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Abstract Advances in DNA sequencing have revolutionized our ability to read genomes.

However, even in the most well-studied of organisms, the bacterium Escherichia coli, for » 65% of

promoters we remain ignorant of their regulation. Until we crack this regulatory Rosetta Stone,

efforts to read and write genomes will remain haphazard. We introduce a new method, Reg-Seq,

that links massively parallel reporter assays with mass spectrometry to produce a base pair

resolution dissection of more than a E. coli promoters in 12 growth conditions. We demonstrate

that the method recapitulates known regulatory information. Then, we examine regulatory

architectures for more than 80 promoters which previously had no known regulatory information. In

many cases, we also identify which transcription factors mediate their regulation. This method

clears a path for highly multiplexed investigations of the regulatory genome of model organisms,

with the potential of moving to an array of microbes of ecological and medical relevance.

Introduction
DNA sequencing is as important to biology as the telescope is to astronomy. We are now living in

the age of genomics, where DNA sequencing has become cheap and routine. However, despite

these incredible advances, how all of this genomic information is regulated and deployed remains

largely enigmatic. Organisms must respond to their environments through the regulation of genes.

Genomic methods often provide a ’parts list’ but leave us uncertain about how those parts are used

creatively and constructively in space and time. Yet, we know that promoters apply all-important

dynamic logical operations that control when and where genetic information is accessed. In this

paper, we demonstrate how we can infer the logical and regulatory interactions that control bacte-

rial decision making by tapping into the power of DNA sequencing as a biophysical tool. The

method introduced here provides a framework for solving the problem of deciphering the regulatory

genome by connecting perturbation and response, mapping information flow from individual nucleo-

tides in a promoter sequence to downstream gene expression, determining how much information

each promoter base pair carries about the level of gene expression.

The advent of RNA-Seq (Lister et al., 2008; Nagalakshmi et al., 2008; Mortazavi et al., 2008)

launched a new era in which sequencing could be used as an experimental read-out of the
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biophysically interesting counts of mRNA, rather than simply as a tool for collecting ever more com-

plete organismal genomes. The slew of ‘X’-Seq technologies that are available continues to expand

at a dizzying pace, each serving their own creative and insightful role: RNA-Seq, ChIP-Seq, Tn-Seq,

SELEX, 5C, etc (Stuart and Satija, 2019). In contrast to whole genome screening sequencing

approaches, such as Tn-Seq (Goodall et al., 2018) and ChIP-Seq (Gao et al., 2018), which give a

coarse-grained view of gene essentiality and regulation respectively, another class of experiments

known as massively parallel reporter assays (MPRA) have been used to study gene expression in a

variety of contexts (Patwardhan et al., 2009; Kinney et al., 2010; Sharon et al., 2012;

Patwardhan et al., 2012; Melnikov et al., 2012; Kwasnieski et al., 2012; Fulco et al., 2019;

Kinney and McCandlish, 2019). One elegant study relevant to the bacterial case of interest here by

Kosuri et al., 2013 screened more than 104 combinations of promoter and ribosome-binding sites

(RBS) to assess their impact on gene expression levels. Even more recently, the same research group

has utilized MPRAs in sophisticated ways to search for regulated genes across the genome

(Urtecho et al., 2019; Urtecho et al., 2020), in a way we see as being complementary to our own.

While their approach yields a coarse-grained view of where regulation may be occurring, our

approach yields a base-pair-by-base-pair view of how exactly that regulation is being enacted.

One of the most exciting X-Seq tools based on MPRAs with broad biophysical reach is the Sort-

Seq approach developed by Kinney et al., 2010. Sort-Seq uses fluorescence activated cell sorting

(FACS) based on changes in the fluorescence due to mutated promoters combined with sequencing

to identify the specific locations of transcription factor binding in the genome. Importantly, it also

provides a readout of how promoter sequences control the level of gene expression with single

base-pair resolution. The results of such a massively parallel reporter assay make it possible to build

a biophysical model of gene regulation to uncover how previously uncharacterized promoters are

regulated. In particular, high-resolution studies like those described here yield quantitative predic-

tions about promoter organization and protein-DNA interactions (Kinney et al., 2010). This allows

us to employ the tools of statistical physics to describe the input-output properties of each of these

promoters which can be explored much further with in-depth experimental dissection like those

done by Razo-Mejia et al., 2018 and Chure et al., 2019 and summarized in Phillips et al., 2019. In

this sense, the Sort-Seq approach can provide a quantitative framework to not only discover and

quantitatively dissect regulatory interactions at the promoter level, but also provides an interpret-

able scheme to design genetic circuits with a desired expression output (Barnes et al., 2019).

Earlier work from Belliveau et al., 2018 illustrated how Sort-Seq, used in conjunction with mass

spectrometry, can be used to identify which transcription factors bind to a given binding site, thus

enabling the mechanistic dissection of promoters which previously had no regulatory annotation.

However, a crucial drawback of the approach of Belliveau et al., 2018 is that while it is high-

throughput at the level of a single gene and the number of promoter variants it accesses, it was

unable to readily tackle multiple genes at once. Even in one of biology’s best understood organisms,

the bacterium Escherichia coli, for more than 65% of its genes, we remain completely ignorant of

how those genes are regulated (Belliveau et al., 2018; Santos-Zavaleta et al., 2019). If we hope to

some day have a complete base pair resolution mapping of how genetic sequences relate to biologi-

cal function, we must first be able to do so for the promoters of this ’simple’ organism.

What has been missing in uncovering the regulatory genome in organisms of all kinds is a large-

scale method for inferring genomic logic and regulation. Here, we replace the low-throughput, fluo-

rescence-based Sort-Seq approach with a scalable, RNA-Seq based approach that makes it possible

to attack many promoters at once. Accordingly, we refer to the entirety of our approach (MPRA,

information footprints and energy matrices, and transcription factor identification) as Reg-Seq, which

we employ here on over one hundred promoters. The concept of MPRA methods is to perturb pro-

moter regions by mutating their sequences, and then to use next-generation sequencing (NGS)

methods to read out how those mutations impact the expression level of each promoter

(Patwardhan et al., 2009; Kinney et al., 2010; Sharon et al., 2012; Patwardhan et al., 2012;

Melnikov et al., 2012; Kwasnieski et al., 2012; Fulco et al., 2019; Kinney and McCandlish, 2019).

We generate a broad diversity of promoter sequences for each promoter of interest and use mutual

information as a metric to measure the information flow from that distribution of sequences to gene

expression. Thus, Reg-Seq is able to collect causal information about candidate regulatory sequen-

ces that is then complemented by techniques such as mass spectrometry, which allows us to find

which transcription factors mediate the action of those newly discovered candidate regulatory
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sequences. Hence, Reg-Seq solves the causal problem of linking DNA sequence to regulatory logic

and information flow.

To demonstrate our ability to perform Reg-Seq at scale, we report here our results for 113 E. coli

genes, whose regulatory architectures (i.e. gene-by-gene distributions of transcription-factor-binding

sites and identities of the transcription factors that bind those sites) were determined in parallel for

multiple different growth conditions. Although we make substantial progress in mapping the regula-

tory information for a swath of E. coli genes in this study (the ’regulome’), the field still remains lim-

ited in its understanding of which specific growth conditions, small molecules and metabolites (the

allosterome) are responsible for altering the milieu of transcription factor activities (Lindsley and

Rutter, 2006; Piazza et al., 2018; Huang et al., 2018). We hope to address this shortcoming in

future studies by appealing to recent work on solving the ’allosterome problem’ (Piazza et al.,

2018). By taking the Sort-Seq approach from a gene-by-gene method to a larger scale, more multi-

plexed approach, we can begin to piece together not just how individual promoters are regulated,

but also the nature of gene-gene interactions by revealing how certain transcription factors serve to

regulate multiple genes at once. This approach has the benefits of a high-throughput assay without

sacrificing any of the resolution afforded by the previous gene-by-gene approach, allowing us to

uncover the gene regulation of over 100 operons, with base-pair resolution, in one set of

experiments.

The organization of the remainder of the paper is as follows. In the Results section, we benchmark

Reg-Seq against our own earlier Sort-Seq experiments to show that the use of RNA-Seq as a readout

of the expression of mutated promoters is equally reliable as the fluorescence-based approach.

Additionally, we provide a global view of the discoveries that were made in our exploration of more

than 100 promoters in E. coli using Reg-Seq. These results are described in summary form in the

paper itself, with a full online version of the results (www.rpgroup.caltech.edu/RegSeq/interactive)

showing how different growth conditions elicit different regulatory responses. This section also fol-

lows the overarching view of our results by examining several biological stories that emerge from

our data and serve as case studies in what has been revealed in our efforts to uncover the regulatory

genome. The Discussion section summarizes the method and the current round of discoveries it has

afforded with an eye to future applications to further elucidate the E. coli genome and open up the

quantitative dissection of other non-model organisms. Lastly, in the Materials and methods section

and Appendices, we describe our methodology and the false positive and false negative rates of the

method.

Results

Selection of genes and methodology
As shown in Figure 1, we have explored more than 100 genes from across the E. coli genome. Our

choices were based on a number of factors (see Appendix 1 Section ’Choosing target genes’ for

more details); namely, we wanted a subset of genes that served as a ’gold standard’ for which the

hard work of generations of molecular biologists have yielded deep insights into their regulation.

Our set of gold standard genes is lacZYA, znuCB, znuA, ompR, araC, marR, relBE, dgoR, dicC, ftsK,

xylA, xylF, rspA, dicA, and araAB. By using Reg-Seq on these genes, we were able to demonstrate

that this method recovers not only what was already known about binding sites of transcription fac-

tors for well-characterized promoters (Appendix 2—figures 2 and 3), but also whether there are

any important differences between the results of the methods presented here and the previous gen-

eration of experiments based on fluorescence and cell-sorting as a readout of gene expression

(Kinney et al., 2010; Belliveau et al., 2018). These promoters of known regulatory architecture are

complemented by an array of previously uncharacterized genes that we selected in part using data

from a recent proteomic study, in which mass spectrometry was used to measure the copy number

of different proteins in 22 distinct growth conditions (Schmidt et al., 2016). We selected genes that

exhibited a wide variation in their copy number over the different growth conditions considered, rea-

soning that differential expression across growth conditions implies that those genes are under regu-

latory control.

As noted in the introduction, the original formulation of Reg-Seq, termed Sort-Seq, was based on

the use of fluorescence activated cell sorting, one gene at a time, as a way to uncover putative
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binding sites for previously uncharacterized promoters (Belliveau et al., 2018). As a result, as shown

in Figure 2, we have formulated a second generation version that permits a high-throughput interro-

gation of the genome. A comparison between the Sort-Seq and Reg-Seq approaches on the same

set of genes is shown in Figure 3. In the Reg-Seq approach, for each promoter interrogated, we

generate a library of mutated variants and design each variant to express an mRNA with a unique

sequence barcode. By counting the frequency of each expressed barcode using RNA-Seq, we can

assess the differential expression from our promoter of interest based on the base-pair by base-pair

sequence of its promoter. Using the mutual information between mRNA counts and sequences, we

develop an information footprint that reveals the importance of different bases in the promoter

region to the overall level of expression. We locate potential transcription-factor-binding regions by

looking for clusters of base pairs that have a significant effect on gene expression. Further details on

how potential binding sites are identified are found in the Methods Section ’Automated putative

binding site algorithm’ and ’Manual selection of binding sites’, while determination of the false posi-

tive and false negative rates of the method can be found in Appendix 2 Section ’False positive and

false negative rates’. Blue regions of the histogram shown in the information footprints of Figure 2
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Figure 1. The E. coli regulatory genome. Illustration of the current ignorance with respect to how genes are

regulated in E. coli. Genes with previously annotated regulation (as reported on RegulonDB [Gama-Castro et al.,

2016]) are denoted with blue ticks and genes with no previously annotated regulation denoted with red ticks. The

113 genes explored in this study are labeled in gray, and their precise genomic locations can be found in

Figure 1—source data 1.

The online version of this article includes the following source data for figure 1:

Source data 1. Locations of TSS for all promoters in Figure 1.
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Figure 2. Schematic of the Reg-Seq procedure as used to recover a repressor-binding site. The process is as

follows: After constructing a promoter library driving expression of a randomized barcode (an average of five

barcodes for each promoter), RNA-Seq is conducted to determine the frequency of these mRNA barcodes across

different growth conditions (list included in Appendix 1 Section ’Growth conditions’). By computing the mutual

information between DNA sequence and mRNA barcode counts for each base pair in the promoter region, an

’information footprint’ is constructed that yields a regulatory hypothesis for the putative binding sites (with the

Figure 2 continued on next page

Ireland et al. eLife 2020;9:e55308. DOI: https://doi.org/10.7554/eLife.55308 5 of 68

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.55308


correspond to hypothesized activating sequences and red regions of the histogram correspond to

hypothesized repressing sequences.

With the information footprint in hand, we can then determine energy matrices and sequence

logos (described in the next section). Given putative binding sites, we use synthesized oligonucleoti-

des that serve as fishing hooks to isolate the transcription factors that bind to those putative binding

sites using DNA-affinity chromatography and mass spectrometry (Mittler et al., 2009). Given all of

this information, we can then formulate a schematized view of the newly discovered regulatory archi-

tecture of the previously uncharacterized promoter. For the case schematized in Figure 2, the exper-

imental pipeline yields a complete picture of a simple repression architecture (i.e. a gene regulated

by a single binding site for a repressor).

Visual tools for data presentation
Throughout our investigation of the more than 100 genes explored in this study, we repeatedly

relied on several key approaches to help make sense of the immense amount of data generated in

these experiments. As these different approaches to viewing the results will appear repeatedly

throughout the paper, here we familiarize the reader with five graphical representations referred to

respectively as information footprints, energy matrices, sequence logos, mass spectrometry enrich-

ment plots and regulatory cartoons, which taken together provide a quantitative description of pre-

viously uncharacterized promoters.

Information footprints
From our mutagenized libraries of promoter regions, we can build up a base-pair by base-pair

graphical understanding of how the promoter sequence relates to level of gene expression in the

form of the information footprint shown in Figure 2. In this plot, the bar above each base pair posi-

tion represents how large of an effect mutations at this location have on the level of gene expres-

sion. Specifically, the quantity plotted is the mutual information Ib at base pair b between mutation

of a base pair at that position and the level of expression. In mathematical terms, the mutual infor-

mation measures how much the joint probability pðm; �Þ differs from the product of the probabilities

pmutðmÞpexprð�Þ which would be produced if mutation and gene expression level were independent.

Formally, the mutual information between having a mutation at position b and level of expression is

given by

Ib ¼
X

1

m¼0

X

1

�¼0

pðm;�Þ log2
pðm;�Þ

pmutðmÞpexprð�Þ

� �

: (1)

Note that both m and m are binary variables that characterize the mutational state of the base of

interest and the level of expression, respectively. Specifically, m can take the values

m¼
0; if b is a mutated base

1; if b is a wild-type base.

�

(2)

and m can take on values

�¼
0; for sequencing reads from the DNA library

1; for sequencing reads originating from mRNA,

�

(3)

Figure 2 continued

RNAP-binding region highlighted in blue and the repressor-binding site highlighted in red). Energy matrices,

which describe the effect that any given mutation has on DNA-binding energy, as well as sequence logos, are

inferred for the putative transcription-factor-binding sites. Next, we identify which transcription factor preferentially

binds to the putative binding site via DNA-affinity chromatography followed by mass spectrometry. This

procedure culminates in a coarse-grained, cartoon-level view of our regulatory hypothesis for how a given

promoter is regulated.

The online version of this article includes the following source data for figure 2:

Source data 1. Information footprint data displayed in Figure 2.
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where both m and m are index variables that tell us whether the base has been mutated and if so,

how likely that the read at that position will correspond to an mRNA, reflecting gene expression or a
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Figure 3. A summary of four direct comparisons of measurements from Sort-Seq and Reg-Seq. We show the

identified regulatory regions as well as quantitative comparisons between inferred position weight matrices. (A)

CRP binds upstream of RNAP in the lacZYA promoter. Despite the different measurement techniques for the two

inferred position weight matrices, the CRP-binding sites have a Pearson correlation coefficient of r ¼ 0:98. (B) The

dgoRKADT promoter is activated by CRP in the presence of galactonate and is repressed by DgoR. For Sort-Seq

and Reg-Seq, type II activator-binding sites can be identified based on the signals in the information footprint in

the area indicated in green. Additionally, the quantitative agreement between the CRP position weight matrices

are strong, with r ¼ 0:9. (C) The relBE promoter is repressed by RelBE as can be identified algorithmically in both

Sort-Seq and Reg-Seq. The inferred logos for the two measurement methods have r ¼ 0:8. (D) The marRAB

promoter is repressed by MarR. The inferred energy matrices (data not shown) and sequence logos shown have

r ¼ 0:78. The right most MarR site overlaps with a ribosome-binding site. The overlap has a stronger obscuring

effect on the sequence specificity of the Sort-Seq measurement, which measures protein levels directly, than it

does on the output of the Reg-Seq measurement. Numeric values for the displayed data can be found in

Figure 3—source data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Data for information footprints and PWMs in Figure 3.
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promoter, reflecting a member of the library. The higher the ratio of mRNA to DNA reads at a given

base position, the higher the expression. pmutðmÞ in Equation 1 refers to the probability that a given

sequencing read will be from a mutated base. pexprð�Þ is a numeric value that gives the ratio of the

number of DNA or mRNA sequencing counts to the total number of sequencing counts for each

barcode.

Furthermore, we color the bars based on whether mutations at this location lowered gene expres-

sion on average (in blue, indicating an activating role) or increased gene expression (in red, indicat-

ing a repressing role). In this experiment, we targeted the regulatory regions based on a guess of

where a transcription start site (TSS) will be, based on experimentally confirmed sites contained in

RegulonDB (Santos-Zavaleta et al., 2019), a 5’ RACE experiment (Mendoza-Vargas et al., 2009),

or by targeting small intergenic regions so as to capture all likely regulatory regions. Further details

on TSS selection can be found in the Materials and methods Section ’Library design and construc-

tion’. After completing the Reg-Seq experiment, we note that many of the presumed TSS sites are

not in the locations assumed, the promoters have multiple active RNA polymerase (RNAP) sites and

TSS, or the primary TSS shifts with growth condition. To simplify the data presentation, the ’0’ base

pair in all information footprints is set to the originally assumed base pair for the primary TSS, rather

than one of the TSS that was found in the experiment.

Energy matrices
Focusing on an individual putative transcription-factor-binding site as revealed in the information

footprint, we are interested in a more fine-grained, quantitative understanding of how the underly-

ing protein-DNA interaction is determined. An energy matrix displays this information using a heat

map format, where each column is a position in the putative binding site and each row displays the

effect on binding that results from mutating to that given nucleotide (given as a change in the DNA-

transcription factor interaction energy upon mutation) (Berg and von Hippel, 1987; Stormo and

Fields, 1998; Kinney et al., 2010). These energy matrices are scaled such that the wild type

sequence is colored in white, mutations that improve binding are shown in blue, and mutations that

weaken binding are shown in red. These energy matrices encode a full quantitative picture for how

we expect sequence to relate to binding for a given transcription factor, such that we can provide a

prediction for the binding energy of every possible binding site sequence as

binding energy¼
X

N

i¼1

"i; (4)

where the energy matrix is predicated on an assumption of a linear binding model in which each

base within the binding site region contributes a specific value ("i for the ith base in the sequence) to

the total binding energy. Energy matrices are either given in A.U. (arbitrary units) or, for several

cases where the gene has a simple repression or activation architecture with a single RNA polymer-

ase (RNAP) site, are assigned kBT energy units following the procedure in Kinney et al., 2010 and

validated on repression by lac repressor in Barnes et al., 2019. The details of how and when abso-

lute units are determined can be found in Appendix 3 Section ’Inference of scaling factors for energy

matrices’.

Sequence logos
From an energy matrix, we can also represent a preferred transcription-factor-binding site with the

use of the letters corresponding to the four possible nucleotides, as is often done with position

weight matrices (Schneider and Stephens, 1990). In these sequence logos, the size of the letters

corresponds to how strong the preference is for that given nucleotide at that given position, which

can be directly computed from the energy matrix. This method of visualizing the information con-

tained within the energy matrix is more easily digested and allows for quick comparison among vari-

ous binding sites.

Mass spectrometry enrichment plots
As the final piece of our experimental pipeline, we wish to determine the identity of the transcription

factor we suspect is binding to our putative binding site that is represented in the energy matrix and
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sequence logo. While the details of the DNA-affinity chromatography and mass spectrometry can be

found in the Materials and methods, the results of these experiments are displayed in enrichment

plots such as is shown in the bottom panel of Figure 2. In these plots, the relative abundance of

each protein bound to our site of interest is quantified relative to a scrambled control sequence. The

putative transcription factor is the one we find to be highly enriched compared to all other DNA-

binding proteins.

Regulatory cartoons
The ultimate result of all these detailed base-pair-by-base-pair resolution experiments yields a car-

toon model of how we think the given promoter is being regulated. A complete set of cartoons for

all the architectures considered in our study is presented later in Figure 4. While the cartoon serves

as a convenient, visual way to summarize our results, it is important to remember that these cartoons

are a shorthand representation of all the data in the four quantitative measures described above and

are, further, backed by quantitative predictions of how we expect the system to behave when tested

experimentally. Throughout this paper, we use consistent iconography to illustrate the regulatory

architecture of promoters with activators and their binding sites in green, repressors in red, and

RNAP in blue.

Newly discovered E. coli regulatory architectures
Elucidating individual promoters
With the tools outlined above, we are positioned to explore individual promoters, specifically those

belonging to the part of the E. coli genome for which the function of the genes is unknown. Previ-

ously christened as the ‘y-ome’, Ghatak et al., 2019 surprisingly found that roughly 35% of the

genes in E. coli lack experimental evidence of function. The situation is likely worse for other organ-

isms. For many of the genes in the y-ome, we remain similarly ignorant of how those genes are regu-

lated. Figures 4 and 5 provide several examples of genes which until now had unknown regulation.

As shown in Figure 5, our study has found the first examples that we are aware of in the entire E.

coli genome of a binding site for YciT. These examples are intended to show the outcome of the

methods developed here and to serve as an invitation to browse the online resource (https://www.

rpgroup.caltech.edu/RegSeq/interactive) where our full dataset is presented.

The ability to find binding sites for both widely acting regulators and transcription factors which

may have only a few sites in the whole genome allows us to get an in-depth and quantitative view of

any given promoter. As indicated in Figure 5(A) and (B), we were able to perform the relevant

search and capture for the transcription factors that bind our putative binding sites. In both of these

cases, we now hypothesize that these newly discovered binding site-transcription factor pairs exert

their control through repression. The ability to extract the quantitative features of regulatory control

through energy matrices means that we can take a nearly unstudied gene such as ykgE, which is reg-

ulated by an understudied transcription factor YieP, and quickly get to the point at which we can do

quantitative modeling in the style that we and many others have performed on the lac operon

(Vilar and Leibler, 2003; Vilar et al., 2003; Bintu et al., 2005; Kinney et al., 2010; Garcia and Phil-

lips, 2011; Vilar and Saiz, 2013; Barnes et al., 2019; Phillips et al., 2019).

A panoply of promoter results
Figure 6 (and Tables 1 and 2) provides a summary of the discoveries made in the work done here

using our next-generation Reg-Seq approach. The outcome of our study is a set of hypothesized

regulatory architectures as characterized by a suite of binding sites for RNAP, repressors, and activa-

tors, as well as the extremely potent binding energy matrices. We do not assume, a priori, that a

particular collection of such binding sites is AND, OR, or any other logic (Galstyan et al., 2019). Fig-

ure 6(A) provides a shorthand notation that conveniently characterizes the different kinds of regula-

tory architectures found in bacteria. In this (na, nr) notation, na and nr correspond to the number of

recovered activator- and repressor-binding sites, respectively. In previous work (Rydenfelt et al.,

2014), we have explored the entirety of what is known about the regulatory genome of E. coli,

revealing that the most common motif is the (0, 0) constitutive architecture, although we hypothe-

sized that this is not a statement about the facts of the E. coli genome, but rather a reflection of our

collective regulatory ignorance in the sense that we suspect that with further investigation, many of
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Figure 4. All regulatory architectures uncovered in this study. For each regulated promoter, activators and their

binding sites are labeled in green, repressors and their binding sires are labeled in red, and RNAP-binding sites

are labeled in blue. All cartoons are displayed with the transcription direction to the right. Only one RNAP site is

depicted per promoter. The transcription-factor-binding sites displayed have either been identified by the method

Figure 4 continued on next page
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these apparent constitutive architectures will be found to be regulated under the right environmen-

tal conditions. The two most common regulatory architectures that emerged from our previous date-

base survey are the (0, 1) and the (1, 0) architectures, the simple repression motif and the simple

activation motif, respectively. It is interesting to consider that the (0, 1) architecture is in fact the

repressor-operon model originally introduced in the early 1960s by Jacob and Monod, 1961 as the

concept of gene regulation emerged. Now we see retrospectively the far reaching importance of

that architecture across the regulatory genome.

For the 113 genes we considered, Figure 6(B) summarizes the number of simple repression (0, 1)

architectures discovered, the number of simple activation (1, 0) architectures discovered and so on.

A comparison of the frequency of the different architectures found in our study to the frequencies of

all the known architectures in the RegulonDB database is provided in Appendix 4—figure 2.

Tables 1 and 2 provide a more detailed view of our results. As seen in Table 1, of the 113 genes we

considered, 34 of them revealed no signature of any transcription-factor-binding sites and they are

labeled as (0, 0). The simple repression architecture (0, 1) was found 26 times, the simple activation

architecture (1, 0) was found 11 times, and more complex architectures featuring multiple binding

sites (e.g. (1, 1), (0, 2), (2, 0), etc.) were revealed as well. Further, for 18 of the genes that we label

’inactive’, Reg-Seq did not reveal a potential RNAP-binding site. The lack of observable RNAP site

could be because the proper growth condition to get high levels of expression was not used, or

because the mutation window chosen for the gene does not capture a highly transcribing TSS.

The tables also include our set of 15 ’gold standard’ genes for which previous work has resulted

in a knowledge (sometimes only partial) of their regulatory architectures. We find that our method

recovers the regulatory elements of these gold standard cases fully in 11 out of 15 cases, and the

majority of regulatory elements in two of the remaining cases. Overall, the performance of Reg-Seq

in these gold-standard cases (for more details see Appendix 2—figures 2 and 3) builds confidence

in the approach. Further, the failure modes inform us of the blind spots of Reg-Seq. For example,

we find it challenging to observe weaker binding sites when multiple strong binding sites are also

present such as in the marRAB operon. The araC case study shows that Reg-Seq does not perform

well when many repressor sites regulate the promoter. Additionally the method will fail when there

is no active TSS in the mutation window, as occurred in the case of dicA. Further details on the com-

parison to gold standard genes can be found in Appendix 2 Section ’False positive and false nega-

tive rates’.

We observe that the most common motif to emerge from our work (with the exception of consti-

tutive expression) is the simple repression motif. Another relevant regulatory statistic is shown in Fig-

ure 6(C) where we see the distribution of binding site positions. Our own experience in the use of

different quantitative modeling approaches to transcriptional regulation reveal that, for now, we

remain largely ignorant of how to account for transcription-factor-binding site positions, and data-

sets like the one presented here will begin to provide data that can help us uncover how this param-

eter dictates gene expression. Indeed, with binding site positions and energy matrices in hand, we

can systematically move these binding sites and explore the implications for the level of gene

expression, providing a systematic tool to understand the role of binding-site position.

Uncovering the action of global regulators
One of the revealing case studies that demonstrates the broad reach of our approach for discover-

ing regulatory architectures is offered by the insights we have gained into two widely acting regula-

tors, GlpR (Figure 7; Schweizer et al., 1985) and FNR (Figure 8; Körner et al., 2003; Kargeti and

Venkatesh, 2017). In both cases, we have expanded the array of promoters that they are now

known to regulate. Further, these two case studies illustrate that even for widely acting transcription

factors, there is a large gap in regulatory knowledge and the approach advanced here has the power

to discover new regulatory motifs. The newly discovered binding sites in Figure 7(A), with additional

Figure 4 continued

described in the Section ’Automated putative binding site algorithm’ or have additional evidence for their

presence as described in Table 2. Binding sites found for these promoters in the EcoCyc or RegulonDB databases

are only depicted in these cartoons if the sites are within the 160 bp mutagenized region studied, and are

detected by Reg-Seq.
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evidence for GlpR binding in Figure 7(B) and (C), more than double the number of operons known

to be regulated by GlpR as reported in RegulonDB (Santos-Zavaleta et al., 2019). We found five

newly regulated operons in our data set, even though we were not specifically targeting GlpR regu-

lation. Although the number of example promoters across the genome that we considered is too
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Figure 5. Examples of the insight gained by Reg-Seq in the context of promoters with no previously known

regulatory information. Activator-binding regions are highlighted in green, repressor binding regions in red, and

RNAP binding regions in blue. (A) From the information footprint of the ykgE promoter under different growth

conditions, we can identify a repressor-binding site downstream of the RNAP-binding site. From the enrichment of

proteins bound to the DNA sequence of the putative repressor as compared to a control sequence, we can

identify YieP as the transcription factor bound to this site as it has a much higher enrichment ratio than any other

protein. Lastly, the binding energy matrix for the repressor site along with corresponding sequence logo shows

that the wild-type sequence is the strongest possible binder and it displays an imperfect inverted repeat

symmetry. (B) Illustration of a comparable dissection for the phnA promoter. Numeric values for the displayed data

can be found in Figure 5—source data 1.

The online version of this article includes the following source data for figure 5:

Source data 1. Data for information footprints, energy matrices, PWMs, and mass spectrometry in Figure 5.

Ireland et al. eLife 2020;9:e55308. DOI: https://doi.org/10.7554/eLife.55308 12 of 68

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.55308


small to make good estimates, finding five regulated operons out of approximately 100 examined

operons supports the claim that GlpR widely regulates and many more of its sites would be found in

a full search of the genome. The regulatory roles revealed in Figure 7(A) also reinforce the evidence

that GlpR is a repressor.

For the GlpR-regulated operons newly discovered here, we found that this repressor binds

strongly in the presence of glucose while all other growth conditions result in greatly diminished, but

not entirely abolished, binding (Figure 7(A)). As there is no previously known direct molecular inter-

action between GlpR and glucose and the repression is reduced but not eliminated, the derepres-

sion in the absence of glucose is likely an indirect effect. As a potential mechanism of the indirect

effect, gpsA is known to be activated by CRP (Seoh and Tai, 1999), and GpsA is involved in the syn-

thesis of glycerol-3-phosphate (G3P), a known binding partner of GlpR which disables its repressive

activity (Larson et al., 1987). Thus, in the presence of glucose, GpsA and consequently G3P will be

found at low concentrations, ultimately allowing GlpR to fulfill its role as a repressor.

Prior to this study, there were four operons known to be regulated by GlpR, each with between 4

and 8 GlpR-binding sites (Larson et al., 1992; Zhao et al., 1994; Yang and Larson, 1996; Ye and

Larson, 1988; Weissenborn et al., 1992), where the absence of glucose and the partial induction of

GlpR was not enough to prompt a notable change in gene expression (Lin, 1976). These previously
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Figure 6. A summary of regulatory architectures discovered in this study. (A) The cartoons display a representative

example of each type of architecture, along with the corresponding shorthand notation. (B) Counts of the different

regulatory architectures discovered in this study. We exclude the ’gold-standard’ promoters (listed in

Appendix 2—table 1) unless new transcription factors are also discovered in the promoter. If, for example, one

repressor was newly discovered and two activators were previously known, then the architecture is still counted as

a (2,1) architecture. (C) Distribution of positions of binding sites discovered in this study for activators and

repressors. Only newly discovered binding sites are included in this figure. The position of the transcription-factor-

binding sites are calculated relative to the estimated TSS location, which is based on the location of the

associated RNAP site. Numeric values for the binding locations can be found in Figure 6—source data 1.

The online version of this article includes the following source data for figure 6:

Source data 1. Data for binding site locations in Figure 6.
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explored operons seemingly are regulated as part of an AND gate. glpTQ, glpRABC, glpD, and

glpFKX have high gene expression when grown in growth media that does not contain glucose but

does contain contain G3P (or glycerol, which leads to high concentrations of G3P). All other combi-

nations of growth media, such as M9 glucose with G3P, or growth in LB without G3P, lead to low

gene expression (Lin, 1976). In contrast, we have discovered operons whose regulation appears to

be mediated by a single GlpR site per operon. With only a single site, GlpR functions as an indirect

glucose sensor, as only the absence of glucose is needed to relieve repression by GlpR.

The second widely acting regulator our study revealed, FNR, has 151 binding sites already

reported in RegulonDB and is well studied compared to most transcription factors (Santos-

Zavaleta et al., 2019). However, the newly discovered FNR sites displayed in Figure 8(A), with

sequence logos of the respective sites displayed in Figure 8(B), demonstrate that even for well-

understood transcription factors there is much still to be uncovered. Our information footprints are

in agreement with previous studies suggesting that FNR acts as an activator. In the presence of O2,

dimeric FNR is converted to a monomeric form and its ability to bind DNA is greatly reduced

(Myers et al., 2013). Only in low oxygen conditions did we observe a binding signature from FNR,

and we show a representative example of the information footprint from one of 11 aerobic growth

conditions in Figure 8(A).

We observe quantitatively how FNR affects the expression of fdhE both directly through tran-

scription factor binding (Figure 9B and C) and indirectly through increased expression of ArcA

(Figure 9A, B, C and D). Also, fully understanding even a single operon often requires investigating

several regulatory regions as we have in the case of fdoGHI-fdhE by investigating the main promoter

for the operon as well as the promoter upstream of fdhE. 36% of all multi-gene operons have at

least one TSS which transcribes only a subset of the genes in the operon (Conway et al., 2014).

Regulation within an operon is even more poorly studied than regulation in general. The main pro-

moter for fdoGHI-fdhE has a repressor-binding site, which demonstrates that there is regulatory con-

trol of the entire operon. However, we also see in Figure 9(B) that there is control at the promoter

level, as fdhE is regulated by both ArcA and FNR and will therefore be upregulated in anaerobic

conditions (Compan and Touati, 1994). The main TSS transcribes all four genes in the operon, while

the secondary site shown in Figure 9(B) only transcribes fdhE, and therefore anaerobic conditions

Table 1. All promoters examined in this study, categorized according to type of regulatory

architecture.

Those promoters which have no recognizable RNAP site are labeled as inactive rather than constitu-

tively expressed (0, 0).

Architecture
Total number
of promoters

Number of promoters with
at least one newly
discovered binding site

All Architectures 113 48

(0,0) 34 0

(0,1) 26 21

(1,0) 11 10

(1,1) 4 3

(0,2) 4 4

(2,0) 3 2

(1,2) 4 3

(2,1) 2 2

(2,2) 1 1

(3,0) 3 1

(0,3) 2 1

(0,4) 1 0

inactive 18 0
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Table 2. All genes investigated in this study categorized according to their regulatory architecture, given as (number of activators,

number of repressors).

The regulatory architectures as listed reflect only the binding sites that would be able to be recovered within our 160 bp constructs,

but include both newly discovered and previously known binding sites. In those cases where binding sites that appear in RegulonDB

or Ecocyc are omitted from this tally, the Section ’Explanation of included binding sites’ in Appendix 4 has the reasoning, for each rele-

vant gene, why the binding sites are not shown. The table also lists the number of newly discovered binding sites, previously known

binding sites, and number of identified transcription factors. The evidence used for the transcription factor identification is given in the

final column. ’Bioinformatic’ evidence implies that discovered position weight matrices were compared to known transcription factor

position weight matrices. The literature sites column contains only those sites that are both expected to be and are, in actuality,

observed in the Reg-Seq data.

Architecture Promoter
Newly discovered
binding sites

Literature
binding sites

Identified
binding sites Evidence

(0, 0) acuI 0 0 0

aegA 0 0 0

arcB 0 0 0

cra 0 0 0

dnaE 0 0 0

ecnB 0 0 0

fdoH 0 0 0

holC 0 0 0

hslU 0 0 0

htrB 0 0 0

minC 0 0 0

modE 0 0 0

ycgB 0 0 0

mscL 0 0 0

pitA 0 0 0

poxB 0 0 0

rlmA 0 0 0

rumB 0 0 0

sbcB 0 0 0

sdaB 0 0 0

tar 0 0 0

ybdG 0 0 0

ybiP 0 0 0

ybjT 0 0 0

yehT 0 0 0

yfhG 0 0 0

ygdH 0 0 0

ygeR 0 0 0

yggW 0 0 0

ynaI 0 0 0

yqhC 0 0 0

zapB 0 0 0

zupT 0 0 0

amiC 0 0 0

(0, 1) araC 0 1 0

bdcR 1 0 1 Known binding location (NsrR) (Partridge et al., 2009)

Table 2 continued on next page
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Table 2 continued

Architecture Promoter
Newly discovered
binding sites

Literature
binding sites

Identified
binding sites Evidence

coaA 1 0 0

dicC 0 1 0

dinJ 1 0 0

ybeZ 1 0 0

idnK 1 0 1 Mass- Spectrometry (YgbI)

leuABCD 1 0 1 Mass- Spectrometry (YgbI)

mscM 1 0 0

yedK 1 0 1 Mass- Spectrometry (TreR)

rapA 1 0 1 Growth condition Knockout (GlpR), Bioinformatic (GlpR)

sdiA 1 0 0

tff-rpsB-
tsf

1 0 1 Growth condition Knockout (GlpR), Bioinformatic (GlpR), Knockout
(GlpR)

thiM 1 0 0

tig 1 0 1 Growth condition Knockout (GlpR), Bioinformatic (GlpR), Knockout
(GlpR)

ybiO 1 0 0

ydjA 1 0 0

yedJ 1 0 0

phnA 1 0 1 Mass- Spectrometry (YciT)

mutM 1 0 0

rhlE 1 0 1 Growth condition Knockout (GlpR), Bioinformatic (GlpR), Mass-
Spectrometry (GlpR)

uvrD 1 0 1 Bioinformatic (LexA)

dusC 1 0 0

ftsK 0 1 0

znuA 0 1 0

znuCB 0 1 0

(1, 0) waaA-
coaD

1 0 0

rcsF 1 0 0

groSL 1 0 0

mscS 1 0 0

thrLABC 1 0 0

yeiQ 1 0 1 Growth condition Knockout (FNR), Bioinformatic (FNR)

ycbZ 1 0 0

ygjP 1 0 0

lac 0 1 0 Bioinformatic (CRP)

yehS 1 0 0

yehU 1 0 1 Growth condition Knockout (FNR), Bioinformatic (FNR)

(0, 2) pcm 2 0 0

yecE 2 0 1 Mass- Spectrometry (HU)

yjjJ 2 0 1 Growth condition Knockout (MarA), Bioinformatic (MarA)

dcm 2 0 1 Mass- Spectrometry (HNS)

(1, 1) arcA 2 0 2 Growth condition Knockout (FNR), Bioinformatic (FNR), Mass-
Spectrometry (FNR, CpxR)

Table 2 continued on next page

Ireland et al. eLife 2020;9:e55308. DOI: https://doi.org/10.7554/eLife.55308 16 of 68

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.55308


will change the stoichiometry of the proteins produced by the operon. By investigating over a hun-

dred promoter regions in this experiment it becomes feasible to target multiple promoters within an

operon as we have done with fdoGHI-fdhE. We can then determine under what conditions an

operon is internally regulated.

In summary
By examining the over 100 promoters considered here, grown under 12 growth conditions, we have

a total of more than 1000 information footprints and data sets. In this age of big data, methods to

explore and draw insights from that data are crucial. To that end, as introduced in Figure 10, we

have developed an online resource (see https://www.rpgroup.caltech.edu/RegSeq/interactive) that

makes it possible for anyone who is interested to view our data and draw their own biological con-

clusions. Information footprints for any combination of gene and growth condition are displayed via

drop down menus. Each identified transcription-factor-binding site is marked, and energy matrices

for all transcription-factor-binding sites are displayed. In addition, for each gene, we feature a simple

cartoon-level schematic that captures our now current, best understanding of the regulatory archi-

tecture and resulting mechanism.

The interactive figure in question was invaluable in identifying transcription factors, such as GlpR,

whose binding properties vary depending on growth condition. As sigma factor availability also

varies greatly depending on growth condition, studying the interactive figure identified many of the

secondary RNAP sites present. The interactive figure provides a valuable resource both to those

who are interested in the regulation of a particular gene and those who wish to look for patterns in

gene regulation across multiple genes or across different growth conditions.

Table 2 continued

Architecture Promoter
Newly discovered
binding sites

Literature
binding sites

Identified
binding sites Evidence

dgoR 0 2 0 Bioinformatic (CRP) Bioinformatic (DgoR)

ykgE 2 0 2 Growth condition Knockout (FNR), Bioinformatic (FNR), Mass-
Spectrometry(YieP) Knockout (YieP)

ymgG 2 0 0

(2, 0) asnA 2 0 0

fdhE 2 0 2 Growth condition Knockout (FNR, ArcA), Bioinformatic (FNR,
ArcA), Knockout (ArcA)

xylF 0 2 0

(1, 2) marR 0 3 0 Mass- Spectrometry (MarR)

aphA 3 0 2 Growth condition Knockout (FNR), Bioinformatic (FNR), Mass-
Spectrometry (DeoR)

iap 3 0 0

ilvC 3 0 1 Mass- Spectrometry (IlvY) (Rhee et al., 1998)

(2, 1) maoP 3 0 3 Growth condition Knockout (GlpR), Bioinformatic (GlpR), Knockout
(PhoP, HdfR, GlpR)

rspA 1 2 1 Mass- Spectrometry (DeoR)

(2, 2) ybjX 4 0 4 Bioinformatic (2 PhoP sites), Mass- Spectrometry (HNS, StpA)

(3, 0) araAB 0 3 0

xylA 0 3 0

yicI 3 0 0

(0, 3) ompR 0 3 0

ybjL 3 0 0

(0, 4) relBE 0 4 0 Mass- Spectrometry (RelBE)

Ireland et al. eLife 2020;9:e55308. DOI: https://doi.org/10.7554/eLife.55308 17 of 68

Research article Physics of Living Systems

https://www.rpgroup.caltech.edu/RegSeq/interactive
https://doi.org/10.7554/eLife.55308


tig

1GA
C

2TG
C

3T

C 4GT
C

5A
T
C
G

6G
T

C 7CA
G

8A

T
C

9ATC 10AG
C
T

11G
C
T

12C
G
T

13AC
G
T

rhlE

1TGAC 2GAC 3C 4AGC 5CTAG 6GT

C 7TA
C
G 8 9C 10C 11AC

T

12AG
T
C

13GAC 14CA

rapA

1A

G
C

2GT
C

3AC
G

4GC
T

5GT
C

6T

C 7T
G

8AG
C

9GC
A

10T
C

11C
T

12G
C
T

13G
C
T

1TA

G
C

2C 3T
A

C

G

4C 5 6A
G
C

7A

G

C 8GA

T
C

9G
A

C

10G
T
A
C

11A
C
T

12CT
A

G

13G
T

A

maoP

tff

1CT

G

2CA
G

3GTA
C

4GC 5C
G

6T

G

C 7AC
G

8ATG
C

9TC
A
G

10A
G

T
C

11G
A
C

12AG
C
T

13A

T
C

14G
T
A

5

25

e
n
ri

c
h
m

e
n
t

rhlE

0.002

0.002

-15-55-95  25

-15-55-95  25

in
fo

rm
a
ti

o
n
 (

b
it

s)
in

fo
rm

a
ti

o
n
 (

b
it

s)
in

fo
rm

a
ti

o
n
 (

b
it

s)

position

rapA

glucose

no glucose

glucose

no glucose

0.002

0.003

tig

0.003

0.004

0.003

GlpRGlpR

GlpRPhoP
HdfR

maoP

glucose
0.005

0.006

GlpR

0.005

glucose
GlpR

glucose
GlpR

glucose
GlpR

glucose

no glucose

no glucose

0.006

GlpR

GlpR

0.0002

position

glucose

no glucose0.002

rhlE

-15-55-95  25

-15-55-95  25

-15-55-95  25

GlpRRNAP

GlpR

GlpR

HdfR
PhoP

RNAP

RNAPRNAP GlpR

tff

GlpR

RNAP

mutation decreases expression

mutation increases expression

activator

repressor

(A)

(B) (C)

Figure 7. GlpR as a widely acting regulator. (A) Information footprints for the promoters which we found to be

regulated by GlpR, all of which were previously unknown. Activator-binding regions are highlighted in green,

repressor-binding regions in red, and RNAP-binding regions in blue. (B) GlpR was demonstrated to bind to rhlE by

mass spectrometry. (C) Sequence logos for GlpR-binding sites. Binding sites in the promotes of tff, tig, maoP, rhlE,

and rapA have similar DNA binding preferences as seen in the sequence logos and each transcription-factor-

binding site binds strongly only in the presence of glucose (As shown in (A)). These similarities suggest that the

same transcription factor binds to each site. To test this hypothesis, we knocked out GlpR and ran the Reg-Seq

experiments for tff, tig, and maoP. In (A), we see that knocking out GlpR removes the binding signature of the

transcription factor. Numeric values for the binding locations can be found in Figure 7—source data 1.

The online version of this article includes the following source data for figure 7:

Source data 1. Data for information footprints, PWMs, and mass spectrometry in Figure 7.
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Discussion
The study of gene regulation is one of the centerpieces of modern biology. As a result, it is surpris-

ing that in the genome era, our ignorance of the regulatory landscape in even the best-understood

model organisms remains so vast. Despite understanding the regulation of transcription initiation in

bacterial promoters (Browning and Busby, 2016), and how to tune their expression (Barnes et al.,

2019), we lack an experimental framework to unravel understudied promoter architectures at scale.
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Figure 8. FNR as a global regulator. FNR is known to be upregulated in anaerobic growth, and here we found it

to regulate a suite of six genes. In aerobic growth conditions, the putative FNR sites are weakened. (A) Information

footprints for the six regulated promoters. Activator binding regions are highlighted in green, repressor-binding

regions in red, and RNAP binding regions in blue. (B) Sequence logos for the FNR-binding sites displayed in (A).

The DNA binding preference of the six sites are shown to be similar from their sequence logos. Numeric values for

the binding locations can be found in Figure 8—source data 1.

The online version of this article includes the following source data for figure 8:

Source data 1. Data for information footprints and PWMs in Figure 8.
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As such, in our view, one of the grand challenges of the genome era is the need to uncover the reg-

ulatory landscape for each and every organism with a known genome sequence. Given the ability to

read and write DNA sequences at will, we are convinced that to make that reading of DNA

sequence truly informative about biological function and to give that writing the full power and

poetry of what Crick christened ’the two great polymer languages’, we need a full accounting of

how the genes of a given organism are regulated and how environmental signals communicate with

the transcription factors that mediate that regulation – the so-called ’allosterome’ problem

(Lindsley and Rutter, 2006). The work presented here provides a general methodology for making

progress on the former problem and also demonstrates that, by performing Reg-Seq in different

growth conditions, we can make headway on the latter problem as well.

The advent of cheap DNA sequencing offers the promise of beginning to achieve this grand chal-

lenge in the form of MPRAs as reviewed in Kinney and McCandlish, 2019. A particular implementa-

tion of such methods was christened Sort-Seq (Kinney et al., 2010) and was demonstrated in the

context of well understood regulatory architectures. A second generation of the Sort-Seq method

(Belliveau et al., 2018) established a full protocol for regulatory dissection through the use of DNA-

affinity chromatography and mass spectrometry which made it possible to identify the transcription

factors that bind the putative binding sites discovered by Sort-Seq. However, there were critical

shortcomings in the method, not least of which was that it lacked the scalability to uncover the regu-

latory genome in a more multiplexed manner.
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Figure 9. Inspection of a genetic circuit. (A) Here, the information footprint of the arcA promoter is displayed

along with the energy matrix describing the discovered FNR-binding site. (B) Intra-operon regulation of fdhE by

both FNR and ArcA. The information footprint of fdhE is displayed. The discovered sites for FNR and ArcA are

highlighted and the energy matrix for ArcA is displayed. A TOMTOM (Gupta et al., 2007) search of the binding

motif found that ArcA was the most likely candidate for the transcription factor. The displayed information

footprint from a knockout of ArcA demonstrates that the binding signature of the site, and its associated RNAP

site, are no longer determinants of gene expression. (C) Sequence logos for FNR generated from both the sites

cataloged in RegulonDB, as well as the discovered sites regulating arcA and fdhE. (D) Sequence logos for ArcA

from sites contained in RegulonDB and the ArcA site regulating fdhE. Numeric values for the binding locations

can be found in Figure 9—source data 1.

The online version of this article includes the following source data for figure 9:

Source data 1. Data for information footprints, energy matrices, and PWMs in Figure 9B.
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The work presented here builds on the foundations laid in previous studies by invoking RNA-Seq

as a readout for the level of expression of the promoter mutant libraries needed to infer information

footprints and their corresponding energy matrices and sequence logos. The original inference and

hypothesis generation is followed by a combination of mass spectrometry, comparison of binding

motifs, and gene knockouts to identify the transcription factors that bind those sites. The case stud-

ies described in the main text showcase the ability of the Reg-Seq method to deliver on the promise

of beginning to uncover the regulatory genome systematically. The extensive online resources hint

at a way of systematically reporting those insights in a way that can be used by the community at

large to develop regulatory intuition for biological function and to design novel regulatory architec-

tures using energy matrices.

However, several shortcomings remain in the approach introduced here. First, the current imple-

mentation of Reg-Seq is not fully automated for various aspects in the experimental pipeline; for

example, manual examination of information footprints is used to generate testable regulatory

hypotheses. As the method is scaled up further, this can limit throughput of the analysis. To address

this for future work, we have created an automated methodology for identifying putative binding

sites, which we describe in the Materials and methods section, that will simplify future scaled up

efforts at identifying putative binding sites. All putative binding sites reported in this study either

were identified through the automated methodology or have additional evidence for their presence

such as mass spectrometry. In addition, these regulatory hypotheses can be converted into gene

regulatory models using statistical physics (Buchler et al., 2003; Bintu et al., 2005). However, here

too, as the complexity of the regulatory architectures increases, it will be of great interest to use

automated model generation as suggested in a recent biophysically based neural network approach

(Tareen and Kinney, 2019).

Another key challenge faced by the methods described here is that the mass spectrometry and

the gene knockout confirmation aspects of the experimental pipeline remain low-throughput and, at

times, inconclusive. Occasionally, we have found it challenging to observe weaker binding sites

when multiple strong binding sites are also present. This was the case for the marRAB operon. To

make our transcription factor identification methods more high-throughput, we have begun to

explore a new generation of experiments such as in vitro binding assays that will make it possible to

accomplish transcription factor identification in a multiplexed manner. Specifically, we are exploring

multiplexed mass spectrometry measurements and multiplexed Reg-Seq on libraries of gene
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Figure 10. Representative view of the interactive figure that is available online. This interactive figure captures the

entirety of our dataset. Each figure features a drop-down menu of genes and growth conditions. For each such

gene and growth condition, there is a corresponding information footprint revealing putative binding sites, an

energy matrix that shows the strength of binding of the relevant transcription factor to those binding sites and a

cartoon that schematizes the newly-discovered regulatory architecture of that gene. Numeric values for the

binding locations can be found in Figure 10—source data 1.

The online version of this article includes the following source data for figure 10:

Source data 1. Data for information footprints, energy matrices, and PWMs in Figure 10.
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knockouts as ways to break the identification bottleneck. Transcription factor identification using

Reg-Seq is also complicated by the growth conditions that we can test; for the 18 genes that we

tested and labeled as ’inactive’ in this study, Reg-Seq did not reveal even an RNAP-binding site, sug-

gesting that the proper growth condition to get high levels of expression was not used, or perhaps

that the mutation window chosen for the gene does not capture a highly transcribing TSS. While

information on the location of a TSS is available for 2500 of 2600 operons in E. coli (Santos-

Zavaleta et al., 2019), this information does not guarantee those sites will have high transcription in

the growth conditions studied. Similarly, many genes have multiple TSS that can be active under dif-

ferent growth conditions. In these cases, we are limited both by the finite set of growth conditions

we test as well as by the length of the mutation window, as it cannot always capture all TSS.

Another shortcoming of the current implementation of the method is that it misses regulatory

action at a distance. Indeed, our laboratory has invested a significant effort in exploring such long-

distance regulatory action in the form of DNA looping in bacteria (Johnson et al., 2012; Han et al.,

2009) and V(D)J recombination in jawed vertebrates (Lovely et al., 2015; Hirokawa et al., 2020). It

is well known that transcriptional control through enhancers in eukaryotic regulation is central in con-

texts ranging from embryonic development to hematopoiesis (Melnikov et al., 2012). The current

incarnation of the methods, as described here, have focused on contiguous regions in the vicinity of

the transcription start site (within the 160 base pair mutagenized window). Clearly, to dissect the

entire regulatory genome, these methods will have to be extended to non-contiguous regions of the

genome.

Despite their limitations, the findings from this study provide a foundation for systematic, multi-

plexed regulatory dissections. We have developed a method to pass from complete regulatory igno-

rance to designable, regulatory architectures and we are hopeful that others will adopt these

methods with the ambition of uncovering the regulatory architectures that preside over their organ-

isms of interest.

Materials and methods
Here, we provide an overview of the key methodological aspects of Reg-Seq. Extensive details of

the methods used in this study can also be found on the GitHub Wiki associated with this work.

Library design and construction
We selected 113 TSS from the E. coli K12 genome for experiments. The promoter regions analyzed

in this study were each 160 base pairs in length, a region that includes 45 base pairs downstream

and 115 base pairs upstream of each TSS. The general principles by which we selected each TSS

were to first prioritize those TSS which have been extensively experimentally validated and cata-

logued in RegulonDB (Santos-Zavaleta et al., 2019) or EcoCyc (Keseler et al., 2017). Secondly, we

selected those sites which had evidence of active transcription from RACE experiments (Mendoza-

Vargas et al., 2009) and were listed in RegulonDB. If a TSS lacked both experimental evidence and

active transcription as indicated by RACE experiments, we used the computationally predicted TSS

as indicated on RegulonDB (Santos-Zavaleta et al., 2019) or EcoCyc (Keseler et al., 2017) and

determined previously by Huerta and Collado-Vides, 2003. If there were multiple TSS located

upstream of the gene in question, we selected the TSS closest to the gene start, unless selecting

one further upstream would allow for multiple TSS to be contained in the 160 base pair mutated

region analyzed for each promoter. Not all TSS locations are known, and many genes have multiple

TSS. The exact start sites used, as well as the reasoning behind our selection of each TSS, are listed

in Supplementary file 1.

Promoter variants were synthesized on a microarray (TWIST Bioscience, San Francisco, CA). The

sequences were designed computationally such that each base in the 160 base pair promoter region

has a 10% probability of being mutated. For each promoter’s oligonucleotide library, we ensured

that the mutation rate as averaged across all sequences was kept between 9.5% and 10.5%, other-

wise the library was regenerated. There are an average of 2200 unique promoter sequences per

gene (for an analysis of how our results depend upon number of unique promoter sequences see

Appendix 3—figure 1). The library arrived lyophilized (76 pmol) and was resuspended in 100 mL of

TE (pH 8.0). Of the resuspended oligonucleotide, 1 mL was amplified for 12 cycles with New England
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Biolabs Q5 High-Fidelity 2x Master Mix (NEB, Ipswich, MA) to increase the quantity of DNA in the

library. Unless otherwise stated, all amplifications were performed using this polymerase mixture.

The PCR product was then run on a 2% TAE agarose gel, and approximately 200 base pair ampli-

cons were extracted using a Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine, CA). To add a

random 20-nucleotide barcode to each oligonucleotide, 1 ng of the purified DNA library was ampli-

fied for 10 PCR cycles using primers containing random 20-nucleotide DNA overhangs. All primer

sequences can be found in Supplementary file 2. After cleaning this PCR product using a Zymo

Clean and Concentrator Kit (Zymo Research, Irvine, CA), the library was cloned into the plasmid

backbone of pJK14 (SC101 origin) (Kinney et al., 2010) using Gibson Assembly. An illustration of

this plasmid is displayed in Appendix 1—figure 1. Genetic constructs were electroporated into E.

coli K-12 MG1655 (Blattner et al., 1997) and plated on LB plates with kanamycin. After 24 hr of

growth on plates, libraries were scraped and inoculated into M9 media with 0.5% glucose in prepa-

ration for DNA sequencing.

All genetic barcodes were inserted 120 base pairs from the 5’ end of the mRNA, containing 45

base pairs from the targeted regulatory region, 64 base pairs containing primer sites used in the

construction of the plasmid, and 11 base pairs containing a three frame stop codon. Exact sequen-

ces of primers and spacer sequences for the constructs are listed in Supplementary file 2. Following

each genetic barcode, there is an RBS, a GFP-coding region, and a terminator.

Preparation of libraries for sequencing
To prepare cDNA libraries for sequencing, cells were grown to an optical density of 0.3 and RNA

was stabilized using Qiagen RNA Protect (Qiagen, Hilden, Germany). Lysis was performed using

lysozyme (Sigma Aldrich, Saint Louis, MO) and RNA isolated using the Qiagen RNA Mini Kit. Reverse

transcription was preformed using Superscript IV (Invitrogen, Carlsbad, CA) with a specific primer for

the labeled mRNA. qPCR was then performed in triplicate to check the level of DNA contamination.

Any sample that had contaminating DNA at a level of 5% or more of the mRNA concentration was

discarded. DNA libraries were prepared by growing cells to an optical density of 0.3 and isolating

plasmid DNA with a spin miniprep kit (Qiagen, Hilden, Germany).

Sequencing
After preparing the barcoded libraries, we used next-generation sequencing (NGS) to map pro-

moters to their respective barcodes. Sequencing libraries (both cDNA and DNA) had unindexed illu-

mina flow cell adaptors attached via PCR, using primers that amplified a 221 base pair region that

included the random barcode. We limited PCR cycles to exponential amplification, as determined by

qPCR. Specifically, when we performed qPCR to check for DNA contamination, we also determined

the number of cycles at which each sample reached exponential amplification, and then repeated

the PCR reactions with the determined number of cycles to limit bias. After amplification, libraries

were cleaned using a Zymo Clean and Concentrator kit and analyzed on an Agilent 2100 Bioanalyzer

(Agilent, Santa Clara, CA). Samples were submitted to NGX Bio (NGX Bio, South Plainfield, NJ) for

150 base pair paired-end sequencing on a Hi-Seq 2500 (Illumina, San Diego, CA). We typically

acquired 250 million total reads for mapping of libraries. Further details of how we process the

sequences can be found in Appendix 1 Section ’Sequencing Analysis’ and the GitHub Wiki associ-

ated with this work.

To quantify relative gene expression values for each promoter mutant in our library, we next grew

cells expressing the DNA libraries in various growth conditions to an OD600 of 0.3. DNA and cDNA

libraries were prepared in the same way as stated previously, and were sequenced at the Millard

and Muriel Jacobs Genetics and Genomics Laboratory at Caltech on a HiSeq 2500 with a 100 base

pair single read flow cell. An average of five unique 20 base pair barcodes per variant promoter was

used for the purpose of counting transcripts. Specifically, for each promoter variant the number of

sequences from the DNA library and the number of sequences produced from mRNA are

determined.

Determination of energy matrices
Energy matrices are used to represent the binding energy contribution for each nucleotide in a DNA

sequence. We use relative gene expression values, as determined by counting genetic barcodes
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from NGS data for each mutated variant of a given regulatory sequence, and infer the energy contri-

bution of each nucleotide by maximizing the mutual information between the rank-ordered binding

strength predictions from the energy matrix and the gene expression data. We also perform this

maximization using MCMC. Further discussion of how energy matrices are inferred can be found in

Appendix 3 Section ’Energymatrix inference’ and on the GitHub Wiki that accompanies this study.

In each energy matrix plot, a red box indicates that a mutation to a nucleotide in that position

decreases the energy of transcription factor binding, while a blue box indicates that a mutation at a

given nucleotide position increases transcription-factor-binding energy. Energy matrices are typically

given in arbitrary units, but the method by which we can assign absolute units in kbT is covered in

Appendix 3 Section ’Inference of scaling factors for energy matrices’.

DNA-affinity chromatography and mass spectrometry
Upon identifying a putative transcription-factor-binding site, we used DNA-affinity chromatography,

as performed in Belliveau et al., 2018, to isolate and enrich for the transcription factor of interest.

In brief, we order biotinylated oligos of our binding site of interest (Integrated DNA Technologies,

Coralville, IA) along with a control, ’scrambled’ sequence, that we expect to have no specificity for

the given transcription factor. We tether these oligos to magnetic streptavidin beads (Dynabeads

MyOne T1; ThermoFisher, Waltham, MA), and incubate them overnight with whole cell lysate grown

in the presences of either heavy (with 15N) or light (with 14N) lysine for the experimental and control

sequences, respectively. The next day, proteins are recovered by digesting the DNA with the PtsI

restriction enzyme (New England Biolabs, Ipswich, MA), whose cut site was incorporated into all

designed oligos.

Protein samples were then prepared for mass spectrometry by either in-gel or in-solution diges-

tion using the Lys-C protease (Wako Chemicals, Osaka, Japan). Liquid chromatography coupled

mass spectrometry (LC-MS) was performed as previously described by Belliveau et al., 2018, and is

further discussed in Appendix 3 Section ’Processing of mass spectrometry experiments’. SILAC

labeling was performed by growing cells (D LysA) in either heavy isotope form of lysine or its natural

form.

It is also important to note that while we utilized the SILAC method to identify the transcription

factor identities, our approach does not require this specific technique. Specifically, our method only

requires a way to contrast between the copy number of proteins bound to a target promoter in rela-

tion to a scrambled version of the promoter. In principle, one could use multiplexed proteomics

based on isobaric mass tags (Pappireddi et al., 2019) to characterize up to 10 promoters in parallel.

Isobaric tags are reagents used to covalently modify peptides by using the heavy-isotope distribu-

tion in the tag to encode different conditions. The most widely adopted methods for isobaric tag-

ging are the isobaric tag for relative and absolute quantitation (iTRAQ) and the tandem mass tag

(TMT). This multiplexed approach involves the fragmentation of peptide ions by colliding with an

inert gas. The resulting ions are resolved in a second MS-MS scan (MS2).

Only a subset (13) of all transcription factor targets were identified by mass spectrometry due to

limitations in scaling the technique to large numbers of targets. The transcription factors identified

by this method are enriched more than any other DNA binding protein, with p<0.01 using the outlier

detection method as outlined by Cox and Mann, 2008, with corrections for multiple hypothesis test-

ing using the method proposed by Benjamini and Hochberg, 1995. Details on data processing can

be found in Appendix 3 Section ’Processing of mass spectrometry experiments’. A detailed explana-

tion of all experimental and computational steps can be found in the GitHub Wiki that accompanies

this work.

Construction of knockout strains
Conducting DNA-affinity chromatography followed by mass spectrometry on putative binding sites

resulted in potential candidates for the transcription factors that bind to the target region. For some

cases, to verify that a given transcription factor is, in fact, regulating a given promoter, we repeated

the RNA sequencing experiments on strains in which the transcription factor of interest has been

knocked out.

To construct the knockout strains, we ordered strains from the Keio collection (Yamamoto et al.,

2009) from the Coli Genetic Stock Center. These knockouts were put in a MG1655 background via
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phage P1 transduction and verified with Sanger sequencing. To remove the kanamycin resistance

that comes with the strains from the Keio collection, we transformed in the pCP20 plasmid

(Datsenko and Wanner, 2000), induced FLP recombinase, and then selected for colonies that no

longer grew on either kanamycin or ampicillin, verifying both loss of the chromosomally integrated

kanamycin resistance and the pCP20 plasmid which confers ampicillin resistance. Finally, we trans-

formed our desired promoter libraries into the constructed knockout strains, allowing us to perform

the RNA sequencing in the same context as the original experiments.

Automated putative binding site algorithm
We introduce a systematized way of identifying the locations of binding sites to supplement manual

curation (described in the Section ’Manual selection of binding sites’). As illustrated in Figure 11, for

a given information footprint, we average over 15 base pair ’windows’. We then determine which

base pairs are part of a regulatory region by setting an information threshold of 2:5� 10
�4 bits.

Threshold selection is described in Appendix 2 Section ’False positive and false negative rates’. All

base pair positions that pass the information threshold were then joined into regulatory regions. We

consider ’activator-like’ (mutation decreases expression) and ’repressor-like’ (mutation increases

expression) base pairs separately. This means that it is possible to have overlapping repressor- and

activator-binding sites identified. We join any base pair positions within four base pairs of each other

into single regulatory regions. We then find the edges of the region by trimming off any base pairs

at the edge that are below the information threshold (even if the 15 base pair average is above the

threshold). While we can often resolve overlapping or nearby repressors from activators, a limitation

of this method of identification is that is cannot resolve two activators or two repressors that are

very close to each other or overlapping.

To identify RNAP-binding sites, we compare the sequence preference (through energy matrices

and sequence logos) to experimentally validated examples of RNAP sites. We have examples of

energy matrices for the s70 RNAP site from Belliveau et al., 2018. For energy matrices of other s

factor binding sites, such as s32 and s28, we use energy matrices generated from within the Reg-Seq

experiment itself. For a s32 binding site, for example, we used the example from the hslU gene. For

a s28 binding site, we used the energy matrix generated from the dnaE gene. We ’scan’ the example

energy matrices across the mutated region. For each position in the region, we calculate the Pearson

correlation coefficient between the example RNAP energy matrix and the inferred energy matrix at

that position. We find RNAP-binding site locations by thresholding the Pearson correlation coeffi-

cients at a value of 0.45. When performing manual curation of binding sites, we visually compare the

sequence logos of the example RNAP-binding sites to the sequence logos of putative binding sites.

Further details of the method to create energy matrices and compare them to known motifs are

given in Appendix 3 Section ’Energy matrix inference’ and Appendix 3 Section ’TOMTOM motif

comparison’, respectively. Further, a detailed discussion of energy matrix construction is provided in

the Sequencing Analysis GitHub Wiki page that accompanies this work.

Manual selection of binding sites
Similarly to the automated method of locating putative binding regions, we look for regions of high

mutual information in the information footprints. While there was no hard cut-off for mutual informa-

tion values during manual curation, we select clusters of base pairs that have a similar average infor-

mation value (2:5� 10
�4 bits) to that described in the Section ’Automated putative binding site

algorithm’.

During manual curation of binding sites, we also disqualify any binding sites where there are only

three or fewer base pairs with high values in the mutual information footprint. The logic behind this

decision is that individual bases with very high mutual information can potentially indicate that a

putative binding site is only active when a certain mutation occurs. In turn, the binding site would

not be active in wild-type conditions. To explain why this is, consider that a typical binding site muta-

tion, at any given base pair, will significantly weaken the binding site of interest. Therefore, each of

those mutated base pairs is said to have a ’large effect’ on expression. For a very poor binding site

that is not active in the wild-type case, most mutations will further weaken a site which already will

have only a minor effect on gene expression. However, for a small number of base pairs, a mutation

can occur that makes the DNA bind more tightly to the transcription factor, making it relevant for
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gene expression. Therefore, in the case of an extremely weak binding site that is not relevant in the

wild type condition, there can still be a small number of highly informative bases. Initial hypothesis

generation in Reg-Seq was done manually. However, all those sites that are reported in Table 2 that

do not have additional validation through mass spectrometry, gene knockouts, or bioinformatics

appear in the set of putative binding sites generated by the method described in Section ’Auto-

mated putative binding site algorithm’.

Code and data availability
An in-depth discussion of all experimental protocols and mathematical analysis used in this study

can be found on the GitHub Wiki for this study (Ireland, 2020 https://github.com/RPGroup-PBoC/

RegSeq/wiki (copy archived at https://github.com/elifesciences-publications/RegSeq). All code used

for processing data and plotting as well as the final processed data, plasmid sequences, and primer

sequences can also be found on the GitHub repository(archived by Zenodo; https://doi.org/10.

5281/zenodo.3966687). Energy matrices were generated using the MPAthic software (Ireland and

Kinney, 2016). All raw sequencing data is available at the Sequence Read Archive (accession no.

PRJNA599253 and PRJNA603368). All inferred information footprints and energy matrices can be

found on the GitHub repository (archived by Zenodo; https://doi.org/10.5281/zenodo.3966687). All
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Figure 11. Procedure to identify binding site regions automatically. First, an information footprint is generated for

the target region. Next, the information footprint is smoothed over a 15 base pair sliding window and a threshold

of 2:5� 10
�4 bits is applied to identify regions of interest. RNAP-binding sites are first identified (in blue), and the

remainder of the regulatory regions are identified as repressor-binding sites (if they tend to increase expression on

mutation from wild type) or activator-binding sites (if they tend to decrease expression upon mutation).

The online version of this article includes the following source data for figure 11:

Source data 1. Information footprint data displayed in Figure 11.
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mass spectrometry raw data is available on the CaltechData repository (https://doi.org/10.22002/d1.

1336).
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Appendix 1

Extended details of experimental design
Choosing target genes

Genes in this study were chosen to cover several different categories. Twenty-nine genes had at

least one transcription-factor-binding site listed in RegulonDB and were picked to validate our

method under a number of conditions (15 with relevant high evidence sites). Thirty-seven were cho-

sen because the work of Schmidt et al., 2016 demonstrated that gene expression changed signifi-

cantly under different growth conditions. A handful of genes such as minC, maoP, or fdhE were

chosen because we found either their physiological significance interesting, as in the case of minC,

whose product is crucial for cell division and proper partitioning of the cell into two equal sized

daughters in E. coli (Lutkenhaus, 2007). Alternatively, for some cases we found the gene regulatory

question interesting, such as for the intra-operon regulation demonstrated by fdhE. The remainder

of the genes were chosen because they had no regulatory information, often had minimal informa-

tion about the function of the gene, and had an annotated transcription start site (TSS) in Regu-

lonDB. A list of all genes chosen can be found in Supplementary file 1.

Sequencing analysis

barcode

pSC101kanR

GFP

mutated promoter
library

Appendix 1—figure 1. Schematic of the genetic construct used in this study. Mutated DNA libraries

for each regulatory region were expressed from a pSC101 plasmid with kanamycin resistance (kanR).

Each mutated sequence is 160 bp in length, which includes 45 bp downstream and 115 bp upstream

of a given TSS. Each mutated sequence is flanked by primer-binding sites to facilitate cloning. The

genetic construct also contains a random barcode, a ribosome-binding site (RBS), a GFP gene, and a

terminator labeled with a large ’T’.

In this Appendix section, we provide further details associated with the analysis of next-genera-

tion sequencing (NGS) results, from both the ’mapping’ experiment, in which each unique barcode

is ’linked’ to its corresponding mutated promoter region, and from the barcode sequencing experi-

ments, in which the frequency of each barcode is counted and relative gene expression values deter-

mined. It is important to perform two sequencing experiments, in this manner, for a couple of

reasons. Oligonucleotide libraries ordered from Twist Bioscience, which we use to construct pro-

moter regions mutated at a 10% rate, are prone to random errors. This means that we do not fully

know what is in the ordered library, and so it is necessary to sequence the full library and determine

which mutations are present in each promoter region. The ’mapping’ phase of experiments also

serves to connect each random, genetic barcode (which is added via PCR with primer overhangs) to

its corresponding, mutated promoter. By linking barcodes to promoters, we are able to build a

’codex’ that enables us to count genetic barcodes and, in turn, understand the relative gene expres-

sion values for each mutant promoter sequence.

For the ’mapping’ of genetic barcodes to their corresponding mutant promoter, we use paired-

end sequencing, with 150 cycles for both Read 1 and Read 2, on a Hi-Seq 2500 machine. We

acquired 250 million total reads for mapping of libraries.

In our analysis of FASTQ files, we removed any barcodes that were associated with a promoter

variant which had insertions or deletions. Similarly, any genetic barcodes associated with multiple
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promoter variants were removed from the analysis, as were any sequences which appeared only

once (barcodes must appear at least two times to be analyzed, as the appearance of a single, unique

barcode sequence could be attributed to a sequencing error). The paired end reads from this

sequencing step were assembled using the FLASH tool (Magoč and Salzberg, 2011). Any sequence

with a PHRED score less than 20 was then removed using the FastX toolkit (Hannon, 2010). The spe-

cific commands used for this step of our analysis are listed on the GitHub Wiki associated with this

work.

To analyze the ’mapping’ data and link each genetic barcode to its unique, mutagenized pro-

moter region, we used a custom Python module, which can be found on the GitHub repository asso-

ciated with this work. This module contains functions to check that sequences are the expected

length, map unique barcodes to their corresponding promoter regions, and extract barcode sequen-

ces for subsequent sequencing experiments. We also provided a Jupyter notebook on the GitHub

repository which provides a step-by-step walkthrough of the code used in processing sequencing

data.

After mapping each barcode to its corresponding, mutated promoter region, we next ’count’

barcodes, both DNA and cDNA, to determine the relative gene expression values for each mutated

promoter. For barcode counting experiments, only the region containing the random, 20 bp bar-

code was sequenced. For each growth condition, each promoter library yielded 20,000 to 500,000

usable sequencing reads. If the dataset for a gene in a given growth condition did not have at least

20,000 reads, it was not analyzed further, as we consistently found that, below this threshold, we

reached a regime wherein the inference reliability of MCMC was reduced.

When preparing DNA and cDNA for NGS, we add a 4nt barcode, via PCR, to the library isolated

from each growth condition. These 4nt barcodes are used during data analysis both to map each

library to its particular growth condition and to keep track of biological replicates, while the 20 bp

barcodes can be used to identify each mutated promoter region. We performed all experiments

with two biological replicates.

After collecting the FASTQ files, we perform quality filtering with FastX. We then perform bar-

code splitting with the FastX toolkit to separate each FASTQ file based on its growth condition, as

well as separate the sequencing files based on whether they are derived from the DNA or cDNA

library. Each experimental condition (both biological replicates, RNA vs. DNA, and growth condi-

tions) receives a unique, 4nt barcode sequence, which enables us to identify where each library

came from. Full details of our sequencing analysis methodologies, as well as all Python scripts, can

be found on the GitHub repository associated with this work.

Growth conditions

The growth conditions used in this study were inspired by Schmidt et al., 2016, a study which

observed changes in the E. coli proteome under growth conditions similar to the ones presented.

The growth conditions utilized in this study are tabulated in Appendix 1—table 1. The growth con-

ditions explored here involved a range of environmental perturbations including altering the carbon

source, inducing stress, or introducing trace metals. Unless otherwise noted in the caption of Appen-

dix 1—table 1, the cells were grown in the medium at 37˚C until reaching an OD of 0.3, at which

point the cells were harvested and the RNA extracted. These growth conditions were chosen so as

to span a wide range of growth rates, as well as to illuminate any carbon source specific regulators.
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Appendix 1—table 1. All growth conditions used in the Reg-Seq study.

Heat shocked cells were exposed to 42˚C for 5 min upon reaching OD 0.3 as this is known to induce

transcription by s32 (Arsène et al., 2000). Low oxygen growth cells were grown in a flask sealed with

parafilm with minimal oxygen, although some was present as no anaerobic chamber was used. This

level of oxygen stress was still sufficient to activate FNR binding, thus activating anaerobic metabo-

lism. For cells grown with iron, upon reaching OD of 0.3 iron was added and cells were incubated for

10 min before harvesting RNA. Growth without cAMP was accomplished by the use of the JK10 strain

(Kinney et al., 2010) which does not maintain its cAMP levels.

Growth conditions

M9 with glucose (0.5%)

M9 with acetate (0.5%)

M9 with arabinose (0.5%)

M9 with xylose (0.5%) and arabinose (0.5%)

M9 with succinate (0.5%)

M9 with trehalose (0.5%)

M9 with glucose (0.5%) and 5 mM sodium salycilate

LB

heat shock in M9 with glucose (0.5%)

LB in low oxygen

zinc, 5 mM ZnCl in M9 with glucose (0.5%)

iron, 5 mM FeCL in M9 with glucose (0.5%)

no cAMP in M9 with glucose (0.5%)

All knockout experiment were performed in M9 with glucose except for the knockouts for arcA,

hdfR, and phoP which were grown in LB.
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Appendix 2

Validating Reg-Seq against previous methods and results
The work presented here is effectively a third-generation of the use of Sort-Seq methods for the dis-

covery of regulatory architecture. The primary difference between the present work and previous

generations (Kinney et al., 2010; Belliveau et al., 2018) is the use of RNA-Seq rather than fluores-

cence and cell sorting as a readout of the level of expression of our promoter libraries. As such,

there are many important questions to be asked about the comparison between the earlier methods

and this work. We attack that question in several ways. First, as shown in Figure 3, we have per-

formed a head-to-head comparison of the two approaches to be described further in this section.

Second, as shown in the next section, our list of candidate promoters included roughly 20% for

which there is at least one experimentally validated transcription-factor-binding site. In these cases,

we examined the extent to which our methods recover the known features of regulatory control

about those promoters.

Comparison between Reg-Seq by RNA-Seq and fluorescent sorting
As the basis for comparing the results of the fluorescence-based Sort-Seq approach with our RNA-

Seq-based approach, we use information footprints and position weight matrices as our metrics.

When making these comparisons between the two methods, we compare the values of a position

weight matrix (PWM), often displayed as a sequence logo, generated from the Sort-Seq and Reg-

Seq methods. PWMs contain the probabilities that a given base will occur at a given position in the

binding site. We calculate the Pearson correlation coefficient between the PWM values (represented

as the height of the letters at each position) for the two methods. To compute the correlation coeffi-

cient, we use

r¼

P

4

a¼1

PN
i¼1

ðxi;a ��xÞðyi;a ��yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

4

a¼1

PN
i¼1

ðxi;a ��xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

4

a¼1

PN
i¼1

ðyi;a ��yÞ2
q ; (5)

where xi;a and yi;a are the entries of the PWM of nucleotide a at position i obtained from Sort-Seq

and Reg-Seq respectively, N is the total length of the binding site, and �x and �y are the means of xi;a
and yi;a, respectively. As an example, consider the following sequence logo from a Sort-Seq

experiment,

Position A C G T

1 0.01 0.01 0.03 0.95

2 0.04 0.83 0.06 0.07

3 0.70 0.17 0.11 0.02

4 0.86 0.01 0.10 0.03

and the same region resulting from a Reg-Seq experiment:

Position A C G T

1 0.01 0.04 0.03 0.92

2 0.05 0.85 0.07 0.03

3 0.74 0.14 0.09 0.03

4 0.81 0.02 0.13 0.04

We see that for both sequence logos, the preferred nucleotides from position 1 through 4 are

T-C-A-A, as indicated by the values in bold. Plugging in these values into Equation 5, we get a Pear-

son correlation coefficient of r ¼ 0:997, indicating substantial agreement between the Sort-Seq and

Reg-Seq methods in this example. As a way to visualize similarity, for each position in the sequence

logo we can plot the numerical value as resulting from the Sort-Seq experiment (xi;a) vs. the
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corresponding value obtained from the Reg-Seq experiment (yi;a). Perfect correspondence between

the methods would result in all the data lying on the x ¼ y line (Appendix 2—figure 1).

Appendix 2—figure 1. Mock data comparing Sort-Seq and Reg-Seq sequence logo values. These

data have a Pearson correlation coefficient of r ¼ 0:997. This high correlation is also indicated by the

data deviating little from the x ¼ y line.

Figure 3 shows examples of this comparison for four distinct genes of interest. Figure 3(A) shows

the results of the two methods for the lacZYA promoter with special reference to the CRP-binding

site. Both the information footprint and the the position weight matrices (displayed with sequence

logos) identify the same binding site.

Figure 3(B) provides a similar analysis for the dgoRKADT promoter where the position weight

matrices for the CRP-binding site from Reg-Seq and Sort-Seq have a correlation coefficient of r =

0.90. Figure 3(C) provides a quantitative dissection of the relBE promoter which is repressed by

RelBE. Here, we use both information footprints and expression shifts as a way to quantify the signif-

icance of mutations to different binding sites across the promoter. Finally, Figure 3(D) shows a com-

parison of the two methods for the marRAB promoter. The two approaches both identify a MarR-

binding site.

False positive and false negative rates
We introduce a systematized way of identifying the locations of binding sites, as shown in Figure 11,

that allows the false negative and false positive rate of binding site identification to be clearly

assessed. For a given information footprint, we average over 15 base pair ’windows’. We then deter-

mine which base pairs are part of a regulatory region by setting an information threshold of 2:5�

10
�4 bits, which is explained below. All base pair positions that pass the information threshold are

then joined into ’regulatory regions’, which we consider to be ’activator-like’ (if a mutation decreases

expression) or ’repressor-like’ (if a mutation increases expression). This means that it is possible to

identify overlapping repressor- and activator-binding sites. We join any base pair positions within 4

base pairs of each other into a single regulatory region. We then find the edges of each binding site

region by trimming off any base pairs at the edge that are below the information threshold (even if

the 15 base pair average is above the threshold). A limitation of this method of identification is that

is cannot resolve transcription-factor-binding sites that are very close to each other. The primary rea-

sons for this is that putative binding sites will overlap after the smoothing step. While the method

could be tuned to avoid treating nearby regions as the same site, many transcription-factor-binding

sites will have sections of base pairs within their site where base identity has little to no effect on

gene expression. Helix-turn-helix type transcription factors like CRP (whose binding site can be

observed in Figure 3) are common examples of this phenomenon.

To determine which information threshold to use as a cutoff for a putative binding site, as dis-

played in Figure 11, we selected a training set of genes which included two of our ’gold standard’

genes with previously studied binding sites, DgoR (the upstream site from the dgoR promoter) and

CRP (from the araAB promoter), two genes with only RNAP-binding sites, including hslU (under heat

shock) and poxB, and several genes that we classified as inactive, wherein no RNAP-binding sites or

other binding sites could be identified. These inactive genes included hicB, mtgA, eco, hslU (without
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heat shock), and yncD. The growth condition (heat shock) is specified for the hslU promoter as tran-

scription occurs from a s32 RNAP site, which will be inactive except during heat shock. We selected

the threshold such that the RNAP sites and known binding sites were identified, while no binding

sites were identified in the inactive regions.

We then determine a set of binding sites upon which to test this method and determine a false

negative rate for the Reg-Seq experiment. In this set of binding sites, we include those sites which

are ’high-evidence’ according to EcoCyc. Such ’high evidence’ binding sites have been validated

experimentally with the binding of purified protein or through site mutation. Some ’high-evidence’

sites are excluded because they are not included within our 160 base pair, mutagenized sequence,

or because they are not active in any of the growth conditions that we tested. Justifications for those

binding sites which were not included are now listed in a new appendix; Appendix 4 Section ’Expla-

nation of included binding sites’. A full list of promoters and binding sites that were included in the

set of genes used to validate our automated binding-site finding algorithms are also provided in

Appendix 2—table 1.

Appendix 2—table 1. A suite of experimentally validated and high-evidence binding sites used to

test our automated binding site finding algorithm.

Specifically, this list of genes was used to test the false negative rate of our Reg-Seq method by

examining what fraction of high-evidence sites were also identified with Reg-Seq.

Gene Transcription factor Transcription factor type

rspA CRP activator

rspA YdfH repressor

araAB AraC (two sites) activator

znuCB Zur repressor

xylA CRP activator

xylA XylR (two sites) activator

xylF XylR (two sites) activator

dicC DicA repressor

relBE RelBE repressor

ftsK LexA repressor

znuA Zur repressor

lac CRP activator

marR Fis activator

marR MarA activator

marR MarR (two sites) repressor

dgoR CRP activator

dgoR DgoR (right site) repressor

ompR IHF (three sites) repressor

ompR CRP repressor

dicA DicA repressor

araC AraC (two sites) repressor

araC AraC (two sites) activator

araC CRP activator

araC XylR (two sites) repressor

For each promoter contained in Appendix 2—table 1, we used the automated procedure out-

lined above and in Figure 11 to identify the activator- and repressor-binding sites. A visual display

of the expected binding sites, the information footprints for the promoters in Appendix 2—table 1,

and the discovered binding sites are all displayed in Appendix 2—figures 2 and 3. To assess the
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false negative rate, we compare the identified regulatory regions to the known binding sites from

Appendix 2—table 2. At this stage, we did not consider the identities of the binding sites; we

merely consider their presence or absence. Inferred binding sites are declared to ’match’ the known

binding site if the automated identification procedure classifies at least half of the base pairs

reported in EcoCyc as belonging to a transcription-factor-binding site and correctly determines

whether the binding site belongs to an activator or repressor.

We do not require exact matching of the edges of the binding sites for several reasons. One such

reason is that, in some cases, the sequence of half of a binding site (for example, corresponding to

one half of a helix-turn-helix binding motif) can contribute relatively little to gene expression, and so

will not have high mutual information values in the corresponding information footprint for that bind-

ing site. While this may appear unintuitive for transcription factors where both sections of the bind-

ing site are bound by identical halves of a dimer, we see several examples of this in our Reg-Seq

experiment results, including for CRP-binding sites of the rspA promoter studied during our analysis

of false negative rates. We can see in Appendix 2—figures 2 and 3 that the downstream half of the

binding site is not identified as important for gene expression. If we examine the wild type sequence

of the rspA promoter, we also see that, for the upstream half of the sequence, the wild type matches

the five most conserved bases of the consensus sequence (TGTGA) perfectly. The downstream half

of the sequence, however, has three mismatches out of five bases. The downstream half of the bind-

ing site already binds to its target transcription factor poorly, so further mutations have little effect.

While it is true that CRP binds to that sequence region, it is also true that CRP binds only extremely

weakly to that section of the region. A similar effect can be seen in previous work from

Belliveau et al., 2018 where a mutation in the downstream half of a CRP-binding site in the xylE

promoter had more than a 10-fold greater effect on binding energy than mutation in the upstream

half of the binding site. As such, we are lenient when evaluating the successes of our algorithm in

this regard. Furthermore, the methods that have been used to determine the presence of ’high evi-

dence’ binding sites in the past, such as ChIP-Seq, do not typically have base pair resolution with

which to precisely determine the edges of binding sites (Skene and Henikoff, 2015).

Lastly, a known weakness of our algorithmic approach is that binding sites that are extremely

close or overlapping cannot be distinguished from each other initially. For example, the XylR sites in

the xylF promoter are only separated by three bases according to RegulonDB. While the sites can

be distinguished upon later investigation through gene knockouts, mass spectrometry, or motif com-

parison, our initial algorithm joins the sites into one large site. While this is a weakness of the algo-

rithm, for our purposes it does not constitute a false negative, as the important regions for

regulation are still discovered. All regions for all promoters that are classified as regulatory regions,

their identities as activators, repressors, or RNAP binding sites, as well as their starting and ending

base pairs, can be found in Supplementary file 3. Furthermore, we summarize the success and fail-

ures of the method at each binding site in Appendix 2—table 2 below.

Appendix 2—table 2. The results of the comparison between experimentally verified, high-evidence

binding sites and Reg-Seq-binding sites.

A visual illustration of the comparison can be found in Appendix 2—figures 2 and 3.

Gene Transcription factor Was the region classified correctly?

rspA CRP Yes

rspA YdfH Yes

araAB AraC (two sites) Yes

znuCB Zur Yes

xylA CRP Yes

xylA XylR (two sites) Yes

xylF XylR (two sites) Yes

dicC DicA Yes

relBE RelBE Yes

ftsK LexA Yes

Continued on next page
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Appendix 2—table 2 continued

Gene Transcription factor Was the region classified correctly?

znuA Zur Yes

lac CRP Yes

marR Fis No

marR MarA Yes

marR MarR (two sites) Yes

dgoR CRP Yes

dgoR DgoR (right site) No

ompR IHF (three sites) Yes

ompR CRP No

dicA DicA No

araC AraC (four sites) one site identified

araC CRP No

araC XylR (two sites) No

We see in Appendix 2—table 2 that 11 of the 15 promoter regions included in Appendix 2—

table 1 have all transcription-factor-binding sites classified as putative transcription factors, two

have the majority of sites correctly classified, and two do not have any of their binding sites correctly

classified as regulatory elements. We can see the information footprints used in the correct identifi-

cations in Appendix 2—figures 2 and 3. We could alternatively consider that 23 out of 33 binding

sites are correctly classified. However, we argue that the false negative rate should be considered

on a per promoter basis, rather than on the basis of individual binding sites. The reason for this argu-

ment can be seen in the two ’worst’ cases of correct binding site identification; namely, for the araC

and dicA promoters.

The araC promoter is repressed by multiple repressor-binding sites in all growth conditions

tested. araC only has high expression transiently after addition of arabinose (Johnson and Schleif,

1995), and while growth in arabinose is utilized in this experiment, RNA was not collected during

the window of high expression. The case study shows that Reg-Seq does not perform well when

many repressor sites regulate the promoter. Reg-Seq relies on mapping the effect on expression of

mutating a particular site, and when many strong repressor sites are present, expression change will

be minimal unless all repressor sites are weakened through mutation. Additionally, in this highly

repressed case, the RNAP-binding site we observe in the mutagenized region is not the documented

RNAP site in RegulonDB, indicating that we are seeing transcription primarily from an alternative

TSS. Different RNAP sites are often regulated differently, and in this case, the presence of an alter-

native and dominant RNAP-binding site (in the repressed case), likely contributes to a failure to

observe six of the seven binding sites in the araC promoter. Similarly, in the dicA promoter, we did

not find an RNAP-binding site in the studied region, which would make it very unlikely for any tran-

scription-factor-binding sites to be identifiable.

In order to determine false positive rates, we test against promoters for which we are certain

there are not additional, unannotated binding sites. Most known binding sites were not determined

using a method like Reg-Seq, which looks for regulatory elements across an entire promoter region

at base pair resolution. Rather, many efforts to pinpoint transcription-factor-binding site locations

use assays like ChIP-Seq, which prioritizes looking for all binding sites of a given transcription factor

across the entire genome. For those promoters studied with Reg-Seq, there are five promoters for

which we have reason to believe that there are no undiscovered binding sites. There is evidence that

the zupT promoter is constitutive (Grass et al., 2005), and the marR, relBE, dgoR, and lacZYA pro-

moters have all been examined for binding sites at base pair resolution previously (in the Sort-Seq

experiment [Belliveau et al., 2018; Kinney et al., 2010]).

To evaluate false positive rates, we examine the putative activator and repressor binding sites as

identified using our automated methodology (described previously), and compare any known
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binding sites to the known binding sites for the target promoters. We also classify any putative regu-

latory regions that are outside of known transcription-factor-binding sites as false positives. Similarly,

any identified RNAP-binding sites which were outside of the known RNAP binding locations were

classified as false positives. In the zupT promoter, only the correctly placed RNAP site was identified.

There were similarly no false positives identified in the marR, relBE, dgoR, or lacZYA promoters.

We additionally compare the energy matrices from putative regulatory regions to known binding

site motifs. The known motifs are obtained either from RegulonDB or are generated from data from

our prior Sort-Seq experiments (see Belliveau et al., 2018). We utilize the TOMTOM motif compari-

son software from Gupta et al., 2007 to perform these comparisons. TOMTOM generates a p-value

under the null hypothesis that the two compared motifs are drawn independently from the same

underlying probability distribution. We test 95 motifs against each target motif that we are attempt-

ing to identify. The 95 resulting p-values (for each target) generated by TOMTOM are displayed in

Appendix 2—figure 4. A full discussion of TOMTOM can be found in Appendix 3 Section ’TOM-

TOM motif comparison’. We only included those transcription factors that either have over 50 known

binding sites in RegulonDB or have experimental measurements of binding site preference, such as

in Sort-Seq (Belliveau et al., 2018). As such, we used TOMTOM on the XylR, CRP, MarA, MarR, and

RelBE sites in Appendix 2—table 2. We utilized a p-value cutoff of 0.05, corrected for multiple

hypothesis testing. 95 motifs were tested against each target, and using the Bonferroni correction

leads to a p-value cutoff of 0:05
95

¼ 5� 10
�4. In Appendix 2—figure 4 we show that the correct tran-

scription factor falls below the p-value threshold in all cases. For the CRP-binding site in the lacZYA

promoter, FNR also falls below the cutoff, but CRP has a calculated p-value that is » 6 orders of

magnitude lower, and so is clearly identified as the correct binding site. The results show that motif

comparisons can be used reliably in those cases where we have high-quality energy matrices for

comparison.
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Appendix 2—figure 2. A visual comparison of the literature binding sites (left panel) and the extent

of the binding sites discovered by our algorithmic approach (right panel). RNAP-binding sites are

also labeled in the right panel, but RNAP-binding sites are not included in the false positive analysis.

Numeric values for the displayed data can be found in Appendix 2—figure 2—source data 1.

The online version of this article includes the following source data is available for figure 2:

Appendix 2—figure 2—source data 1. Data for information footprints and identified regions in

Appendix 2—figure 2.
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Appendix 2—figure 3. A continuation of the visual comparison of the literature binding sites (left

panel) and the binding sites discovered by our algorithmic approach (right panel) begun in Appen-

dix 2—figure 2.

The online version of this article includes the following source data is available for figure 3:

Appendix 2—figure 3—source data 1. Data for information footprints and identified regions in

Appendix 2—figure 3.
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Appendix 2—figure 4. A visual display of the results of the TOMTOM motif comparison between

the discovered binding sites and known sequence motifs from RegulonDB and our prior Sort-Seq

experiment (Belliveau et al., 2018). Each dot in a given panel represents a comparison between the

target position weight matrix (given in the figure title) and a position weight matrix for a given

transcription factor. The p-value is calculated using the null hypothesis, that both motifs are drawn

independently from the same underlying probability distribution. The red dotted line is displayed at

a p-value of 5� 10
�4. The line represents a p-value threshold of 0.05 that has been corrected for

multiple hypothesis testing using the Bonferroni correction (95 motifs were compared against the

target for a p-value threshold of 0:05
95

¼ 5� 10
�4). Numeric values for the displayed data can be found

in Appendix 2—figure 4-source data 1.

The online version of this article includes the following source data is available for figure 4:

Appendix 2—figure 4—source data 1. All p-values displayed in Appendix 2—figure 4.
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Appendix 3

Extended details of analysis methods
Information footprints

We favor the use of information footprints as a tool for hypothesis generation to identify regions

which may contain transcription-factor-binding sites. In general, a mutation within a transcription fac-

tor site is likely to weaken that site. We look for groups of positions where mutation away from wild

type has a large effect on gene expression. Our datasets consist of nucleotide sequences, the num-

ber of times we sequenced a given, specific mutated promoter in the plasmid library, and the num-

ber of times we sequenced its corresponding mRNA. A simplified illustrative dataset on a

hypothetical 4 nucleotide sequence is shown in Appendix 3—table 1.

Appendix 3—table 1. Example dataset of four nucleotide sequences, and the corresponding counts

from the plasmid library and mRNAs.

Sequence Library sequencing counts mRNA counts

ACTA 5 23

ATTA 5 3

CCTG 11 11

TAGA 12 3

GTGC 2 0

CACA 8 7

AGGC 7 3

One strategy to measure the impact of a given mutation on expression is to take all sequences

which have base b at position i and determine the number of mRNAs produced per read in the

sequencing library. By comparing the values for different bases we can determine how large of an

effect a mutation has on gene expression. For example in Appendix 3—table 1, for the second posi-

tion (i ¼ 2) those sequences that contain the wild type base A (b ¼ A) have 20 sequencing counts

out of 50 (23þ 3þ 11þ 3þ 0þ 7þ 3 ¼ 50) from the DNA library and 10 sequencing counts from the

50 (5þ 5þ 11þ 12þ 2þ 8þ 7 ¼ 50) mRNA reads. For all other sequences (b ¼ C;G; or T), there are

30 sequencing counts from the DNA library and 40 sequencing counts from mRNA. A measure of

the effect of mutation on expression would be to compare the ratios

mRNA counts = total mRNA counts
library counts = total library counts between mutated and wild-type sequences. For the data in

Appendix 3—table 1, sequences with a wild type base at position 2 will have a ratio of purple

ð10=50Þ=ð20=50Þ ¼ 0:5 and sequences with a mutated base at position 2 will have a ratio of

ð40=50Þ=ð30=50Þ » 1:3.

While directly comparing ratios is one way to measure the effect on gene expression, we use

mutual information to quantify the effect of mutation, as Kinney et al., 2010 demonstrated could be

done successfully. In Appendix 3—table 1, the frequency of the nucleotide A in the DNA library at

position 2 is 0.4, as 20 out of 50 sequencing counts have an A at position 2. Similarly, the other fre-

quencies at position 2 are 0.32 for C, 0.14 for G and 0.14 for T. In the observed mRNA sequence

counts, we find C at 34 of of 50 total mRNA counts, which gives a frequency of 0.68, indicating that

Cytosine is enriched in the mRNA transcripts compared to the DNA library. The frequencies for the

other bases are 0.2 for A, 0.06 for T and 0.06 for G. Large enrichment of a base compared to others

in mRNA sequencing counts occurs when base identity is important for gene expression.

We are classifying bases as either wild type (m ¼ 0) or mutated (m ¼ 1). A discussion of this

assumption can be found at the end of this section. We compute mutual information at position i as

Ii ¼
X

1

m¼0

X

1

�¼0

pðm;�Þ log2
pðm;�Þ

pmutðmÞpexprð�Þ

� �

; (6)
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where pexprð�Þ is the ratio of the number of DNA (�¼ 0) or mRNA (�¼ 1) sequencing counts to the

total number of counts,

pexprð�Þ ¼

P

(mRNA counts)=(total counts) if �=1
P

(Library Sequencing counts)=(total counts); if �=0.

�

(7)

From the example data in Appendix 3—table 1 we can calculate pexprð�Þ. To do so, we sum up

DNA counts and mRNA counts from all sequences and divide by the total number of counts

(50þ 50¼ 100) to obtain

pexprð�Þ ¼
0:5; if �=1

0:5; if �=0.

�

(8)

In addition, pmutðmÞ is the fraction of the total counts that either have a mutation (m¼ 1) at the

given position or the fraction that have a wild-type base (m¼ 0) at the position. pmut has to be com-

puted for each position individually. For position 1, the wild type base is an A, and we see that there

are a total of 100 sequencing counts, of which 46 counts (DNA and mRNA combined) contain an A

at position 1. Therefore, pðmÞ can be calculated for position 1 as

pmutðmÞ ¼
0:46; if m=0

0:54; if m=1.

�

(9)

Lastly, the joint distribution pðm;�Þ is the probability that a given sequencing read in the dataset

will have expression level m and mutation status m. pðm;�Þ is calculated by dividing the number of

sequencing reads at the chosen position with mutation status m and expression status m by the total

number of sequencing reads. In the case of the example dataset in Appendix 3—table 1 and for

m¼ 0 and �¼ 0, we sum the sequencing reads that are wild type at position 1 and also are in the

DNA library. As there are 17 sequences that fit the criteria out of 100 total sequences,

pðm¼ 0;�¼ 0Þ ¼ 0:17. The other values of pðm;�Þ can be calculated to be

pðm;�Þ ¼

0:17; if m=0 (wild type base) and �=0 (DNA)

0:21; if m=1 (mutated base) and �=1 (RNA)

0:33; if m=1 and �=0

0:29; if m=0 and �=1.

8

>

>

>

<

>

>

>

:

(10)

The marginal distributions pexpr and pmut can be obtained by summing over one of the two varia-

bles, that is,

pexprð�Þ ¼
X

m

pðm;�Þ; (11)

pmutðmÞ ¼
X

�

pðm;�Þ: (12)

Plugging the values calculated above into Equation (6) yields a mutual information value of 0.06

bits at position 1. The unit is bits because the mutual information is computed with a logarithm of

base 2. Other bases can be chosen, however, that results in different units for the mutual

information.

Mutual information is a measurement that quantifies how much the measurement of one of two

variables reduces uncertainty of the other variable. For example, very low mutual information means

that by knowing one variable one gains no information about the other variable, while on the other

hand high mutual information means that by knowing one variable our knowledge about the others

increases. At a position where base identity matters little for expression level, there would be little

difference in the frequency distributions for the library and mRNA transcripts. The entropy of the dis-

tribution would decrease only by a small amount when considering the two types of sequencing

reads separately.

We seek to determine the effect on gene expression of mutating a given base. However, if muta-

tion rates at each position are not fully independent such that pðmi;mi0Þ 6¼ pðmiÞpðmi0Þ, then the infor-

mation value calculated in Equation (6) will also encode the effect of mutation at correlated
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positions. For instance, if position i is part of an activator-binding site, mutating it will have a large

effect on gene expression. If position i0 is not within the activator site, then mutating position i0 will

have minimal true effect on gene expression. However, if mutations at the two bases are correlated,

mutating position i0 will make it more likely for i, and therefore the activator-binding site, to be

mutated. Knowledge that i0 is mutated is predictive of overall expression, and so position i0 will have

high mutual information according to Equation (6), even though that position has no regulatory

function. In our experiment we designed sequences to be synthesized such that each position had a

probability of mutation that was independent of mutation at any other position. However, due to

errors in the oligonucleotide synthesis process, additional mutations in the ordered sequences were

introduced. Sequencing our DNA libraries reveals that mutation at a given base pair can make muta-

tion at another base pair more likely by up to 10%, where neighboring base pairs are the most likely

to have correlations between mutations. This is enough to cloud the signature of most transcription

factors in an information footprint calculated using Equation (6).

We need to determine values for piðmj�Þ when mutations are independent, and to do this we

need to fit these quantities from our data. We assert that

CmRNAh i / e�bEeff (13)

is a reasonable approximation to make, which we will justify by considering a number of possible

regulatory scenarios. CmRNAh i is the average number of mRNAs produced and Eeff is an effective

binding energy for the sequence that can be determined by summing contributions from each posi-

tion in the sequence independently. There are many possible underlying regulatory architectures,

and those that have been discovered with Reg-Seq are summarized in Table 1. While we will show

that under reasonable assumptions this approach is useful for any of these regulatory architectures,

let us first consider the simple case where there is only an RNAP site in the region under study. We

can write down an expression for average gene expression per cell as

CmRNAh i / pbound /
P
NNS

e�bEP

1þ P
NNS

e�bEP
; (14)

where pbound is the probability that the RNAP is bound to DNA and is known to be proportional to

gene expression in E. coli (Ackers et al., 1982; Buchler et al., 2003; Garcia and Phillips, 2011), EP

is the energy of RNAP binding, NNS is the number of nonspecific DNA binding sites, and P is the

number of RNAP. If RNAP binds weakly then P
NNS

e�bEP<<1, and we can simplify Equation (14) to

CmRNAh i / e�bEP : (15)

Using this relation, we can compute the ratio of average mRNA counts in wild type C
WTi

mRNA


 �

to

average mRNA counts in a mutant C
Muti
mRNA


 �

as

C
WTi

mRNA


 �

C
Muti
mRNA


 �¼
e
�bEPWTi

e
�bEPMuti

; (16)

C
WTi

mRNA


 �

C
Muti
mRNA


 �¼ e
�b EPWTi

�EPMuti

� �

; (17)

where EPWTi
is the binding energy of RNAP to the wild-type binding site and EPMuti

is the binding

energy of RNAP to the mutant-binding site. Using the assumption that each position contributes

independently to the binding energy, we can simplify the differences in energies to

EPWTi
�EPMuti

¼ DEPi
. We can now calculate the probability of finding a specific base in the expressed

sequences. If the probability of finding a wild type base at position i in the DNA library is

piðm¼ 0j�¼ 0Þ, then
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piðm¼ 0j�¼ 1Þ ¼

piðm¼ 0j�¼ 0Þ
C
WTi
mRNAh i

C
Muti
mRNAh i

piðm¼ 1j�¼ 0Þþ piðm¼ 0j�¼ 0Þ
C
WTi
mRNAh i

C
Muti
mRNAh i

; (18)

piðm¼ 0j�¼ 1Þ ¼
piðm¼ 0j�¼ 0Þe�bDEPi

piðm¼ 1j�¼ 0Þþ piðm¼ 0j�¼ 0Þe�bDEPi

: (19)

Under certain conditions, we can also infer a value for piðmj�¼ 1Þ using a linear model when there

are any number of activator or repressor-binding sites. We will demonstrate this in the case of a sin-

gle activator and a single repressor, although a similar analysis can be done when there are greater

numbers of transcription factors. Define p¼ P
NNS

e�bEP and a¼ A
NNS

e�bEA where A is the number of acti-

vators, and EA is the binding energy of the activator. Also define r¼ R
NNS

e�bER where R is the number

of repressors and ER is the binding energy of the repressor. Then we can compute the average num-

ber of produced mRNA as

CmRNAh i / pbound /
pþ pae�b�AP

1þ aþ pþ rþ pae�b�AP
; (20)

where �AP is the interaction energy of activators and the RNAP. One assumption we make is that

activators and RNAP bind weakly to their binding sites (a<<1 and p<<1) but interact strongly

(pae�b�AP>>p). Under this assumption, RNAP and associated activators are much more likely to bind

DNA as a unit than separately. The binding energy measurements by Forcier et al., 2018 support

this assumption in the case of CRP in the lac operon. The DNA-protein binding energy of CRP is

measured to be -3.18 kBT and the interaction energy between CRP and RNAP is measured to be

�AP ¼�6:56kBT. The copy number of CRP is A»4000 (Schmidt et al., 2016), the copy number of

RNAP is P»2000 in slowly growing cells (Bremer and Dennis, 1996), and the RNAP binding energy

for the wild type lac promoter is EP » � 5:2 kBT (Brewster et al., 2012). As NNS »4:6� 10
6, the value

of a can be calculated to be a» 4000

4:6�106
e3:18 »0:02. Similarly p can be calculated to be

p» 2000

4:6�106
e5:2 »0:08. Lastly, we can calculate pae�b�AP

»pae6:56 »1. We can see that these numbers satisfy

the assumptions a<<1, p<<1, and pae��AP>>p. We can simplify Equation (20) to

CmRNAh i / pbound /
pae�b�AP

1þ rþ pae�b�AP
: (21)

The last assumption we make is that repressors bind very strongly (r>>1 and r>>pae��AP ). To jus-

tify this assumption, we once again look to the lac operon. Wild-type LacI copy number is R»10 and

the wild-type binding energy for the O1 operator is ER » � 16kBT (Garcia and Phillips, 2011). We

can use these values to compute r» 10

4:6�106
e16 »20. We can simplify Equation (21) to

CmRNAh i /
pae�b�AP

r
(22)

CmRNAh i / e�bð�EP�EAþERÞ (23)

As we typically assume that RNAP binding energy, activator binding energy, and repressor bind-

ing can all be represented as sums of contributions from their constituent bases, the combination of

the energies can be written as a total effective energy Eeff which is a sum of independent contribu-

tions from all positions within the binding sites.

We fit the parameters for each base using Markov Chain Monte Carlo Method (MCMC). Two

MCMC runs are conducted using randomly generated initial conditions. We require both chains to

reach sufficiently similar distributions to prove the convergence of the chains or we repeat the runs.

During the analysis, we artificially treat mutation rates at all positions as equal, as we do not wish for

mutation rate to play a role in mutual information calculations. The information values are smoothed

by averaging with neighboring values.
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By only considering wild type or mutated energy contributions to the total effective binding

energy rather than having separate values for energy contributions from all four base pairs, our

methods will not be accurate in the case of calculating mutual information at locations with degener-

ate base pairs. However, the information footprints are intended to be hypothesis generation tools

that can identify transcription-factor-binding sites. As such, the most important test for the assump-

tion that we can approximate effective energy contributions from all 4 bases as contributions from

only wild type or mutated bases is to assess whether the approximation has any effect on determin-

ing binding site locations. We re-ran the false positive and false negative assessments discussed in

Appendix 2 Section ’False positive and false negative rates’, but instead calculated the effective

energy parameters for producing information footprints as a sum of contributions from all four

bases. We find that the literature binding sites that were properly identified, as summarized in

Appendix 2—table 2, are identically identified. Specifically, any site which was identified using the

previous method is still identified and any site that failed to be identified is still not observed. Simi-

larly, when we only fit effective energy parameters for mutated or wild type bases there are no false

positives identified in the promoters for marR, relBE, dgoR, zupT, or lacZYA. There are also no false

positives when repeating the procedure while considering all 4 bases in the effective energy fits,

implying that the simplification to only considering mutated or wild type bases does not have an

effect on our ability to identify binding sites.

Processing of mass spectrometry experiments

Mass spectrometry results were processed using MaxQuant (Cox and Mann, 2008; Cox et al.,

2009). Spectra were searched against the UniProt E. coli K-12 database as well as a contaminant

database (256 sequences). LysC was specified as the digestion enzyme. Proteins were considered if

they were known to be transcription factors, or were predicted to bind DNA (using gene ontology

term GO:0003677, for DNA-binding in BioCyc).

Uncertainty due to number of independent sequences

1400 promoter variants were ordered from TWIST Bioscience for each promoter studied. Due to

errors in oligonucleotide synthesis, additional mutations are randomly introduced into the ordered

oligos. We have found that, as a result of these random, additional errors, the final number of var-

iants received was an average of 2200 per promoter.

To demonstrate that our results are not strongly dependent on the number of sequences in each

promoter library, and also to assess how a reduction in the number of sequences per promoter

library could facilitate larger scale experiments in the future, we generated examples of smaller data

sets by computationally sub-sampling the Reg-Seq experimental data from seven mutated promoter

libraries (maoP, hslU, rpsA, leuABCD, aphA, araC, and tig). These promoters are representative of a

large cross-section of the variety of regulation we see in our study, as they include promoters with

constitutive expression (hslU), simple repression(leuABCD, tig), simple activation (aphA), as well as

more complicated regulatory architectures (maoP, rspA, araC). Each sub-sampling was done three

times, and we then use the Pearson correlation coefficient (Appendix 2 Section ’Comparison

between Reg-Seq by RNA-Seq and fluorescent sorting’) as a comparison metric between the infer-

ence based on the full data set and the computationally sub-sampled data sets.

Based on our analysis, the results of which are displayed in Appendix 3—figure 1, we find that

there is only a small effect on the resulting sequence logo until the library has been reduced to

approximately 500 promoter variants. We could, therefore, reasonably lower the resolution of the

experiment to approximately 1000 or fewer unique sequences before large deviations in the infer-

ence are experienced. Decreasing the number of unique sequences can give modest boosts to the

number of genes that can be studied, but will not be able to give order of magnitude increases in

the number of genes that can be explored.
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Appendix 3—figure 1. Pearson correlation as a function of the number of unique DNA sequences

(as explained in Appendix 2 Section ’Comparison between Reg-Seq by RNA-Seq and 2uorescent

sorting’). For seven different genes, we studied how the number of mutated DNA sequences affects

the reproducibility of our MCMC inference models. As the number of unique sequences increases,

so too does the Pearson correlation value, approaching 1.0. Numeric values for the displayed data

can be found in Appendix 3—figure 1—source data 1.

The online version of this article includes the following source data is available for figure 1:

Appendix 3—figure 1—source data 1. Pearson correlation values for Appendix 3—figure 1.

Effect on calculated energy matrices when transcription factor copy number
» plasmid copy number

Throughout this study, we utilize plasmids to express GFP from mutated promoters, and then use

the ratio of mRNA/DNA, based on sequencing results, to handle the effect of variability in plasmid

copy number between cells. It is necessary, however, to consider the situation wherein the plasmid

copy number is of a similar magnitude to the transcription factor copy number, and whether this can

impact the calculated energy matrices and binding energies. The genetic expression levels are

determined not only by the binding energy, but also by the transcription factor availability, and so it

is necessary to consider whether, for those cases where transcription factor copy number » plasmid

copy number, there is a corresponding under-estimation of binding energies. Prior work from our

laboratory was precisely aimed at rigorously predicting and measuring this effect (Weinert et al.,

2014). In that study, we demonstrated how to control this effect, wherein transcription factor copy

number » plasmid copy number, in a parameter-free manner. However, to mitigate this effect in

future studies, we plan to use genome-integrated libraries, rather than plasmid-based expression.

The plasmid used in our experiments is derived from pUA66, which contains a pSC101 origin of

replication (Zaslaver et al., 2006). The copy number of plasmids with a pSC101 origin is, in log

phase, approximately 3 or 4 (Lutz and Bujard, 1997). We have not independently assessed the copy

number of the plasmid used in this study.

The absolute copy number of thousands of proteins in E. coli have been determined using whole-

proteome LC-MS. Specifically, a 2016 study that provides the absolute quantification for roughly 55

percent of predicted proteins in the E. coli K12 proteome (see Supplementary Table S6)

(Schmidt et al., 2016). For those transcription factors that were quantified in that study, and also

show up in our Reg-Seq experiments, we provide their absolute quantification in E. coli K12 for both

glucose and LB growth media in Appendix 3—table 2.

Appendix 3—table 2. Global, absolute quantification for most transcription factors identified in this

study, as determined for E. coli K12 grown in both glucose (5 g/L concentration in M9 minimal

media) and LB medias.

The values in this table are reprinted from Schmidt et al., 2016 Supplemental Table S6.
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Transcription factor name Glucose LB

FNR 609 1101

YieP 158 261

YciT 82 104

NsrR 872 136

LexA 560 1027

DeoR 26 34

CRP 2048 3450

YdfH 96 154

ArcA 3367 5464

Zur 70 130

GlpR 75 145

PhoP 2967 3132

HNS 22541 47133

StpA 6863 5241

DicA 20 25

YgbI 2 6

XylR 1 8

For most transcription factors, the copy number as determined by LC-MS is much greater than

the expected, low copy number of the plasmid used in this study, thus mitigating the concern that

the limited availability of a transcription factor could impact gene expression.

There are a few transcription factors that have copy number on the order of the plasmid copy

number, however, including XylR, DicA, and YgbI. Prior work from our group (Weinert et al., 2014)

has explored how gene expression behaves in the regime where transcription factor copy number is

» plasmid copy number. Here, we will discuss the case of simple repression to demonstrate how the

relationship between transcription factor and plasmid copy number could impact our results. The

standard thermodynamic model for gene expression under simple repression with a weak promoter,

as described by Bintu et al., 2005, is

C/ pbound ¼
P
NNS

e�bD"P

1þ R
NNS

e�bD"R
; (24)

where C is a measurement for gene expression level, NNS is the number of nonspecific DNA-binding

sites, P is the number of RNAP, and R is the number of repressors. D"R and D"P represent the differ-

ence in the repressor-binding energy and RNAP-binding energy between the specific binding site

and the averaged nonspecific genomic background respectively. Weinert et al., 2014 demonstrated

experimentally that, in the presence of multiple target binding sites, such as from a multi-copy plas-

mid, the gene expression level can be described by a very similar functional form to Equation (24),

namely,

C/ pbound ¼
lPe

�bD"P

1þlRe�bD"R
; (25)

where lP and lR are the fugacity of RNAP and the repressor and describe the relative availability of

RNAP or repressor as a function of plasmid copy number, transcription factor copy number, and

binding site strength. The presence of additional plasmid copies does weaken the effect of repressor

binding when the repressor copy number is » plasmid copy number. Thus, our information footprint

calculations will be affected and the information signature of binding sites such as YgbI, DicA, or

XylR will be decreased.

For transcription-factor-binding site interactions that are sufficiently weak, together with a low

transcription factor copy number, the effect of having multiple plasmids expressed in a cell could
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cause us to have a false negative, and thus miss the presence of a binding site. However, the Reg-

Seq method does not claim to capture every regulatory feature for a given promoter, as the activity

of some transcription factors is induced only in certain growth conditions, we use a finite, 160 bp

mutation window that may miss ’regulation at a distance’, and the presence of extremely weak and

nonspecific binding sites may cause Reg-Seq to ’miss’ some transcription factors (indeed, for the

bdcR promoter, the GlaR-binding site is outside of the mutagenized region and so is not observed).

The effect of additional plasmids within the cellular confines will always decrease the fugacity in

Equation (25), as an increase in the number of sites competing for a limited pool of transcription

factors will decrease the relative availability of those transcription factors. As a result, the effect on

gene expression of a given transcription factor will always lessen in the presence of additional plas-

mids. This means that, while multi-copy plasmids can introduce false negatives into Reg-Seq, it will

not introduce false positives. Additionally, we see empirically that, even for the lowest copy tran-

scription factor for which we have a measurement, XylR (» 1 copy per cell), we can identify its tran-

scription-factor-binding site. In Appendix 2—figures 2 and 3, 2 (previously known) XylR sites are

identified for the xylA promoter, and 2 (previously known) XylR sites are identified in the xylF

promoter.

Finally, the energy matrices, which are a quantitative output of the Reg-Seq experiment, will be

unaffected by the presence of multi-copy plasmids. As discussed in Appendix 3 Section ’Energy

matrix inference’, energy matrix inference relies on calculating the mutual information between the

energy predictions of the model and the experimental data. Mutual information is invariant under

transformations to the input variables that do not affect their rank order. While the presence of mul-

tiple plasmid copies will affect the fugacity in Equation (25), and so will also affect any quantitative

prediction of gene expression, a weaker repressor-binding site will still be predicted to have higher

gene expression than a stronger repressor-binding site, regardless of the relative availability of the

transcription factor. The rank-order is always preserved and so the presence of a multi-copy plasmid

will not change the mutual information between model predictions and experimental data. As a

result, the final inference of energy matrices will remain the same.

Energy matrix inference

Energy matrices in this experiment are of the form shown in Appendix 3—table 3,

Appendix 3—table 3. Example energy matrix.

This matrix is in arbitrary units, and the process to obtain absolute units (in kBT ) is described in

Appendix 3 Section ’Inference of scaling factors for energy matrices’.

Pos A C G T

0 �0.01 �0.01 �0.01 0.03

1 0.002 0.05 �0.06 0.008

2 �0.0002 �0.04 0.008 0.03

3 �0.02 0.02 �0.01 0.01

where each entry gives the energy contribution from a base pair at a given location. As an example

from Appendix 3—table 3, an A at position 1 would give a total energy contribution of �0.01 (A.

U.). All energy matrices used in our analysis are linear energy matrices, where the total energy is the

sum of contributions from each base pair. As a result, total binding energy is

binding energy¼
X

L

i¼1

X

T

j¼A

�ij � dij; (26)

where dij is the Kronecker delta, which takes on a value of 1 if the base at position i is equal to j and

is 0 otherwise, L is the length of the binding site, and �ij is the energy contribution of nucleotide j

and position i in arbitrary units. To infer the parameters �ij in Equation (26) from the experimental

data, we perform Bayesian inference using a MCMC method, which requires us to calculate the
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likelihood of the model given the experimental data. The likelihood function is difficult to determine,

but Kinney et al., 2010 found that, given a large amount of data, the likelihood function is related

to the mutual information between energy predictions and data by the equation

LðDj�Þ / 2
NIð�;EÞ; (27)

where N is the total number of independent sequences, D is the data consisting of sequences and

measured sequencing counts, I is the mutual information between gene expression label m and

energy predictions E. m is a discrete variable that characterizes the gene expression level as

described in Equation (3) in the main text. We can calculate mutual information using the formula

for mutual information between a continuous and a discrete variable, namely,

Ið�;EÞ ¼

Z

¥

�¥

dE
X

1

�¼0

pð�;EÞ log2
pð�;EÞ

pðEÞpð�Þ

� �

: (28)

While Equation (28) is used for continuous energy predictions, there are only N total sequences,

and so only N discrete energy predictions. For a simple example of calculating the joint probability

distribution pð�;EÞ, consider the hypothetical dataset of only four nucleotides in Appendix 3—table

1. We first predict the binding energy of each of the example sequences, shown in Appendix 3—

table 4.

Appendix 3—table 4. Example dataset with energy predictions.

Energy predictions are made by applying the example energy matrix in Appendix 3—table 3 to the

example dataset in Appendix 3—table 1 according to Equation (26).

� ¼ 0 � ¼ 1 Energy (kBT

5 23 0.05

5 3 0.008

11 11 0.09

12 3 �0.03

2 0 0.03

8 7 �0.07

7 3 �0.04

We use kernel density estimation with kernel width of 4% to estimate the true joint distribution

pð�;EsmoothÞ from the data contained in the joint distribution in the matrix in Appendix 3—table 4.

This process estimates an underlying continuous distribution from a discrete set of energy predic-

tions. The details of kernel density estimation can be found in Hastie et al., 2009. We can do the

final calculation of the mutual information by splitting the smoothed joint distribution into 500

energy ’bins’ z and calculating

Ið�;EÞ ¼
X

500

z¼1

X

1

�¼0

pð�;EzÞ log2
pð�;EzÞ

pðEzÞpð�Þ

� �

: (29)

With the ability to calculate the likelihood of an energy matrix model, MCMC can be used to infer

the posterior distribution for our model. First a random matrix model is generated. The model is per-

turbed and the new model is accepted or rejected based on the Metropolis-Hastings algorithm

(Patil et al., 2010). After an initial burn in period of 60,000 steps, iterations are saved every 60 steps.

A total of 600,000 iterations are performed. This procedure is performed twice for each model, and

if inferred models do not have a Pearson correlation coefficient of 0.99 or higher they are discarded

and computed again. A complete overview of the computational pipeline can be found at the

GitHub wiki page.
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Inference of scaling factors for energy matrices

For the majority of energy matrices reported in our work, the results are given in arbitrary units. This

is a direct result of using the method of Kinney et al., 2010 to infer our matrices. The method

appeals to information theory to write an ’error-model-averaged’ likelihood function for a given

model. The likelihood function is given in Equation (27). A property of mutual information is that it

is invariant to changes in the input variables as long as those transformations do not affect the rank-

order of those variables. As a result, we can scale the energy predictions by any constant without

changing the likelihood of the model, which means that in the case of simple linear models for tran-

scription factor binding we cannot assign absolute units to energy matrix values. When we widen

our view to considering promoter regions rather than single binding sites we can overcome this

drawback. Using thermodynamic modeling as outlined in Bintu et al., 2005, we can predict the

gene expression from any given transcriptional architecture. In the case a thermodynamic model of

simple repression the expression is given by

C/ pbound ¼
P
NNS

e�bD"P

1þ P
NNS

e�bD"P þ R
NNS

e�bD"R
; (30)

where C is a measurement for expression, P is the number of RNAP, R is the number of repressors

and NNS is the number of nonspecific binding sites. D"R and D"P represent the difference in the

repressor binding energy and RNAP-binding energy between the specific binding site and the aver-

aged nonspecific genomic background respectively. As we use linear energy matrix models as

described in Appendix 3 Section ’Energy matrix inference’, D"R and D"P will be given by Equa-

tion (26). In these cases the overall rank order of gene expression predictions will change if you

scale the energy matrix, and so the absolute units can be determined (Kinney and Atwal, 2014).

Equation (30) is a more complicated and non-linear functional form for predicting C than a simple

linear binding model, and has a correspondingly more difficult to sample posterior. To address com-

plications in the inference, we first only use the non-linear fits to fix overall scale and wild-type

energy for energy matrices rather than fit all parameters in this way. In other words, we use the stan-

dard fitting procedure to find the �ij in the Equation (26) using the standard MCMC procedure.

The binding energy matrices can be written A � �ij þ B where A is a constant that scales the matrix

from arbitrary units to absolute units (kBT) and B is an additive constant that relates to the wild-type

energy. We fit the constants A and B for the transcription factor binding energy using the thermody-

namic model in Equation (30).

While we can in principle fit thermodynamic models to any given architecture, these models are

non-linear and, due to numerical difficulties, unreliable for sufficiently complex models. We only use

this method on examples of simple repression or activation without more than one prominent RNAP

model, whose transcription-factor-binding site does not overlap significantly with RNAP �10 or �35

sites. The scaling factors we discovered are given in Appendix 3—table 5.

Appendix 3—table 5. A table showing scaling factors to convert arbitrary units to absolute units in

kBT.

Growth conditions indicate the energy matrix and dataset used in the fit. In some growth condition

additional regulatory features will be present, meaning specify condition is important.

Gene Growth Scaling factor A

tff-rpsB-tsf Heat shock �8:1 kBT

tig Heat shock �26:3 kBT

yjjJ Heat shock �11:3 kBT

bdcR Heat shock �9:9 kBT

fdhE Anaerobic growth �6:34 kBT

ykgE Arabinose �12:1 kBT

dicC Arabinose �15:1 kBT

rspA Arabinose �5:5 kBT
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We perform the inference using parallel tempering MCMC, where multiple chains are run in paral-

lel with different ’temperatures’. High temperature chains widely explore parameter space, escaping

any local optima, while low temperature chains optimize locally. The current parameter values of the

chains are exchanged periodically. The fitting procedure is done using the emcee ensemble sampler

(Goodman and Weare, 2010) with 10 temperatures ranging from 1 to 10,000 on a log scale.

Examination of promoters for which no RNAP site was found

We failed to find an RNAP site for 18 promoter sequences. In order to understand these sequences

in more detail we examine the sequences within 50 bases of the TSS for the 18 genes in question for

sequences which resemble the known consensus RNAP-binding site. For this comparison, we use the

s70 consensus binding sequence �35TTGACA - spacer sequence - TGNTATAAT�7 (where the super-

scripts �35 and �7 indicate the position relative to the TSS). The consensus sequence we use for com-

parison contains the extended �10 element, consisting of a TG at bases �15 and �14 as we have

found those to be important for gene expression in our study. The spacer length is between 15 and

13 bases (the typically reported spacer length is between 18 and 16 but this does not include the

extended minus 10 element). The consensus sequence for the heat shock s factor was used for the

promoter yajL.

Previously, to analyze RNAP sites, we have examined energy matrices produced by Reg-Seq.

Now we add an examination of wild type sequences. For each promoter, we found the best match

to the consensus site, namely the sequence with the fewest mutations compared to the consensus

sequence. We use the number of mutations as a measure of how well the site resemble consensus.

We find that 16 out of 18 promoters have at least five mutations in the sequence that most closely

resembles RNAP, one promoter has four mutations, and the last has three mutations. To put these

numbers into context, Brewster et al., 2012 measured the RNAP binding energies of several

RNAP-binding site mutants. Mutations away from the strongest sequence tested (lacUV5, which is

two mutations away from consensus) yields a change in binding energy of » 1� 2kBT. If the pro-

moters are constitutive, then (in the weak promoter approximation) expression level will be propor-

tional to e�bD�P where D�P is the RNAP binding energy relative to the nonspecific background.

Therefore, as an approximation, a sequence with three mutations would be predicted to be 3�10

fold weaker than a ’strong’ RNAP site, and as such could be said to show a resemblance to the con-

sensus RNAP site. However, 16 out of 18 of these promoter regions have, at best, extremely weak

RNAP sites. It is important to note however, that even extremely weak RNAP sites often transcribe,

especially when aided by activators. We do not intend to claim that RNAP does not bind to these

promoter regions, merely that we do not detect it in our experiment. In fact, while the RNAP sites

are weak, there is experimental evidence in EcoCyc of some level of transcription for 9 out of 18

promoters.

TOMTOM motif comparison

In some cases, we used an alternative approach to mass spectrometry to discover the transcription

factor identity regulating a given promoter based on sequence analysis using a motif comparison

tool. TOMTOM (Gupta et al., 2007) is a tool that uses a statistical method to infer if a putative motif

resembles any previously discovered motif in a database. It accounts for all possible offsets between

the motifs. Moreover, it uses a suite of metrics to compare between motifs such as Kullback-Leibler

divergence, Pearson correlation, Euclidean distance, among others. All TOMTOM analyses in Reg-

Seq utilize Euclidean distance. The method calculates a p-value under the null hypothesis that the

two compared motifs are independently drawn from the same underlying distribution probability

distribution.

We performed comparisons of the motifs generated from our energy matrices to those gener-

ated from all known transcription-factor-binding sites in RegulonDB. Appendix 3—figure 2 shows a

result of TOMTOM, where we compared the motif derived from the -35 region of the ybjX promoter

and found a good match with the motif of PhoP from RegulonDB.

The information derived from this approach was then used to guide some of the transcription fac-

tor knockout experiments, in order to validate its interaction with a target promoter characterized

by the loss of the information footprint. Furthermore, we also used TOMTOM to search for
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similarities between our own database of motifs, in order to generate regulatory hypotheses in tan-

dem. This was particularly useful when looking at the group of GlpR-binding sites found in this

experiment.
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Appendix 3—figure 2. Motif comparison using TOMTOM for the two PhoP-binding sites in the ybjX

promoter. Searching our energy motifs against the RegulonDB database using TOMTOM allowed us

to guide our transcription factor knockout experiments. Here, we show the sequence logos of the

PhoP transcription factor from RegulonDB (top) and the ones generated from the ybjX promoter

energy matrix. E-value = 0.01 using Euclidean distance as a similarity matrix.
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Appendix 4

Additional results
Binding sites regulating divergent operons

In addition to discovering new binding sites, we have discovered additional functions of known bind-

ing sites. In particular, in the case of bdcR, the repressor for the bdcA gene, which is transcribed

from the same promoter in the opposite direction of transcription (Partridge et al., 2009), is also

shown to repress bdcR in Appendix 4—figure 1(A). Similarly in Appendix 4—figure 1(B) IvlY is

shown to repress ilvC in the absence of inducer. Divergently (transcription in opposite directions

from the same promoter) transcribed operons that share regulatory regions are plentiful in E. coli,

and although there are already many known examples of transcription-factor-binding sites regulating

several different operons, there are almost certainly many examples of this type of transcription that

have yet to be discovered.
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Appendix 4—figure 1. Two cases in which we see transcription-factor-binding sites that we have

found to regulate both of the two divergently transcribed genes. (A) An information footprint and

regulatory cartoon for the divergently transcribed bdcA and bdcR promoters. A single NsrR site

regulates both promoters. (B) An information footprint and regulatory cartoon for the ilvC and ilvY

promoters. Both promoters are repressed by IlvY when grown without acetolactate. Only the IlvY

site is labeled on the information footprint.

In the case of ilvC, IlvY is known to activate ilvC in the presence of inducer. However, we now see

that it also represses the promoter in the absence of that inducer. The production of ilvC is known

to increase by approximately a factor of 100 in the presence of inducer (Rhee et al., 1998). The

magnitude of the change is attributed to the cooperative binding of two IlvY-binding sites, but the

lowered expression of the promoter due to IlvY repression in the absence of inducer is also a factor.

Comparison of results to RegulonDB

One area in which our work can be compared to current repositories of regulatory information such

as RegulonDB is in comparing the prevalence of different regulatory architectures in the database to

Reg-Seq. Appendix 4—figure 2 shows the prevalence of each type of architecture (not including

architectures more complex than 2 activators and 2 repressors) and shows how simpler architectures

are more common in both cases.

Another point of comparison between RegulonDB and Reg-Seq can be found in comparing

sequence motifs from Reg-Seq to those generated from binding sites in RegulonDB. This can often

produce useful results, such as in Appendix 3 Section ’TOMTOM motif comparison’. For other cases,

the data used to generate the RegulonDB motifs can be lacking. We believe the GlpR motif in Regu-

lonDB highlights some of the issues with using the reported motifs in RegulonDB to predict binding

preference. First, there are only four promoters regulated by GlpR, with a total of 17 binding sites

for GlpR in RegulonDB. Nine of these binding sites differ by nine mutations or more from the con-

sensus site (out of 22 total base pairs). Nine mutations is more than even the weak O3 operator for

LacI. We do believe that a relatively low number of weakly conserved binding sites likely do not

reveal quality sequence logos for a binding site, especially as compared to Reg-Seq which constructs
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sequence logos from over a thousand promoter variants. Generation of such sequence motifs is a

point on which we believe Reg-Seq can improve the current status of regulatory knowledge.

Explanation of included binding sites

This section is intended to clarify cases in which the regulatory cartoon or the displayed ’expected’

binding sites differs from what can be found in RegulonDB or EcoCyc. The primary reason for these

discrepancies is that our experiment only targets a 160 base pair mutation window. Some known

binding sites will be outside of this window. Additionally, while some genes are known to be regu-

lated by a specific transcription factor, the exact location of that transcription factor’s binding site is

unknown and so we cannot be certain during the design of the 160 base pair mutagenized window

whether or not the transcription-factor-binding site will be present in our experiment. The locations

of the TSS selected in this experiment can be found in Supplementary file 1. Additionally, some

transcription factors are known to only be active under certain growth conditions. Information foot-

prints are depictions of the regulatory information for a specific growth condition; accordingly, not

all transcription-factor-binding sites can be identified using a single growth condition. Throughout

the main text and SI, however, we depict regulatory cartoons with their full milieu of transcription

factors (based on experiments performed in multiple growth conditions).

When devising this study, we sought to test the reliability of the Reg-Seq method by testing

experimentally-validated transcription-factor-binding sites, as reported by EcoCyc or RegulonDB, to

assess our ability to recapitulate prior experiments. EcoCyc labels some transcription-factor-binding

sites as ’low-evidence’ in their database, most of which were identified via sequence motif matching.

We have repeatedly observed that transcription-factor-binding sites identified from sequence match-

ing are unreliable in relation to the empirical data collected in our experiment, and so we choose

not to include them in the set of ’gold standard’ genes which were used for this purpose of assess-

ing Reg-Seq’s accuracy.

All of our ’gold standards’ are genes for which there is high quality experimental evidence of their

transcriptional regulation and the location of related transcription-factor-binding sites and, again,

they were used to evaluate the false negative rates of our experiment. In those cases where the

binding sites are either ’low-evidence’ according to EcoCyc, the location of a binding site is not

known, a gene is only actively transcribed in certain or unknown growth conditions, or the binding

site location is outside of the 160 bp mutagenized region, we do not include them in the list of sites

we use to test our method even though they appear as binding sites in RegulonDB or EcoCyc. Regu-

latory features that are not transcription factors, including regulatory RNAs, are also not labeled in

our reported results.

Accordingly, in some cases, the regulatory cartoons or architectures we present in this study may

appear to be incomplete relative to previous reports of promoter architectures. For each gene

below, we explain these discrepancies. This section is intended to explain why annotations on infor-

mation footprints or regulatory cartoons do not match what is seen in RegulonDB or EcoCyc.

sdiA
sdiA is known to be regulated by both Nac as well as CsrA (which has two binding sites), the CsrA

sites are downstream of the mutated region and the location of the Nac-binding site is unknown.

Thus, none of these binding sites are reported in our regulatory architectures for this gene.

yqhC
yqhC is known to be regulated by GlaR, but the location of this binding site is unknown. As a result,

we were unable to identify this binding site in our analysis, and the architecture for yqhC is listed in

this study as (0,0).

bdcR
bdcR is known to be regulated by GlaR, but this binding site is outside of the targeted mutation win-

dow of 160 bp. A known binding site for NsrR is included within the 160 bp region, but it was not
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previously known to regulate bdcR; the binding site for NsrR is included as a new discovery as shown

in Section ’Binding sites regulating divergent operons’.

aegA
aegA has a predicted CRP-binding site, but the location of this binding site is unknown and it is also

listed as low-evidence in EcoCyc. As a result, the site is not included within this study’s analysis.

hicB
The CRP site associated with hicB is cited as low-evidence in EcoCyc and the HicB-binding site is

outside of the 160 base pair mutated region. As a result, neither site is included in this study.

rplKAJL-rpoBC
The known RplA-binding site for this operon is outside of the targeted, 160 base pair mutation win-

dow. As a result, the RplA site is not included in this study.

tff-rpsB-tsf
RpsB is not contained in the mutated region. Additionally, the nearby predicted Mar-Sox-Rob-bind-

ing site is listed as low-evidence in EcoCyc and is also not directly predicted to regulate tff-rpsB-tsf,

even though it may be present within the region. As a result, neither site is included in this study.

yodB
GlaR is known to regulate yodB. However, the location of this binding site is unknown. As a result,

we do not include the GlaR-binding site in our reported regulatory architecture for this gene.

maoP
HdfR is known to regulate maoP. However, the location of the binding site is unknown. Additionally,

the HdfR site is listed as low-evidence in EcoCyc. During the Reg-Seq experiment, however, we con-

firmed the presence of the low-evidence HdfR site with a gene knockout and located the binding

site position. Thus, we include it in all regulatory cartoons and report the HdfR site in our

discoveries.

poxB
MarA and Sox have low-evidence binding sites in the mutagenized region. There is also a low-evi-

dence site for Cra with an unknown binding location. As a result, neither site is included in the

reported regulatory architectures in this study.

mscM
While there is a known CpxR-binding site for mscM, the binding site exists outside of the mutagen-

ized region. As a result, it is not included in the reported regulatory architectures in this study.

tar
There is a low-evidence FNR site for tar. Its location is unknown. For both of these reasons, we do

not include the binding site in our reported regulatory architectures for this gene.

dpiBA
While there are 10 total binding sites for dpiBA, including an FNR site. However, the only ones that

are known to regulate the particular TSS we chose (at position 652172 in E. coli) are 2 DcuR sites

and a (low-evidence) NarL site. DcuR is induced by growth conditions like succinate or fumarate, nei-

ther of which were tested in this study. As a result, none of the sites are included in this study.
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araAB
There are a total of five AraC-binding sites and one CRP-binding site that regulate araAB. However,

the three furthest upstream AraC-binding sites are outside of the 160 bp mutagenized region, and

so only two AraC sites and one CRP site is included in the reported regulatory architecture in this

study.

xylF
There are two XylR sites, as well as three low-evidence Fis sites that regulate xylF in the mutagenized

region. There is also a low-evidence CRP site outside the mutagenized region. Only the two XylR

sites are included in the reported regulatory architectures, as the remaining sites are low-evidence

or outside the mutagenized region.

xylA
There are two XylR sites, two AraC, and a CRP site that regulates xylA. In our analysis, we utilize a

growth condition containing xylose and arabinose. Under growth with xylose, XylR will bind DNA

and activate expression. Under growth with arabinose, AraC will not bind DNA. We would only

expect to see two XylR sites and a CRP site under growth in xylose and arabinose, so we only

include these sites in our study.

dicB
DicA has a low-evidence repressor-binding site for dicB. Additionally the binding location is

unknown, and so we do not include the binding site in the reported regulatory architecture.

xapAB
XapR has two low-evidence binding sites. The binding site furthest upstream is outside of the 160

bp mutagenized region. As the remaining site is low-evidence, it is not included in our reported reg-

ulatory architectures.

ilvC
There are two IlvY-binding sites for ilvC. IlvY is known to be induced by acetolactate and activated in

its presence . We do not utilize this growth condition in this experiment, however, nor do we include

the two IlvY-binding sites in our ’gold standard’ experimental analysis. We find that IlvY acts as a

repressor when grown in other growth conditions. As repressor activity at these sites was not previ-

ously reported, we include this in our list of new discoveries.

asnA
There are four low-evidence AsnC-binding sites in the mutated region. As they are low-evidence,

however, we do not include these binding sites in the reported regulatory architectures for this

gene.

idnK
While there are three GntR sites, a CRP site, and one IdnR site, they are all low-evidence. As a result,

we do not include any of these sites in our reported regulatory architectures.

dinJ
While dinJ is regulated by DinJ-YafQ and LexA, they are both outside of the mutagenized window.

As a result, neither are included in our reported regulatory architectures.
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yjiY
yjiY is regulated by both BtsR and CRP. However, CRP is outside of the mutagenized window and so

CRP is not included in our reported regulatory architectures.

cra
cra is regulated by a low-evidence binding site of PhoB. The location of the binding site is not

known, however. As a result, the site is not included in the reported regulatory architecture.

uvrD
uvrD is regulated by a low-evidence binding site for LexA. This binding site is not included in the

reported regulatory architectures for this study.

znuCB
There are binding sites for Zur and OxyR in the mutagenized region for znuCB. OxyR is known to act

as an activator under oxidative stress. As we do not utilize an oxidative stress growth condition in

this study, we do not include this binding site in the reported regulatory architectures for this study.

znuA
There are binding sites for Zur and OxyR in the mutagenized region for znuA. The OxyR-binding site

is outside of the mutagenized region. Only the Zur-binding site is included our reported regulatory

architectures.

pitA
There is a low-evidence binding site for FNR in the mutagenized region. The location of this binding

site, however, is unknown. Thus, this binding site is not included in our reported regulatory

architectures.

ecnB
There is a low-evidence OmpR-binding site for ecnB. The binding site is not included in our reported

regulatory architectures.

lacZYA
The mutagenized region extends from the TSS (the primary TSS p1) to 75 base pairs upstream of

the TSS. The location of the mutagenized region excludes the LacI sites, while including a single

CRP-binding site, a MarA-binding site, and two HNS-binding sites. The expression from marA is

expected to be low, as we do not grow the cells in the presence salicylate or antibiotic stress and so

we do not expect to observe the MarA site. In fact, the precursor of the Reg-Seq experiment, Sort-

Seq, mutagenized and studied the same 75 base pair region, and only observed binding by CRP

(Kinney et al., 2010). As such, we only include CRP in Table 2, the regulatory cartoons, or the analy-

sis of false positives and false negatives.

leuABCD
There is a binding site for LeuO regulating leuABCD. The site is low-evidence and also has no known

binding location. As a result, the site is not included in our reported regulatory architectures.

arcA
There is a binding site for FNR within the mutagenized region listed as ’low-evidence’ in EcoCyc. We

find substantial additional evidence for the presence of the FNR-binding site. As such, we include

the site in Table 2 as an ’Identified Binding Site’.

Ireland et al. eLife 2020;9:e55308. DOI: https://doi.org/10.7554/eLife.55308 62 of 68

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.55308


relBE
The relBE promoter contains four RelBE-binding sites and two RelB-binding sites in EcoCyc and Reg-

ulonDB. While the all four RelBE sites are listed as high evidence, Belliveau et al., 2018 mutagen-

ized the RelBE promoter and did not identify binding in the furthest downstream or furthest

upstream binding sites. Also, the original identification of the RelBE-binding sites presented

(Li et al., 2008), claims that the furthest upstream and downstream sites are only identified by simi-

larity to consensus sequence. As a result only two of the RelBE and two of the RelB sites are included

in this study.

marR
The marR promoter contains a CpxR, CRP, Cra, and AcrR in EcoCyc that are not included in the

’gold standard’ analysis or Table 2. Belliveau et al., 2018 performed mutagenesis experiments on

the marR promoter and did not identify these additional sites and so they have been excluded.
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Appendix 4—figure 2. A comparison of the types of architectures found in RegulonDB (Santos-

Zavaleta et al., 2019) to the architectures with newly discovered binding sites found in the Reg-Seq

study. For each type of architecture, labeled as (number of activators, number of repressors), the

fraction that architecture comprises of the total number of operons is given both for the data found

in RegulonDB and from the results of the Reg-Seq experiment. Numeric values for the displayed

data can be found in Appendix 4—figure 2—source data 1.

The online version of this article includes the following source data is available for figure 2:

Appendix 4—figure 2—source data 1. Source data for the percentage composition of regulatory

architectures.
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Appendix 5

Resource Table

Appendix 5—key resources table

Reagent
type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Cell line
(Escherichia
coli)

E. coli K12 E. coli Stock
Center

Cell line
(Escherichia
coli)

E. coli DYieP E. coli Stock
Center

Cell line
(Escherichia
coli)

E. coli DGlpR E. coli Stock
Center

Cell line
(Escherichia
coli)

E. coli DArcA E. coli Stock
Center

Cell line
(Escherichia
coli)

E. coli DLrhA E. coli Stock
Center

Cell line
(Escherichia
coli)

E. coli DPhoP E. coli Stock
Center

Cell line
(Escherichia
coli)

E. coli DHdfR E. coli Stock
Center

Strain, strain
background
(Escherichia
coli)

E. coli DGlpR
in K12 strain

This paper Knockout transferred to E. coli K12

Strain, strain
background
(Escherichia
coli)

E. coli DArcA
in K12 strain

This paper Knockout transferred to E. coli K12

Strain, strain
background
(Escherichia
coli)

E. coli DLrhA
in K12 strain

This paper Knockout transferred to E. coli K12

Strain, strain
background
(Escherichia
coli)

E. coli DPhoP
in K12 strain

This paper Knockout transferred to E. coli K12

Strain, strain
background
(Escherichia
coli)

E. coli DHdfR
in K12 strain

This paper Knockout transferred to E. coli K12

Chemical
compound,
drug

Q5 Polymerase Qiagen Cat. :
M0491L

Chemical
compound,
drug

qPCR master
mix

QuantaBio Cat. :
101414–
166

Chemical
compound,
drug

Lysyl
Endopeptidase

Wako
Chemicals

Cat. : 125–
05061

Continued on next page
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Appendix 5—key resources table continued

Reagent
type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Commercial
assay or kit

RNEasy Mini kit Qiagen Cat. :
74104

Chemical
compound,
drug

RNAprotect
bacteria
reagent

Qiagen Cat. :
76506

Software,
algorithm

mpathic Kinney Lab
Ireland and
Kinney,
2016

Software,
algorithm

FastX Hannon Lab RRID:SCR_
005534

Software,
algorithm

FLASH CBCB RRID:SCR_
005531

Other Oligo Pool Twist
Bioscience

Sequence-
based
reagent

fwd oligo 101 IDT TTCGTCTTCACCT CGAGCACGCTTATT CGTGCCGTG
TTAT

Sequence-
based
reagent

fwd oligo 102 IDT TTCGTCTTCACCTC GAGCACTTTGCTT CAGTCAGA
TTCGC

Sequence-
based
reagent

fwd oligo 103 IDT TTCGTCTTCACCT CGAGCACGTCGAGT CCTATG
TAACCGT

Sequence-
based
reagent

fwd oligo 104 IDT TTCGTCTTCACCT CGAGCACGTAAGAT
GGAAGCCGGGATA

Sequence-
based
reagent

fwd oligo 105 IDT TTCGTCTTCACCT CGAGCACGGTGTCGC AACATGA
TCTAC

Sequence-
based
reagent

fwd oligo 106 IDT TTCGTCTTCACCT CGAGCACGTGCTAAG TCACACTG
TTGG

Sequence-
based
reagent

fwd oligo 107 IDT TTCGTCTTCACCT CGAGCACTCTAAACA G
TTAGGCCCAGG

Sequence-
based
reagent

fwd oligo 108 IDT TTCGTCTTCACCT CGAGCACGTCTTTAT ACTTGCC
TGCCG

Sequence-
based
reagent

fwd oligo 109 IDT TTCGTCTTCACCT CGAGCACCACCGCGA TCAA
TACAACTT

Sequence-
based
reagent

fwd oligo 110 IDT TTCGTCTTCACCT CGAGCACTTCGGATA GAC
TCAGGAAGC

Sequence-
based
reagent

fwd oligo 111 IDT TTCGTCTTCACCT CGAGCACCCATTGAT AGATTCGC
TCGC

Sequence-
based
reagent

fwd oligo 112 IDT TTCGTCTTCACCT CGAGCACTTTTCTAC TTTCCGGC
TTGC

Sequence-
based
reagent

fwd oligo 113 IDT TTCGTCTTCACCT CGAGCACATGACTAT TGGGGTCG
TACC

Continued on next page
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Appendix 5—key resources table continued

Reagent
type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Sequence-
based
reagent

fwd oligo 114 IDT TTCGTCTTCACCT CGAGCACTCGACAAT AG
TTGAGCCCTT

Sequence-
based
reagent

fwd oligo 115 IDT TTCGTCTTCACCT CGAGCACGAGCCATG TGAAATG
TGTGT

Sequence-
based
reagent

fwd oligo 116 IDT TTCGTCTTCACCT CGAGCACCGTATACG TAAGGG
TTCCGA

Sequence-
based
reagent

fwd oligo 117 IDT TTCGTCTTCACCT CGAGCACTTATGATG TCCGGA
TACCCG

Sequence-
based
reagent

fwd oligo 118 IDT TTCGTCTTCACCT CGAGCACTCTTAGAA A
TCCACGGGTCC

Sequence-
based
reagent

rev oligo 101 IDT TGTAAAACGACGG CCAGTGACTAGCGC
TGAGGAGAAGCCT AATAGGGCACAGC AATCAAAAG
TA

Sequence-
based
reagent

rev oligo 102 IDT TGTAAAACGACG GCCAGTGAGGAGCGC
TGAGGAGAAGCC TAATACCGGGATT CAGTGA
TTGAAC

Sequence-
based
reagent

rev oligo 103 IDT TGTAAAACGACG GCCAGTGAGTCCC GC
TGAGGAGAAG CCTAATATGAAGAT ATGACGACCCC
TG

Sequence-
based
reagent

rev oligo 104 IDT TGTAAAACGACGG CCAGTGACCGACGCT
GAGGAGAAGCCTAA TATTCCACAGCTC TATGAGG
TG

Sequence-
based
reagent

rev oligo 105 IDT TGTAAAACGACGG CCAGTGATTGGCGCT
GAGGAGAAGCCTA ATAGCAAACATGA C
TAGGAACCG

Sequence-
based
reagent

rev oligo 106 IDT TGTAAAACGACGG CCAGTGAGATACGC
TGAGGAGAAGCC TAATACCGGGACG AGATTAG
TACAA

Sequence-
based
reagent

rev oligo 107 IDT TGTAAAACGACGGC CAGTGAACTCCGCT
GAGGAGAAGCCTA ATACACGCCAGTT GTGAACA
TAA

Sequence-
based
reagent

rev oligo 108 IDT TGTAAAACGACG GCCAGTGATACTCGC
TGAGGAGAAGC CTAATACAAAGGC CAAATCAG
TTCCA

Sequence-
based
reagent

rev oligo 109 IDT TGTAAAACGACGGC CAGTGACCAACGCT
GAGGAGAAGCCT AATAGGTGCATGGG AGGAACTA
TA

Sequence-
based
reagent

rev oligo 110 IDT TGTAAAACGACG GCCAGTGAAGGCCGC
TGAGGAGAAGCCT AATATGCATGGGT CTGTCTATTG
T

Sequence-
based
reagent

rev oligo 111 IDT TGTAAAACGACGGC CAGTGAAATTCGC
TGAGGAGAAGCCT AATACTCCTATGCT AGCTCGAC
TC

Sequence-
based
reagent

rev oligo 112 IDT TGTAAAACGACG GCCAGTGATTGT CGC
TGAGGAGAAG CCTAATAATGGTA AGAAGC
TCCCACAA

Sequence-
based
reagent

rev oligo 113 IDT TGTAAAACGACGGC CAGTGATTTACGCT
GAGGAGAAGCCTA ATACTATGGTCA TTCCCG
TACGA

Continued on next page
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Appendix 5—key resources table continued

Reagent
type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Sequence-
based
reagent

rev oligo 114 IDT TGTAAAACGACGGC CAGTGAACCGCGCT
GAGGAGAAGCCTA ATATAATCGGCT ACGTTGTGTCT

Sequence-
based
reagent

rev oligo 115 IDT TGTAAAACGACGGC CAGTGATGGCCGC
TGAGGAGAAGC CTAATATGACTCGA TCCTTTAG
TCCG

Sequence-
based
reagent

rev oligo 116 IDT TGTAAAACGACGG CCAGTGAGGCCCGC
TGAGGAGAAGC CTAATAACGCTTT GTGTTATCCGA
TG

Sequence-
based
reagent

rev oligo 117 IDT TGTAAAACGACGG CCAGTGAGGTGCG C
TGAGGAGAAG CCTAATAACCACG GTGGAGTATACA
TC

Sequence-
based
reagent

rev oligo 118 IDT TGTAAAACGACG GCCAGTGACAATCG C
TGAGGAGAAGC CTAATAGGCACCA GGTACATATC
TCA

Sequence-
based
reagent

mRNA rev IDT GCAGGGGATAA TATTGCCCA

Sequence-
based
reagent

fwd
sequencing 94

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTGACC TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing 95

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTCAGT TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing 96

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTTCTA TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing 97

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTAGAG TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing 98

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTGCAT TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing 99

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTCTTA TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing
100

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTTAGC TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing
101

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTCAAG TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing
102

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTGTAC TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing
103

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTTGAA TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing
104

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTTCGT TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing
105

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTATGC TA
TTAGGCTT CTCCTCAGCG

Continued on next page
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Appendix 5—key resources table continued

Reagent
type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Sequence-
based
reagent

fwd
sequencing
106

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTGTCA TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing
107

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTCTCA TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

fwd
sequencing
108

IDT AATGATACGGCGACCAC CGAGATCT ACACTCTT
TCCCTACACGACGC TCTTCCGATCTAGTA TA
TTAGGCTT CTCCTCAGCG

Sequence-
based
reagent

rev sequencing IDT AAGCAGAAGACGGCAT ACGAGATCGGT CTCG GCA
TTCCTGCTGAACC GCTCTTCCGATCTCAAA
GCAGGGGATAA TATTGCCCA

Other Streptavin
coated
dynabeads

Thermo
Fisher

Cat. :
65601

Database RegulonDB RRID:SCR_
003499

Database EcoCyc RRID:SCR_
002433
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