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GENE EXPRESSION

Promoter architecture dictates
cell-to-cell variability in
gene expression
Daniel L. Jones,1* Robert C. Brewster,1,2* Rob Phillips1,2†

Variability in gene expression among genetically identical cells has emerged as a central
preoccupation in the study of gene regulation; however, a divide exists between the
predictions of molecular models of prokaryotic transcriptional regulation and genome-wide
experimental studies suggesting that this variability is indifferent to the underlying regulatory
architecture. We constructed a set of promoters in Escherichia coli in which promoter
strength, transcription factor binding strength, and transcription factor copy numbers are
systematically varied, and used messenger RNA (mRNA) fluorescence in situ hybridization to
observe how these changes affected variability in gene expression. Our parameter-free models
predicted the observed variability; hence, the molecular details of transcription dictate
variability in mRNA expression, and transcriptional noise is specifically tunable and thus
represents an evolutionarily accessible phenotypic parameter.

T
he single-molecule events underlying gene
expression, such as transcription factor
binding and unbinding or RNA polymerase
(RNAP) open complex formation, are inher-
ently stochastic—a stochasticity inherited by

gene expression itself. Over the past decade,
theorists have sought to elucidate how changes
in molecular kinetic parameters such as tran-
scription factor binding and unbinding rates
affect variability in expression (1, 2), whereas ex-
perimentalists have measured variability in gene
expression at both the mRNA and protein level in
prokaryotes and eukaryotes (3–6). Possible pheno-
typic consequences (4, 7–9) include the intrigu-
ing hypothesis that transcriptional noise may
increase the fitness of microbial populations by
providing phenotypic variability in a population
of genetically identical cells (10, 11).
Models of transcription hinge on the molec-

ular details of the promoter architecture (where
“promoter architecture” refers collectively to the
locations and strengths of transcription factor

and RNAP binding sites governing a particular
gene) and make quantitative predictions for the
dependence of the variability on these details.
For example, two extremely common promoter
architectures (12) are shown schematically in
Fig. 1A. Here, each rate parameter (r, kRoff , k

R
on,

and g) has a physical interpretation (Fig. 1B) as
an element that can be tuned independently by
genetic manipulation. The effect of promoter
architecture on mean levels of gene expression
is well established in prokaryotes, where thermo-
dynamic models successfully predict gene ex-
pression as a function of promoter architecture
(13–15). However, the associated predictions for
how transcriptional noise depends on these param-
eters remain untested in any systematic way. In
direct contrast to suchmodels, some high-throughput
experiments have culminated in the assertion
that the cell-to-cell variability in gene expression
is “universal,” dictated solely by the mean level of
expression and insensitive to the details of the
promoter driving the expression (3, 5, 6).
To confront this divide, we constructed a library

of synthetic promoters driving a LacZ reporter
inE. coli andmeasured the resultingmRNA copy
numberdistributionsusing single-moleculemRNA
fluorescence in situ hybridization (FISH) (16). Our

approach ensures that differences in promoter se-
quence between constructs have clear interpretations
in terms of the molecular parameters underlying
transcription (e.g., transcription factor unbinding
rate, basal transcription rate). This allows us to
directly compare predictions of models incorpo-
rating those parameters with experimentally ob-
served mRNA distributions, and hence to directly
link the molecular events underlying transcrip-
tion with observed variability in gene expression.
For the case of constitutive expression, shown

schematically in Fig. 1A, mRNA transcripts are
produced and degraded stochastically at rates r
and g, respectively, with constant probability per
unit time. It can be shown (17) that the resulting
steady-state mRNA copy number distribution is
given by a Poisson distribution with mean r/g.
In the following experimental results, we use
the Fano factor, defined as the variance divided
by the mean, to characterize variability in gene
expression. This metric reports the fold change
in the squared coefficient of variation (CV2 =
variance/mean2) with respect to a Poisson pro-
cess, for which CV2

Poisson = 1/mean; hence, CV2/
CV2

Poisson = variance/mean. Therefore, the pre-
dicted Fano factor for constitutive expression
equals 1 identically. However, this analysis is
incomplete: The schematics of Fig. 1A represent
the dynamics of the stochastic processes (tran-
scription factor binding and unbinding, mRNA
degradation, transcription initiation) that con-
tribute to so-called “intrinsic” variability in gene
expression, but do not account for the fact that
rate parameters such as the repressor binding rate
kRon and transcription rate r are themselves subject
to fluctuations due to cell-to-cell variability in
repressor and RNAP copy numbers, respectively.
Such effects, collectively termed “extrinsic variabil-
ity,” tend to increase the measured variability (18).
One important contribution to extrinsic noise

comes from variability in gene copy number due
to chromosome replication (Fig. 2A, bottom panel).
It can be shown (16) that the effect of gene copy
number variation on the variability in expression
is independent and additive to the variability pre-
dicted from transcriptional noise, such that

Fano ¼ 〈m2〉1 − 〈m〉21
〈m〉1

Transcription

þ f ð1 − f Þ
1þ f

〈m〉1

Gene copy number

ð1Þ

where 〈m〉1 is the mean mRNA copy number
from a single gene copy, and f is the fraction of
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the time a cell has two copies of the gene of
interest. The first term is simply the promoter
architecture–dependent Fano factor of a sin-

gle copy of a gene, whereas the second term
is the contribution due to gene copy number
variation.

To quantitatively test the predictions of the
model for constitutive expression, we measured
the mRNA copy number distribution using
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Fig. 2. Variability in gene expression for constitutive expression. (A)
Examples of additional noise sources (not accounted for in models of
chemical kinetics) present in expression measurements. (B) Fano factor
(gene copy number variation not subtracted) versus mean expression,
plotted for each of 18 constitutive promoters along with estimates of the
contributions shown schematically in (A). These factors can account for
essentially the entirety of the deviation from Fano = 1. (C) Measured Fano

factor for various promoters under constitutive expression, with gene copy
number variation subtracted. For reference, the predictions of pure Poissonian
production (black solid line) and the “universal noise” curve observed in (5)
(red dashed) theories are shown. In (B) and (C), each strain is represented
by a unique symbol, and each instance represents repeated measurements
with error bars from bootstrap sampling expression measurements of indi-
vidual cells.

Fig. 1. Schematics of the kinetics of tran-
scription for two simple regulatory architec-
tures. (A) Theoretical treatment of two common
promoter architectures and the predicted
expression (both mean and variability) as a
function of the relevant rate parameters. (B)
Examples of the experimental knobs available
for tuning the various model rate parameters:
Basal transcription rate r is tuned by RNAP copy
number and RNAP binding site affinity (left);
repressor binding rate kRon is tuned by repressor
copy number (center); and repressor unbinding
rate kRoff is tuned by its binding site affinity
(right).
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mRNA FISH for 18 unique constitutive pro-
moters (19). In Fig. 2B, we plot the Fano factor
versus mean expression for each of this set of
promoters (see fig. S9 for full mRNA copy num-
ber distributions for each promoter). The solid
black line is the prediction resulting from con-
sideration of intrinsic noise alone. The shaded
regions represent the effects of what we believe
are the three most important additional sources
of noise (16). The green shaded region, quanti-
zation error, is the variability introduced by our
measurement and analysis process. The red
shaded region covers the expected contribution
from cell-to-cell differences in RNAP copy num-
ber; the blue region is the expected contribution
from gene copy number variation. Note that the
red shaded region is an indirect estimate based
on literature sources, whereas the blue and green
regions are supported by direct measurements
(16). The data and theoretical predictions are in
good accord, implying that the dynamics of con-
stitutive transcription are Poissonian with some
additional extrinsic noise. In Fig. 2C, we plot
the Fano factor minus the predicted gene copy
number contribution and observe a quantitative
disagreement between the measured noise in
expression and the prediction of the “universal”
noise model as reported in (5). But to conclu-
sively demonstrate the architecture dependence
of the variability, we need to look at alternative
regulatory architectures.

To that end, we consider an architecture in
which transcription can be blocked by a repressor
transcription factor. As shown in Fig. 1A, the
promoter transitions from the transcription-
ally active (repressor unbound) to inactive state
(repressor bound) at rate kRon, and from the
inactive to active state at rate kRoff . The predicted
mean expression and Fano factor depend on
each of these rates (Fig. 1A, right half); we can
tune kRon by changing the concentration of rep-
ressor in the cell, and can tune kRoff by changing
the repressor binding site sequence. Note that
the predicted relationship between the mean
and the Fano factor has a characteristic form
depending on which of these rates is being tuned
(Fig. 3, A and B, dashed lines).
To test the predicted effect of changing kRon, we

took two of the constitutive promoters described
above and placed them under simple repression
via a LacI Oid binding site immediately down-
stream of the promoter (16). The difference in
transcription rate for the two constructs is re-
flected in different values of r/g. At the same
time, we introduced into our cells a genetic cir-
cuit enabling inducible control of LacI expres-
sion, effectively permitting systematic changes
in repressor number. In Fig. 3A, we plot the
measured Fano factor as a function of the mean
expression over LacI concentrations ranging
from ~0 to 50 LacI molecules per cell, for both
promoters. In addition, we plot the zero-free-

parameter theoretical prediction for the Fano
factor as a function of mean using the measured
value of r/g from the constitutive data and the
LacI unbinding rate from (20).
Similarly, we vary kRoff by altering the se-

quence of the LacI binding site. Holding the
RNAP binding site constant (and thus r/g con-
stant), we created constructs corresponding to
four different LacI binding sites (16). At constant
repressor concentration (i.e., constant kRon), tuning
mean expression by altering kRoff is predicted to
yield a characteristic curve, whereas different
repressor concentrations (and hence kRon values)
correspond to distinct instances of this curve. In
Fig. 3B, we plot the Fano factor resulting from
changing kRoff at each of three different rep-
ressor concentrations. We find agreement in the
trends between theory and experiment, although
this agreement is less good than in the case of
tuning kRon. One possible explanation [reported
in (20)] is that changing transcription factor–
DNA binding affinity affects the transcription
factor–DNA association rate kRon as well as the dis-
sociation rate kRoff , contrary to our assumption that
kRon is constant along each curve in Fig. 3B. How-
ever, the most important outcome of this set of
measurements is a demonstration of the qualita-
tively distinct variability profile when a different
set of transcriptional parameters are controlled,
illustrating once again the systematic depen-
dence of variability on promoter architecture.

SCIENCE sciencemag.org 19 DECEMBER 2014 • VOL 346 ISSUE 6216 1535

Fig. 3. Variability in gene expression for systematic tuning of repres-
sion. (A) Fano factor versus mean mRNA copy number for two promoters
(choices of r/g) while tuning kRon by inducing LacI to varying levels. For
reference, the black data are the constitutive data from Fig. 2. (B) Fano
factor versus mean mRNA copy number for lacUV5 while tuning kRoff by
changing repressor binding site identity at fixed repressor copy number;
each color represents a different induction condition from red (lowest
LacI induction) to blue (highest LacI induction). For both (A) and (B), the

parameter-free predictions from kinetic theory are shown as dashed lines
in the corresponding color, holding promoter (r/g) and (A) repressor
binding strength (kRoff) or (B) repressor binding rate (kRoff) constant. In
both cases, the Fano factor at a given mean depends on the choice of
molecular parameters and agrees with the expectations from theory. The
effect of gene copy number variation was subtracted from all data points;
error bars result from bootstrap sampling expression measurements of
individual cells.
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We have shown that transcriptional noise is
well predicted by molecularly detailed models
for the two most common promoter architec-
tures in E. coli as the various genetic knobs are
tuned. This agreement is not the result of fitting
theory curves to data, because the predicted curves
are generated using physical parameter values
reported elsewhere in the literature and in that
sense are zero-parameter predictions. Earlier re-
ports of “bursty” transcription (5, 21) are based
on the observation that the Fano factor is greater
than 1 for constitutive mRNA production (as well
as direct kinetic measurements). Various explan-
atory hypotheses have been proposed, including
transcriptional silencing via DNA condensa-
tion by nucleoid proteins (22), negative supercoil-
ing induced by transcription, or the formation
of long-lived “dead-end” initiation complexes
(23). Although our data do not rule out these
hypotheses, we find that extrinsic noise is suf-
ficient to explain the deviation from Fano = 1 in
our constitutive expression data (Fig. 2B). Thus,
we find no need to invoke alternative hypothe-
ses to explain the observed “burstiness” of con-
stitutive transcription.
Many interesting earlier experiments make

it difficult to interpret differences between pro-
moters and induction conditions in terms of
distinct physical parameters because of the wide
variety of promoter architectures in play as well
as the diverse mechanisms of induction. We have
instead taken a “synthetic biology” approach of
building promoters from the ground up. By di-
rectly controlling aspects of the promoter archi-
tecture, our goal has been to directly relate changes
in promoter architecture to changes in observed
gene expression variability. We believe that this
work has demonstrated that mutations in reg-
ulatory DNA can alter gene expression noise. This
suggests that gene expression noise may be a
tunable property subject to evolutionary selec-
tion pressure, as mutations in regulatory DNA
could provide greater fitness by increasing (or
decreasing) variability. Demonstrating the rele-
vance of this hypothesis in natural environments
remains an ongoing challenge.
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IMMUNE TOLERANCE

Detection of self-reactive CD8+

T cells with an anergic phenotype
in healthy individuals
Yuka Maeda,1 Hiroyoshi Nishikawa,1* Daisuke Sugiyama,1 Danbee Ha,1

Masahide Hamaguchi,1 Takuro Saito,1 Megumi Nishioka,1,2 James B. Wing,1

Dennis Adeegbe,1 Ichiro Katayama,2 Shimon Sakaguchi1*

Immunological tolerance to self requires naturally occurring regulatory T (Treg) cells. Yet
how they stably control autoimmune Tcells remains obscure. Here, we show that Treg cells
can render self-reactive human CD8+ T cells anergic (i.e., hypoproliferative and cytokine
hypoproducing upon antigen restimulation) in vitro, likely by controlling the costimulatory
function of antigen-presenting cells. Anergic T cells were naïve in phenotype, lower than
activated T cells in T cell receptor affinity for cognate antigen, and expressed several
coinhibitory molecules, including cytotoxic T lymphocyte–associated antigen-4 (CTLA-4).
Using these criteria, we detected in healthy individuals anergic T cells reactive with a skin
antigen targeted in the autoimmune disease vitiligo. Collectively, our results suggest that
Treg cell–mediated induction of anergy in autoimmune T cells is important for maintaining
self-tolerance.

N
aturally occurring CD25+CD4+ regulatory T
(Treg) cells, which specifically express the
transcription factor FoxP3, actively main-
tain immunological self-tolerance and ho-
meostasis (1). Developmental or functional

anomalies of natural Treg cells can cause auto-
immune diseases (such as type I diabetes), aller-
gy, and immunopathological diseases (such as
inflammatory bowel disease) (1). How Treg cells
effectively control potentially hazardous self-
reactive T cells in humans remains an open ques-
tion. In particular, it is unknown whether Treg
cell–mediated suppression for a limited period
has a critical long-lasting effect on cell fate and an-
tigen reactivity of autoimmune T cells.
To address this issue, we examined proliferation,

cytokine production, and cell fate of antigen-

specific CD8+ T cells in peripheral blood mono-
nuclear cells (PBMCs) from healthy individuals
stimulated in vitro with self-antigen peptide in the
presence or absence of natural FoxP3+CD25+CD4+

Treg cells. Melan-A (also known as MART-1) used
in the experiments is a self-antigen expressed by
normal melanocytes and some melanoma cells
and targeted in vitiligo vulgaris, an autoimmune
disease of the skin (2–5). In the absence of Treg
cells, Melan-A–specific CD8+ T cells [detectable
by major histocompatibility complex (MHC) tetra-
mers and peptide tetramers] expanded over 10
days from very few cells to a sizable fraction
when cultured with peptide-pulsed autologous
antigen-presenting cells (APCs) (Fig. 1A) (6). Nat-
ural Treg cells, which appeared to be activated by
endogenous self-peptides and class II MHC on
autologous APCs (7–9), suppressed the expansion
of Melan-A tetramer–positive (Tet+) CD8+ T cells
in a dose-dependent manner. Similar stimulation
with irrelevant peptide NY-ESO-1, another self-
and tumor antigen, failed to induce Melan-
ATet+CD8+ T cells. In cultures containing Treg cells,
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