome against the external osmotic force. When ;15% of

the genome is left in the phage capsid, the internal force is

almost zero. At this point there is only a small amount of

the genome still to be ejected and a small differential of

Fosmotic�Fratchet � 0.5 pN to be worked against. This is

accomplished by the Brownian motion of the DNA.

Now, take the case when, as discussed in Reversible Force

from the Binding Proteins, the Langmuir force acts on the

DNA. To include the effect of the osmotic pressure we have

to subtract the osmotic force Fosmotic ¼ PosmoticpR
2
DNA from

the driving force Fi 1 DG/s. The energy landscape asso-

ciated with this force is simply U(x) ¼ UcapsidðL� xÞ1
DG=s3x �PosmoticpR

2
DNA3x. We use this energy in Eq. 4

to obtain the MFPT t(x). From this expression, it can be seen

that, as long as (DG=s�PosmoticpR
2
DNAÞ $ 0, we will

always have DNA ejection proceeding faster than or similar

to the rate for the purely force-driven nonosmotic pressure

case. For the numbers we took in the preceding sections, DG/
s¼ 8 kbT/s� 1.6 pN—which is greater than Fosmotic� 1 pN.

This implies that the phage would inject its genome faster

than in the purely pressure-driven mechanism. The MFPT,

t(x), is plotted in Fig. 5, when s ¼ 20 nm, DG ¼ 8 kBT, and
Posmotic ¼ 3 atm.

DISCUSSION AND CONCLUSION

This article addresses the problem of the kinetics of phage

injection and the various mechanisms responsible for it. We

make use of the available experimental data, existing models

for phage packaging, and classical Fokker-Planck theory, to

make predictions about translocation rates for phage DNA

ejection. The key quantitative predictions described in this

article are as follows.

Dependence of ejection rates on driving pressure

As shown in Fig. 2, the driving force due to the packaged

DNA speeds up the ejection process by 2–3 orders of

magnitude over free diffusion, and thus is a major contrib-

utor to the process of injection. Also, in the in vitro setting,

the smaller the vesicle into which ejection occurs, the smaller

the amount of DNA injected. In addition, for genomes of the

same size, the time required for the ejection of the DNA is

larger than when into a bigger vesicle. One of the simplest

ways to control this driving force for ejection is by tuning

genome length, and experiments are currently in progress

(P. Grayson, private communication, 2005) to test these ideas.

Dependence of ejection rates on the presence
of irreversible DNA-binding proteins

Ratcheting enhances the DNA ejection rate from the viral

capsid. The speedup is minor when compared to internal

force-driven ejection (see Fig. 3), but as seen from Fig. 5 it is

sufficient to pull out the genome against osmotic pressures of

up to 3 atm found inside the bacterial cell.

Dependence of ejection rates on the presence
of reversible binding proteins

The reversible binding of proteins exerts a one-dimensional

Langmuir force on the DNA. It can be seen from Fig. 4 that

the presence of this phenomenon significantly enhances the

DNA ejection rate beyond that due to pressure in the viral

capsid. From Fig. 5 it is clear that this force is sufficient to

efficiently internalize the phage genome against osmotic

pressures of up to 3 atm in the bacterium.

We have several biological examples in mind when we

treat these ejection mechanisms. In bacteriophage T5 the

DNA injection occurs in two steps. The first step transfer,

which involves ejection of ;10% of the phage genome, is

driven by the internal force (2). There is then a brief pause,

when a protein is synthesized that is implicated in the deg-

radation of the host chromosome, thereby freeing the large

number of proteins that had been bound to it. These latter

proteins are now possibly available for binding to the

injected portion of the phage genome and for pulling the re-

maining DNA into the cell, via the ratcheting and Langmuir

mechanisms. The calculations presented here call for a more

FIGURE 5 The fraction of DNA injected in phage l as a function of time

(in units of L2/D) for the case in which there is a resistive force due to osmotic

pressure.We compare the roles of the Langmuir force and the ratchet effect in

ejecting the phageDNAagainst osmotic pressure. The spacing s is taken to be

20 nm and the osmotic pressure in the cell is;3 atm. It can be seen that the

Langmuir force easily pulls the DNA against this pressure. The DNA

translocation by the Brownian ratchet requires a much longer time, but it still

succeeds in pulling out the genome at timescales not much longer than the

ejection by internal force alone with zero osmotic pressure.
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systematic experimental analysis of the extent to which

proteins bind onto phage DNA as it enters the infected cell.

Similar ideas to those proposed here might also prove

useful in those cases where the viral genome is translocated

as a result of the binding of motor proteins, which them-

selves translocate along the DNA. One such example is the

pulling force by the NTP-driven RNA polymerase (RNAP).

RNAP is a very strong motor and can exert forces of up to 14

pN (39). As described by Molineux and co-authors (1,40),

transcription by RNAP is the major mechanism for DNA

injection from wild-type T7 into E. coli and is an intriguing

additional active mechanism that is of great interest to treat

theoretically as well.

In this work we have analyzed various effects of DNA

translocation of internal capsid pressure and exterior (i.e.,

cytoplasmic) binding proteins that can be tested by a variety

of in vitro experiments involving phage ejection kinetics into

synthetic vesicles and through membranes formed over holes

in planar partitions. In these ways one can separately control

the capsid pressures (by varying salt concentrations or ge-

nome length, for example) and the nature and concentration

of DNA-binding proteins inside the capsid or on the other

side of the membrane. In addition, it will be important to ex-

amine the role of these various mechanisms in determining

the kinetics of genome delivery in vivo.
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