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1 Materials and Methods

1.1 Strains

The genetic modifications used to create the strains used in the various sections of

the main paper are listed below with a bold heading characterizing which parameter

is tuned within that class of strains.

Constitutive expression: tuning r. As described in [19], promoter constructs

consist of an RNAP binding site with a LacI O2 binding site immediately downstream

of the transcription start site, as shown in Fig. 1A. (The O2 binding site does not

affect expression because lacI is deleted from the host strain used in gene expression

measurements.) Expression of a LacZ reporter is tuned over a factor of ≈ 500 by

changing the DNA sequence of the RNAP binding site. Promoter + reporter con-

structs are chromosomally integrated at the gal locus in an E. coli strain (HG105) in

which lacI and lacZYA are deleted.

Simple repression: tuning kR
on. In two of the constitutive promoter constructs

(lacUV5 and 5DL1) the O2 LacI binding site is replaced with an Oid LacI binding

site. This construct is integrated into an E. coli strain (RCB110) in which wild-type

lacIZYA is deleted as before, but with the addition of a genetic circuit allowing in-

ducible control of LacI expression. This circuit consists of two components: first, the

tet repressor TetR is chromosomally integrated at the gspI locus under the control

of the strong constitutive promoter PN25; and second, LacI is integrated at the ybcN

locus under the control of the PLtetO-1 promoter [24], which is repressed by TetR. Ex-

pression of LacI can thus be induced by the small molecule anhydrotetracycline (aTc),

which interacts with TetR and prevents it from repressing transcription of LacI. The

ribosomal binding sequence of the LacI is the “1147” version from reference [25]: at

full induction this produces roughly 40 LacI per cell. By varying the aTc concentra-
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tion, we tune mean gene expression by tuning the intracellular concentration of LacI,

yielding the curves shown in Fig. 3A.

Simple repression: tuning kR
off. These measurements exploit the same strain

(RCB110) from the kon
R tuning; however in this case we use only the lacUV5 promoter

strain and create constructs in which the O2 LacI binding site is replaced by O1, O3

or Oid. These constructs are integrated into the galK locus as before, yielding four

constructs total each with a different LacI binding site. These strains are measured

at constant inducer concentration (to achieve equal repressor copy numbers across all

samples) for three distinct induction conditions. This was done for each of 3 different

LacI concentrations as shown in Fig. 3B.

1.2 Growth

Cultures are grown overnight to saturation (at least 8 hours) in LB and diluted

1:4000 into 30 mL of M9 minimal media supplemented with 0.5% glucose in a 125mL

baffled flask. Growth in minimal media continues approximately 8 hours and cells

are harvested in exponential phase when OD600= 0.3− 0.5 is reached.

1.3 mRNA FISH

1.3.1 Fixation and labeling

Our assay is based on that used in Ref. [5]. Once a culture reaches OD600= 0.3−0.5,

it is immersed in ice for 15 minutes before being harvested in a large centrifuge chilled

to 4◦C for 5 minutes at 4500 g. The cells are then fixed by resuspending in 1 mL of

3.7% formaldehyde in 1x PBS which is then mixed gently at room temperature for 30

minutes. Next, they are centrifuged (8 minutes at 400 g) and washed twice in 1 mL

of 1x PBS twice. The cells are permeabilized by resuspension in 70% Ethanol which
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proceeds, with mixing, for 1 hour at room temperature. The cells are then pelleted

(centrifuge at 600 g for 7 minutes) and resuspended in 1 mL of 20% wash solution

(200 µL formamide, 100 µL 20x SSC, 700 µL water). This mixture is allowed to sit

several minutes before centrifugation (7 minutes at 600g) and resuspended in 50 µL of

DNA probes (consisting of a mix of 72 unique DNA probes; individual oligo sequences

listed in Table S1) labelled with ATTO532 dye (Atto-tec) in hybridization solution

(0.1 g dextran sulfate, 0.2 mL formamide, 1 mg E.coli tRNA, 0.1 mL 20x SSC, 0.2 mg

BSA, 10 µL of 200 mM Ribonucleoside vanadyl complex). This hybridization reaction

is allowed to proceed overnight. The hybridized product is then washed four times in

20% wash solution before imaging in 2x SSC.

1.3.2 FISH data acquisition

Samples are imaged on a 1.5% agarose pad made from PBS buffer. Each field of view

is imaged with phase contrast at the focal plane and with 532 nm epifluorescence

(Verdi V2 laser, Coherent Inc.) both at the focal plane and in 8 z-slices spaced

200 nm above and below the focal plane (for a total of 17 slices), sufficient to cover

the entire depth of the E. coli. The images are taken with an EMCCD camera (Andor

Ixon2) under 150× magnification. The phase image is used for cell segmentation and

the fluorescence images are used in mRNA detection. A total of 100 unique fields

of view are imaged in each sample and a typical field of view has between 5 and 15

viable cells (cells which are touching and cells that have visibly begun to divide are

ignored) resulting in roughly 900 individual cells per sample on average. However,

due to differences in plating density and position quality, the actual number can vary.

A histogram of the sample size for all samples in this study is shown in fig. S1.
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1.3.3 FISH analysis

The FISH data is analyzed in a series of Matlab (The Mathworks) routines. The

overview of the workflow is as follows: identifying individual cells, segmenting the

fluorescence to identify possible mRNA, and quantifying the mRNA which are found

(because of the small size of E. coli, at high copy number mRNA can be difficult to

distinguish and count by eye).

Cell identification and segmentation: In phase contrast imaging, E. coli are

easily distinguishable from the background and automated programs can identify,

segment and label cells with high fidelity. The results of the phase segmentation

are manually checked for accuracy: Cells which are touching or overlapping other

cells, misidentification of cells or their boundaries or cells which have visibly begun

to undergo division are all discarded manually.

Fluorescence segmentation: First we perform several steps to process the

raw intensity images. The images are flattened, a process to correct for any uneven

elements in the illumination profile, using a flattening image. The flattening image

is an average over 10 − 15 images of an agarose pad coated with a small drop of

fluorescein (such that the drop spreads evenly across most of the pad); the resulting

image is a map of illumination intensity at any given pixel Iflat. Each pixel of every

fluorescence image is scaled such that the corresponding pixel in the flattening image

would be a uniform brightness (typically each pixel is scaled up to the level of the

brightest pixel). This can be achieved by renormalizing each pixel in the data images

and dividing by the ratio of the intensity of the corresponding pixel in the flattening

image to the intensity of the brightest pixel. In other words the raw images, I, are
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renormalized such that for pixel i, j with raw intensity I(i,j),

I
(i,j)
corrected =

(
I(i,j) − I(i,j)

dark

)
×

(
maxi,j(I

(i,j)
flat − I

(i,j)
dark)

I
(i,j)
flat − I

(i,j)
dark

)
, (S1)

where Idark corresponds to an image taken with no illumination (mostly these counts

are from camera offset). In the preceding equation, the first term in parentheses is the

signal from the i, jth pixel, while the second term in parentheses corrects the signal

for nonuniform illumination using the flattening image. We then subtract from every

pixel the contribution to our signal associated with autofluorescence. The value for

the autofluorescence is obtained by averaging over the fluorescence of every pixel in

a control sample (one which underwent the entire FISH protocol but did not possess

the lacZ gene). Finally, all local 3D maxima (where x − y is the image plane) in

fluorescence are identified. We require that the maxima be above a threshold in

fluorescence (typically 300 − 400% above the background autofluorescence signal).

This threshold eliminates all fluorescence maxima in the control sample, which does

not contain the lacZ gene.

mRNA quantification: Each identified maximum pixel is dilated in the image

plane to a 5×5 box of surrounding pixels. These 5×5 boxes are referred to as “spots”.

If multiple spots overlap, the pixels which make up each overlapping spot are merged

into one larger spot to avoid double counting the signal from any one pixel. Since,

due to the small size of the E. coli we cannot guarantee that every spot corresponds

to exactly one mRNA, we must have a way to quantify the relation between signal

and mRNA copy number. An example histogram of the intensity of identified spots is

shown in fig. S2A. The histogram has two clear peaks in probability: one correspond-

ing to background noise, at approximately 0 intensity, and the other corresponding to

the intensity of a single mRNA. The low intensity peak, corresponding to background
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noise, is removed by thresholding the spots and rejecting spots that are less bright

than the threshold. The threshold is selected to eliminate spots in a control sample

that does not contain the target mRNA. However, we find choice of this threshold does

not alter our results significantly since these spots are already significantly dimmer

than an mRNA. To determine the calibration between signal intensity and mRNA

copy number we take an average over all remaining isolated spots (meaning no merge

events with other, nearby spots) in very low expression samples (where the mean� 1

and mRNA are statistically unlikely to overlap), see fig. S3A and B for examples of

these thresholded histograms. Once this single mRNA intensity value is identified,

when possible we also verify in other low expression strains that as we increase the

mean expression it simply increases the frequency of spots with the single mRNA

intensity but does not increase the mean intensity of each spot. An example of this is

shown in figs. S3A where the single spot intensity histograms of seven unique strains

are shown with each histogram normalized by the number of cells in each sample.

The growing peak at 1 mRNA shows that as we transition from low expression to-

wards having upwards of 1 mRNA per cell, the increased signal is primarily due to

an increased number of identified single mRNA, although some brighter spots begin

to appear corresponding to multiple mRNA per spot. Normalizing these same his-

tograms by the total number of identified spots, as shown in fig S3B, demonstrates

that the identified spots have the same character in each sample regardless of mean.

The dashed black line shows the result of a Gaussian fit to the combined data from all

seven samples in the figure. Finally, the day to day variability in these histograms is

shown in fig. S3C for five different acquisitions on two distinct constitutive expression

strains.

With this calibration in hand, we sum the signal from all identified spots in a

given cell and determine how many mRNA are in that cell by dividing by the single
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mRNA intensity calibration found previously. A different technique, used in some

studies, is to first quantify every individual identified spot then determine the copy

number by summing the total number of identified spots in each cell. Fig. S4 shows a

direct comparison of these methods on simulated data (crosses) and real data (circles)

with red corresponding to the “whole cell” method used in our study, where signal

is summed over the whole cell and black corresponding to the single spot analysis

where each spot is quantized and rounded to the nearest whole number of mRNA. The

methods gives roughly identical values for the mean; however, the corresponding Fano

factor is very slightly systematically higher using the single spot analysis, probably

due to the rounding performed on each spot.

1.4 Miller LacZ assay

Concurrent with the mRNA FISH protocol, each sample also has LacZ activity mea-

sured by Miller assay. The protocol is identical to that described previously [19, 25].

Once cultures are ready for measurement, the OD600 of each sample is recorded.

Next, a volume of cells between 5 µL and 200 µL is added to Z-buffer (60mM

Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol,

pH 7.0) to reach a total of 1 mL in a 1.5 mL Eppendorf tube. The time of the enzy-

matic reaction is inversely proportional to the volume of cells, and thus low expression

samples require more volume and high expression samples require less to ensure that

the time of reaction is reasonable (∼ 1 − 10’s of hours) to avoid measurement un-

certainty, and to ensure that the yellow color is easily distinguishable from a blank

sample of 1 mL of Z-buffer. The cells are lysed with 25 µL of 0.1% SDS and 50 µL

of chloroform, mixed by a 10s vortex. To begin the reaction, 200 µL of 4mg/mL

2-nitrophenyl β-D-galactopyranoside (ONPG) in Z-buffer is added to the Eppendorf
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tube. The tube is monitored for the development of yellow color and once sufficient

yellow has developed in a sample (sufficient absorbance at 420nm, without saturating

the reading), the reaction is stopped through the addition of 200 µL of 2.5 M Na2CO3.

Once all samples have been stopped, cell debris is removed from the supernatant by

centrifugation at > 13, 000 g for 3 min. 200 µL of each sample, including the blank

which contains no cells, are loaded into a 96 well plate and absorbance at 420nm and

550nm is measured for each well with a Tecan Safire2. The LacZ activity in Miller

units is then,

MU = 1000
OD420− 1.75×OD550

t× v ×OD600
0.826, (S2)

where t is the reaction time in minutes, v is the volume of cells used in mL and OD

refers to the optical density measurements obtained from the plate reader. The factor

of 0.826 accounts for the use of 200 µL Na2CO3 as opposed to 500 µL which changes

the concentration of ONPG in the final solution. While some alternative protocols

involve time resolved measurements of LacZ activity over a range of cell densities,

we believe the protocol used here is a simple and accurate method for providing a

consistent relative calibration for our mRNA measurements that has been shown to

be equivalent in terms of accuracy and reproducibility to more complicated and time

consuming measurement protocols [25].

2 Supplementary Text

2.1 Calibration of mRNA FISH data versus Miller assay

As a test of our ability to accurately measure mean mRNA copy number with mRNA

FISH, we directly compare our results to simultaneously acquired measurements of

mean LacZ enzymatic activity (the protein produced by the mRNA targeted in our
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FISH labelling). In fig. S5, we show the mean mRNA expression vs mean LacZ

activity in Miller units for every measurement of every strain in this study. These

two measurements of expression give consistent results as demonstrated by direct

proportionality between these two measurement techniques over several orders of

magnitude of expression. Error bars represent the standard deviation from repeated

measurements.

2.2 Estimation of Additional Noise Sources

2.2.1 Quantification error in image analysis

As described in the main text, the intensity of a single mRNA molecule is determined

using a low mRNA expression sample such that detected spots are most likely to

contain either 0 (i.e. the fluorescence maxima is due to background noise) or 1

mRNA. A representative histogram of detected spots is shown in fig. S2A. However,

this identification and quantification process is not without uncertainty of its own.

While ideally each spot should have the same clear value for its integrated intensity,

the intensity of a given identified mRNA varies significantly, due to factors such as

fluctuations in probe hybridization efficiency and non-specifically bound probes. We

wish to estimate the effect that variability in the single mRNA intensity has on the

overall observed variability. In order to do so, we will make the following assumptions:

• mRNA copy numbers are distributed with mean µm and variance σ2
m. Aside

from this, we make no assumptions about the specific form of the mRNA dis-

tribution.

• Integrated intensities for a single mRNA are distributed with mean 〈I1〉 and

variance σ2
I .
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• Intensities for more than one mRNA are independent and additive. For cells

containing k mRNA, integrated intensities have mean k〈I1〉 and variance kσ2
I

(since variances add for independent random variables).

In this work we sought to measure the Fano factor for various mRNA copy num-

ber distributions. However, what we actually measure experimentally (as described

above) is the following:

Fanoexp = Fano

(
I

〈I1〉

)
=

1

〈I1〉
var(I)

〈I〉
(S3)

where I is a random variable denoting the integrated intensity of a cell, and 〈I1〉

is the mean intensity of a single mRNA. That is, we measure the Fano factor of a

set of observed integrated intensities divided by the single mRNA intensity. We will

now use the assumptions listed above to further investigate eq. S3, and proceed by

computing the mean and variance of I.

The random variable I is distributed according to:

P (I) =
∞∑
k=0

pm(k)pI(I|k) (S4)

where pm(k) is the probability that a cell contains k mRNA, and pI(I|k) is the

probability of obtaining intensity I given that a cell contains k mRNA. We will

denote the conditional expectation of the nth moment of I given k as 〈In|k〉: i.e.,
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〈In|k〉 =
∫
InpI(I|k)dI. Then the expected value of I is given by

〈I〉 =

∫ ∞
−∞

IP (I)dI (S5)

〈I〉 =

∫ ∞
−∞

I

∞∑
k=0

pm(k)pI(I|k)dI (S6)

〈I〉 =
∞∑
k=0

pm(k)

∫
IpI(I|k)dI (S7)

〈I〉 =
∞∑
k=0

pm(k)〈I|k〉 (S8)

〈I〉 =
∞∑
k=0

pm(k)k〈I1〉 = 〈k〉〈I1〉 (S9)

〈I〉 = µm〈I1〉 (S10)

which is exactly what one would naively expect (the mean integrated intensity equals

the mean number of mRNA times the mean single mRNA intensity). To compute

the variance of I, we next need to compute the expected value of I2:

〈I2〉 =

∫ ∞
−∞

I2P (I)dI (S11)

〈I2〉 =

∫ ∞
−∞

I2

∞∑
k=0

pm(k)pI(I|k)dI (S12)

〈I2〉 =
∞∑
k=0

pm(k)

∫ ∞
−∞

I2pI(I|k)dI (S13)

〈I2〉 =
∞∑
k=0

pm(k)〈I2|k〉. (S14)

According to the assumptions above,

var(I|k) = 〈I2|k〉 − 〈I|k〉2 = kσ2
I (S15)
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and hence

〈I2|k〉 = k2〈I1〉2 + kσ2
I . (S16)

Plugging this back into eq. S14, we obtain:

〈I2〉 = 〈I1〉2
∞∑
k=0

k2pm(k) + σ2
I

∞∑
k=0

kpm(k) (S17)

〈I2〉 = 〈k2〉〈I1〉2 + 〈k〉σ2
I (S18)

〈I2〉 = (µ2
m + σ2

m)〈I1〉2 + µmσ
2
I (S19)

where we have used the fact that 〈k2〉 = σ2
m + µ2

m. Hence

var(I) = (µ2
m + σ2

m)〈I1〉2 + µmσ
2
I − µ2

m〈I1〉2 (S20)

var(I) = σ2
m〈I1〉2 + µmσ

2
I (S21)

and

Fanoexp =
1

〈I1〉
σ2
m〈I1〉2 + µmσ

2
I

µm〈I1〉
(S22)

Fanoexp =
σ2
m

µm
+

σ2
I

〈I1〉2
. (S23)

The two terms in eq. S23 have simple interpretations. The first term is the Fano factor

of the actual underlying mRNA distribution. The second term reflects uncertainty

in the intensity of a single mRNA spot and is essentially the squared coefficient of

variation of the intensity of a single mRNA spot. This value depends slightly on

the conditions of the specific acquisition. For instance, the single mRNA peaks from

one experiment are shown in fig. S3B. For this acquisition, one can fit a Gaussian

to the observed single spot mRNA intensity distribution (dashed black line) and
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make a measurement of both the mean and standard deviation of this distribution to

calculate the expected contribution to the Fano factor from quantization error, as in

eq. S23. For this acquisition, we see that σ2
I/〈I1〉2 = 0.16. This result is typical for

our experiments (as demonstrated in fig. S3C) and therefore the green shaded region

in Fig. 2B has a height equal to 0.16. Of course, this value is not static and depends

on the particular acquisition conditions and could be calculated for each separate

acquisition independently. However, these values are small enough relative to the

range of Fano factors (≈ 1 to 8) observed in our experiments that this effect will not

change the qualitative conclusions reached in this work.

As a complementary test of the performance of our image analysis routines, we

created simulated FISH data sets at a variety of mRNA expression levels. Our goal

was as much as possible to faithfully reproduce the images coming off of our micro-

scope. We acquire raw microscopy data by spotting FISHed E. coli cells on agarose

pads, mounting the cells on the microscope, and running an automated acquisition

script. The script generates a grid of ≈ 100 positions on each pad; at each position,

a phase contrast image is taken for segmentation purposes, followed by a fluorescence

z stack (separated by 0.2 µm) to image mRNAs. Our simulated data thus also con-

sisted of sets of ≈ 100 “positions”, with each position consisting of a simulated phase

contrast image and a simulated fluorescence z stack. The data generation algorithm

at each position can be roughly described as follows:

1. Generate a phase contrast image. 25 “E. coli” cells are placed at random in a

field of view. Cells are modeled as ellipsoids 22 pixels in length, 10 pixels wide,

and 4 pixels tall.

2. Determine the number of mRNA copies in each cell. For each cell, the number

of mRNA it will contain is drawn from the appropriate probability distribution
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(for instance, from a Poisson distribution with a given mean).

3. Determine the spatial distribution of mRNAs within a cell. For each cell, mRNA

are distributed uniformly at random within the cell. For instance, if a cell has 4

mRNA assigned to it, then 4 pixels within the cell are chosen at random, with

each one corresponding to the center of an mRNA.

4. Determine the intensity of each mRNA. As seen in fig. S2, the integrated flu-

orescence intensity of a single mRNA can vary substantially. We choose the

intensity of each mRNA from a Gaussian distribution with mean 0.4 and stan-

dard deviation 0.16 (thus σ2
I/〈I1〉2 = 0.16 as in fig. S3B). These values were

chosen as reasonable representations of our physical data sets. Each mRNA

pixel (as determined in the previous step) is assigned a fluorescence intensity

drawn from this distribution.

5. Convolve with point-spread-function. In reality mRNA do not show up as

single bright pixels but rather as diffraction-limited spots. To simulate this

we convolve the fluorescence stack with a Gaussian point-spread function with

a standard deviation of 0.875 pixels. This value was chosen as a reasonable

representation of the point spread functions observed in our actual data.

6. Generate background and noise. In addition to the signal from actual mRNA

molecules, our images are subject to background from cellular autofluorescence

and the agarose pad, as well as noise from unbound or non-specifically bound

fluorescent probes. To simulate this, a random fluorescence background is gen-

erated for each cell by drawing pixel values from a geometric distribution with

mean 466 (reflecting typical mean background fluorescences encountered in ex-

perimental data), convolving with a Gaussian with mean 1.0 pixels (to reflect
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spatially correlated noise from e.g. unbound probes), then adding these values

to the “signal” as determined in the previous step. This background is added

to a constant offset of 1080 counts to mimic a typical camera offset.

In fig. S4 we show the measured Fano factor for simulated data for a population

of cells with Poisson distributed mRNA copy number (circles) using two distinct

mRNA quantification schemes as described in the methods. As expected, even at low

mRNA expression, the measured Fano factor is greater than the correct value of 1,

due to the variability in intensity measured for a single mRNA. The single mRNA

intensity distribution is a Gaussian with σ2
I/〈I1〉2 = 0.16 and is designed to mimic our

experimental data (see fig. S2B). Eq. S23 thus predicts that the measured Fano factor

will be 1.16, this prediction is shown as the green bar in fig. S4 for comparison to the

Fano factor in the simulated data. For reference, our Fano factor measurements (with

gene copy number noise subtracted) for the constitutive expression strains are shown

as crosses. While the quantification noise matches at low means, at higher means

RNAP fluctuations in the real data are likely also contributing to the measured noise

and pushing the experimental noise above the simulations’ noise.

2.2.2 Gene copy number variation

As cells grow and divide, their chromosomes are replicated, causing the copy number

of a given gene to change over the course of the cell cycle. This effect can potentially

obscure our measurements of transcriptional noise. To that end, we wish to calculate

the effect of changes in gene copy number on variability in gene expression. Under

the growth conditions of our experiments, E. coli cells contain 1 or 2 chromosomes,

and hence 1 or 2 copies of the gene of interest. Let 1 − f denote the fraction of the

cell cycle for which 1 copy of the gene of interest is present. Then f is the fraction
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for which 2 gene copies are present. The probability that m mRNA are present in a

cell is given by

p(m) = (1− f) p1(m) + f p2(m) (S24)

where p1(m) is the probability of m mRNA given 1 gene copy, and p2(m) is the prob-

ability of m mRNA given 2 gene copies. We will assume that, when two gene copies

are present, expression from the two copies is statistically independent. Thus, we

can use well-known properties of sums of independent random variables to calculate

properties of p2(m).

We will proceed by computing the mean and variance of p(m) given in equation

S24.

〈m〉 =
∞∑
m=0

mp(m) = (1− f)
∞∑
m=0

mp1(m) + f
∞∑
m=0

mp2(m) (S25)

= (1− f)〈m〉1 + f〈m〉2 (S26)

It can easily be shown that 〈m〉2 = 2〈m〉1 and hence

〈m〉 = (1 + f)〈m〉1. (S27)

Similarly for 〈m2〉, we have:

〈m2〉 = (1− f)〈m2〉1 + f〈m2〉2. (S28)

It can be shown that 〈m2〉2 = 2〈m2〉1 +2〈m〉21 (this follows from the fact that the vari-

ance of a sum of independent random variables is equal to the sum of the variances).

Thus we obtain

〈m2〉 = (1− f)〈m2〉1 + f
[
2〈m2〉1 + 2〈m〉21

]
. (S29)
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Putting these expressions together, we find that

var(m) = 〈m2〉 − 〈m〉2 (S30)

= (1 + f)〈m2〉1 + 2f〈m〉21 − (1 + f)2〈m〉21 (S31)

= (1 + f)〈m2〉1 − (1 + f 2)〈m〉21 (S32)

The Fano factor is then

F = var(m)/〈m〉

=
(1 + f)〈m2〉1 − (1 + f 2)〈m〉21

(1 + f)〈m〉1

=
〈m2〉1
〈m〉1

− (1 + f)〈m〉21 − f(1− f)〈m〉21
(1 + f)〈m〉1

F =
〈m2〉1 − 〈m〉21
〈m〉1︸ ︷︷ ︸

Transcription

+
f(1− f)

1 + f
〈m〉1︸ ︷︷ ︸

Gene copy number

, (S33)

reproducing equation 1 from the main text. The two terms of this expression each have

straightforward interpretations. The first term is simply the (architecture-dependent)

Fano factor of a single copy of a gene. The second term is the contribution from copy

number variation. We can make two observations. First, the contributions to overall

noise from promoter architecture and from gene copy number change are indepen-

dent and additive. This is unsurprising since the two processes are (by assumption)

independent and uncorrelated. Second, the contribution due to gene copy number

increases linearly with expression. The predicted contribution to the Fano factor from

copy number variation, the second term in Eq. S33, is shown in fig. S6 as a function

of the average gene copy number (= 2 − f). As expected, if the copy number has a

defined, static value (f = 0 or f = 1) there is no contribution to the Fano factor from

variation in copy number. However, between these two minima, the variance reaches
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a maximum at f = 0.5, when the cell spends equal time with 1 or 2 copies, and thus

the contribution to Fano factor has a maximum shifted towards slightly lower means

(which appears in the denominator of Fano factor). For our experiments, our growth

rates and locus of integration gives f = 2/3 [26], meaning that 2/3 of our cells have

two copies of the reporter gene and the rest have one copy. In a section to follow

and in fig. S11, we show that, as predicted, if the cells are binned into a population

expected (based on physical size) to have only one or only two copies of the measured

gene, the Fano factor deceases by roughly the same magnitude as that expected from

copy number variations.

2.2.3 Extrinsic noise due to repressor copy number fluctuations

In addition to the “intrinsic” variability characterized by our modeling efforts, ex-

trinsic sources of variability including (e.g.) changes in TF copy number can also

contribute to overall variability in gene expression. To investigate the potential ef-

fects of fluctuations in repressor copy number, we performed numerical studies in

which the repressor copy number was allowed to vary across a population of cells.

Let Parc(m|R = k) denote the promoter architecture dependent probability that a

cell contains m mRNA given k copies of a repressor TF. Let PTF (R = k) denote

the probability that a cell contains k repressor copies. (Our analysis of “intrinsic”

cell-to-cell variability implicitly assumes that all cells have the same repressor copy

number - that is, PTF (R = k) = δkk′ for some k′.) Then the overall probability of

observing m mRNA in a cell is given by

P (m) =
∞∑
k=0

Parc(m|R = k) · PTF (R = k). (S34)
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The quantity Parc(m|R = k) can be computed numerically as described in [2], and

thus we can compute P (m) numerically for any repressor copy number distribution

PTF (R = k).

Here, we analyzed a population of cells in which the repressor copy numbers of

individual cells are distributed according to a negative binomial distribution. The

negative binomial distribution

PTF (k;n, p) =

(
n+ k − 1

n− 1

)
pn(1− p)k (S35)

gives the probability that the nth success occurs on the (k + n)th trial, where the

probability of success on any single trial is p. It is often used to model a more dis-

persed or long-tailed distribution than the Poisson distribution, and has been shown

to correspond to constitutive mRNA production with a geometrically distributed

number of proteins translated from each mRNA [1]. The degree of dispersal can be

tuned via the parameter n as shown in fig. S7A. For a range of different n values, we

tuned mean repressor expression via the parameter p while holding n constant. The

resulting Fano vs mean curves for the target gene are shown in fig. S7B. We observe

that, despite substantial variability in repressor copy number, the overall variability

is predominantly contributed from intrinsic sources. This conclusion is robust across

both relatively narrow and relatively dispersed repressor copy number distributions.

2.2.4 Extrinsic noise due to RNAP copy number fluctuations

In addition to repressor copy number fluctuations, RNAP copy number fluctuations

also have the potential to contribute to the overall observed variability. We will follow

an approach similar to the one outlined in the previous section. The distribution of

RNAP copy numbers will be estimated from sources in the literature. The average
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RNAP copy number is reported as ≈ 10, 000 per cell [27]. In [3], the authors report

that for a typical protein with 10,000 copies per cell, the standard deviation in pro-

tein copy number is approximately 3200. We will thus model the RNAP copy number

distribution as a negative binomial distribution with mean equal to 10,000 and stan-

dard deviation equal to 3200, show in fig. S8A. We assume that the transcription

rate r is proportional to the RNAP copy number in the cell. The resulting Fano vs

mean curves are plotted in fig. S8B for both the constitutive expression and simple

repression architectures. In both cases, we see that extrinsic variability due to RNAP

fluctuations increases with increasing mean expression. In the case of constitutive

expression, this increasing trend in the Fano vs mean curve is markedly similar to

the increasing trend we observe in our constitutive expression data. In the case of

simple repression, the addition of extrinsic variability does not change the overall

qualitative features of the predicted curve. However, it does lead to the prediction

that the overall observed Fano factor will not fall all the way back down to 1 in the

absence of repressor, which is consistent with our experimental observations.

In the case of constitutive expression, it is possible to derive an informative ana-

lytical expression for the extrinsic noise contributed by variation in r. While this is

a general approach to variations in r, later we will relate this to the specific circum-

stance of RNAP fluctuations expected in our constitutive expression measurements.

Let the probability distribution for values of r be denoted by Pext(r). The steady-

state probability distribution for mRNA copy number, m, given a particular value of

r is a Poisson distribution with mean r/γ, such that

Parc(m|r) =
(r/γ)m

m!
e−r/γ. (S36)

We assume that r changes on a timescale sufficiently long compared to 1/γ that

22



we can use the steady-state probability distribution. Then the overall probability

distribution for mRNA copy number, integrated over all possible values of r, is given

by

P (m) =

∫
Parc(m|r)Pext(r)dr (S37)

To compute the Fano factor for this overall distribution, we will as usual proceed by

computing 〈m〉 and 〈m2〉.

〈m〉 =
∞∑
m=0

m

∫
Parc(m|r)Pext(r)dr (S38)

〈m〉 =

∫
Pext(r)

∞∑
m=0

mParc(m|r)dr (S39)

〈m〉 =

∫
Pext(r)

r

γ
dr (S40)

〈m〉 =
〈r〉
γ

(S41)

where 〈r〉 is the mean value of r. Similarly, for 〈m2〉,

〈m2〉 =
∞∑
m=0

m2

∫
Parc(m|r)Pext(r)dr (S42)

〈m2〉 =

∫
Pext(r)

∞∑
m=0

m2Parc(m|r)dr (S43)

〈m2〉 =

∫
Pext(r)

(
r2

γ2
+
r

γ

)
dr (S44)

〈m2〉 =
〈r〉
γ

+
〈r2〉
γ2

. (S45)
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Hence, the Fano factor is given by

Fano =
〈m2〉 − 〈m〉2

〈m〉
(S46)

Fano =

〈r〉
γ

+ 〈r2〉
γ2
− 〈r〉

2

γ2

〈r〉
γ

(S47)

Fano = 1 +
1

γ

〈r2〉 − 〈r〉2

〈r〉
(S48)

Fano = 1 +
1

γ
Fano(r). (S49)

Thus far, we have assumed nothing about the specific mechanism causing fluc-

tuations in r. Let’s now explore the case in which fluctuations in r are caused by

fluctuations in RNAP copy number. We will assume that the transcription rate r is

proportional to the RNAP copy number, so that r = r0E where E is the RNAP poly-

merase copy number and r0 is a constant of proportionality that can be thought of as

roughly the transcription rate per RNAP molecule. The constant of proportionality

r0 is assumed to depend on the strength of the promoter, so that when we tune mean

expression by tuning promoter strength, it is really (by assumption) the parameter

r0 that we are changing. Under this assumption, eq. S49 becomes:

Fano = 1 +
1

γ
Fano(r0E) (S50)

Fano = 1 +
r0

γ
Fano(E) (S51)

Fano = 1 +
〈m〉
〈E〉

Fano(E) (S52)

Fano = 1 + 〈m〉 σ
2
E

〈E〉2
(S53)

Fano = 1 +
1

10
〈m〉 (S54)
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where we have used the fact that by assumption 〈m〉 = 〈r〉/γ = r0〈E〉/γ, and used

the result of [3] that the squared coefficient of variation σ2
E/〈E〉2 ≈ 10−1 for a protein

with ≈ 104 copies per cell. Eq. S54 tells us simply that fluctuations in RNAP copy

number contribute an additional term to the Fano factor that increases linearly with

mean gene expression, with a slope equal to the squared coefficient of variation of the

RNAP copy number.

However, it is worth noting that RNAP copy number fluctuations are by no means

the only extrinsic mechanism capable of generating this linear relationship between

Fano factor and mean expression. For instance, one could imagine that DNA super-

coiling renders the promoter inaccessible and thus silences transcription some fraction

s of the time. We could model this scenario by saying that the effective RNAP copy

number is 0 for a fraction s of the time, and E0 for the remainder (i.e., 1 − s) of

the time, where E0 is some number of order 104. As before, we assume that the

transcription rate is proportional to the RNAP copy number. We can thus proceed

from eq. S51. It can easily be shown that Fano(E) = sE0 in this case, and hence

eq. S51 becomes

Fano = 1 +
r0

γ
sE0. (S55)

If we use the fact that 〈m〉 = r0〈E〉/γ = r0(1− s)E0/γ, we obtain finally

Fano = 1 +
s

1− s
〈m〉. (S56)

So again, we have an extrinsic noise term that increases linearly with mean expression,

here with a slope that depends on the fraction of time s for which expression is

silenced. The implications of this result will be discussed in the following section.
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2.2.5 Extrinsic sources of noise: concluding remarks

To conclude this exploration of sources of extrinsic noise, we will offer a few obser-

vations concerning model selection and the interpretation of experimental evidence.

In a 2011 paper, Huh and Paulsson pointed out that protein partitioning at cell di-

vision yields the same 1/〈x〉 overall scaling in the cell-to-cell variability in protein

levels as does Poissonian transcription [28]. Thus, experimental observation of 1/〈x〉

noise scaling does not in itself provide a basis for distinguishing between these two

mechanisms. Although this specific point is not relevant in the case of our experi-

ments, since mRNA lifetimes are sufficiently short compared with division times that

partitioning effects are negligible, the overall spirit of Huh and Paulsson’s argument

is relevant.

In particular, we found that the effect of gene copy number variation on the Fano

factor increases linearly with mean gene expression. However, in the case of constitu-

tive expression, we also find that the effect of RNAP fluctuations on the Fano factor

increases linearly with mean expression. Furthermore, the same would be true (in

the case of constitutive expression) if one postulated that a mechanism such as DNA

supercoiling causes transcriptional silencing e.g. 25% of the time: one would find a

linear relationship between Fano factor and mean expression. So how can we have

any confidence in the breakdown of noise sources in Fig. 2B? In our view, this dis-

cussion highlights the importance of independent corroboration of each of the pieces

shown in Fig. 2B. The quantization error is corroborated through both theoretical

calculation and analysis of simulated data (above). The gene copy number variation

effect is corroborated below by using cell size as a proxy for gene copy number (older,

larger cells will have two chromosome copies, while younger, smaller cells will have

one). The RNAP fluctuation effect is the most speculative. Although we believe it is
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defensible both in terms of the underlying assumption that expression is proportional

to RNAP copy number [29], and in the magnitude of RNAP fluctuations taken from

literature sources [3,30], our data does not provide us with a means to independently

corroborate this effect. (To do so, one might perform an experiment in which fluo-

rescently tagged RNAP molecules are used to quantify RNAP fluctuations.) Thus, it

is possible that the RNAP fluctuation effect is instead something else entirely such

as transcriptional silencing by DNA supercoiling. This is the reasoning behind our

statement in the Discussion of the main text that “our data does not rule out these

[alternative] hypotheses.”

2.3 mRNA histograms for constitutive expression

Representative mRNA copy number histograms are shown in Fig. S9 for each strain,

with the strain names above each histogram for reference. For each strain, we plot

the predicted mRNA copy number distributions both with (black lines) and without

(blue dashed lines) accounting for gene copy number variation. Specifically, the blue

curves are given by a Poisson distribution parameterized by the observed mean 〈m〉

of each strain:

P (m) = (〈m〉m/〈m〉!) e−〈m〉. (S57)

The black curves are given by combining the preceding equation with Eq. S24, namely,

P (m) = (1− f)(〈m〉m1 /〈m〉1!) e−〈m〉1 + (f)((2〈m〉1)m/(2〈m〉1)!) e−2〈m〉1 (S58)

where 〈m〉1 = 〈m〉/(1 + f), f = 2/3, and 〈m〉 is the observed mean for each strain.

It can readily be seen that accounting for gene copy number variation improves the

agreement between theory and experiment without requiring additional free param-

27



eters. To quantify this improvement, we report the log-likelihood ratio (LLR) for

each strain. This quantity is the logarithm of the ratio of the likelihood of the data

given the variable copy number probability distribution (black circles, Eq. S58) to

the likelihood of the data given by the simple Poisson prediction (blue dashed line,

Eq. S57). LLR = 0 implies that the observed data is equally likely given either the-

oretical distribution, whereas LLR > 0 implies that the data is more likely to have

been observed given the variable gene copy distribution of Eq. S58. We obtain pos-

itive LLR values for every strain, with the most positive values tending to occur at

high mRNA expression, where the difference between Eq. S57 and Eq. S58 is most

pronounced.

2.4 Error bars in Fano factor measurements

In the main text Figs. 2 and 3 as well as SI figs. S10 and S11B contain experimental

measurements for the Fano factor. Typically there are at least three repeats of any

given condition and each individual data point represents an individual experiment;

all available data points are plotted on every figure. Error bars are determined by

bootstrapping the single cell copy number distribution 1000 times and calculating

the standard deviation in the Fano factor for those 1000 independent bootstrapped

data sets. In other words, the single cell mRNA copy number distribution, which

typically contains roughly 900 entries of the number of mRNA in a given cell, is

randomly resampled with replacement (the same cell may appear multiple times in a

given bootstrapped data set) to create a new data set with the equivalent number of

entries. This is repeated 1000 times and the standard deviation of the Fano factor in

these measurements is used as an error bar for the measurement.
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2.5 Copy Number Variation: Uncorrected Figures

In the main text, our focus was on the promoter architecture dependent component of

gene expression variability, and thus we subtracted the gene copy number dependent

term (as defined by the second term in equation S33) from the measured Fano factor

in Figs. 2 and 3 of the main text. However, doing so does not change the qualitative

conclusion that variability is promoter architecture dependent. In fig. S10, we plot

the data from Figs. 2 and 3 without subtracting the gene copy number dependent

term.

2.6 Testing gene copy number noise by cell size segregation

In the main text we claim that one significant contribution to the measured cell-to-cell

mRNA copy number variability stems from the fact that our measurements contain

a mix of cells with one or two copies of the gene of interest. To test this claim, we

take the data from each measurement of our constitutive strains and divide the data

into two subsets based on their physical size. The idea is to use our knowledge of the

cell cycle, based on growth rate and gene position in the chromosome, to divide each

data set into one set with cells likely to have a single copy of the target gene (referred

to as “small cells”) and cells likely to have two copies of the target gene (referred to

as “large cells”). As mentioned in the main text, at 60 minute growth rate we expect

that the galK locus has a copy number of 1.66 [26], which implies that we should set

our division line at roughly 1/3 of the way through the cell cycle. We determine this

point by plotting the cumulative probability distribution of the cell area of every cell

in every sample and identifying the area value where 1/3 of the cells are smaller and

2/3 are larger. For our cells this is at an area of roughly 3.75 µm2. To help ensure

that this division is “clean” we discard cells 1/8 above and below the division line so
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that our small cells contain the smallest 21% of cells and the large cells are the 54%

largest cells.

In fig. S11A, we show the result of plotting the mean mRNA copy number of the

small cells bin versus the mean mRNA copy number of the large cell bin for every

measurement of every constitutive strain (black points). As stated previously while

deriving gene copy number noise, we expect that the large cells, binned to have two

copies of the reporter gene, should have twice the transcriptional activity of the small

cells. This is precisely what is observed: the red line is a line of slope 2 and intercept

0. While we do not expect this method to achieve a perfect division of the total

population, this test indicates that these subsets of data contain primarily cells with

one and two copies of the reporter gene.

In fig. S11B, we show the Fano factor of each of these two data subsets (black

squares for small cells, black circles for large cells) as well as the Fano factor of the

full data sets as red diamonds. Once again, the relevant sources of intrinsic and

quantization noise are shaded in green (quantization error), red (RNAP fluctuation

error) and blue (gene copy number noise). First, when the mean is small (< 1 per

cell per gene copy) the expected contribution from copy number variations is small

(the blue shaded region is small) and thus the two subsets and the full data set give

similar results for the Fano factor as expected. Above this threshold we begin to see

that the Fano factor of either subset of data (both large cells and small cells) falls

below the corresponding Fano factor of the full data set. Furthermore, we see that

the reduction in Fano factor causes the subsets to fall approximately on the interface

between the shaded blue and red region; the subset data is now consistent with a

Poisson process with quantization error and RNAP fluctuations but without gene

copy number fluctuations.
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2.7 Determination of Rate Parameter Values

The values of kR
off used in this work are taken from [31] and [2], and are shown in table

S2. Specifically, ref. [31] used a single molecule in vitro assay to measure the dissoci-

ation rate from the LacI Oid operator. Ref. [2] used this rate, along with knowledge

of the dissociation constants of the Oid, O1, O2, and O3 operators (reported in [13]),

to estimate the dissociation rates for the three additional operators, using the as-

sumption that the ratio of the dissociation rates for two particular operators is equal

to the ratio of their dissociation constants. In order to determine the three different

values of kR
on used in Fig. 3B of the main text, slightly more work was required. Re-

call that we are assuming a diffusion-limited on rate for which kR
on = k0[R]. Ref. [32]

reports that k0 = 2.7 × 10−3(s nM)−1. To determine kR
on for each of the three aTc

concentrations, we must determine the repressor concentration [R] at each aTc con-

centration. Unfortunately we do not independently possess the exact input-output

relation between aTc concentration and repressor copy number, but we can estimate

the repressor concentration at each aTc concentration by looking at how strongly

gene expression is repressed at each aTc concentration.

More specifically, in a recent work [25], the authors defined the “repression” as the

ratio between gene expression in the absence of repressor transcription factors (TFs)

and gene expression in the presence of repressor TFs. They showed that, for the

type of “simple repression” promoter architecture used in this paper, the repression

is given by

Repression = 1 +
2R

NNS

e−∆εrd/kBT (S59)

where R is the repressor copy number, NNS is the number of non-specific binding

sites (taken to be equal to the size of the E. coli genome, or 2× 5× 106), and ∆εrd is

the repressor-DNA binding energy (−17.3 kBT ) for the Oid LacI binding site. This
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expression can be solved to determine the repressor copy number R as a function of

the repression

R = (Repression− 1)× NNS

2
e∆εrd/kBT . (S60)

Garcia and Phillips [25] used this equation to determine the effective repressor copy

number R, and verified their results using quantitative Western blot analysis. We

used a similar approach by computing the repression at each of the aTc concentra-

tions for the Oid operator construct, then using equation S60 coupled with the fact

that the volume of an E. coli cell is approximately 1 fL to determine the repressor

concentration at each aTc concentration. Finally, we multiplied these concentrations

by k0 to determine the appropriate value of kR
on. The results are summarized in table

S3.
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3 Supplementary Figures
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Figure S1: Histogram of the number of cells per FISH sample.
Each sample has 100 unique positions imaged. Due to differences in cell density and
position quality (positions are chosen in an automated process), samples range in size
and have roughly 900 cells on average per sample.
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Figure S2: Histograms of detected spot intensities for low expression FISH
data.
Detected spots (local maxima in fluorescence signal), in principle, correspond to either
0 or 1 mRNA. Part (A) shows a representative histogram from FISH experiments,
while part (B) shows a histogram from simulated data. The signal of each spot has
been normalized by the “single mRNA intensity”. For both histograms, we identify
a “noise” or background peak at fluorescence intensity ≈ 0. This peak corresponds
to unbound or nonspecifically bound probes. In both cases, although we can discern
distinct peaks, distinguishing between 0 and 1 mRNA is not completely unambiguous.
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Figure S3: Comparison of identified single spot intensities across different
samples and experimental acquisitions.
(A) Histograms of single spot intensities for seven samples, normalized by the number
of cells in each sample. The value on the y-axis corresponds to the probability of
finding a spot with a given intensity in any one cell in the sample. Mean expression
in the samples ranges between 0.077 mRNA per cell and 1.02 mRNA per cell. When
expression is low, increases in the mean expression level increase the probability of
finding a spot with intensity equal to a single mRNA, rather than, for instance,
increasing the intensity of identified spots. (B) Histograms of single spot intensity
values for the same seven samples, normalized by the total number of identified spots
in each sample. In this case, the value on the y-axis corresponds to the probability
that a given identified spot has a particular intensity. The spots have roughly the
same properties in each of these samples, although in the highest expression samples,
we begin to see increased probability to have spots with intensity corresponding to
more than 1 mRNA. The day-to-day reproducibility in this identification process
is shown in part (C) where two different strains (5DL30 and WTDL30) are shown
measured across five different acquisitions.
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Mean mRNA copy number
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Figure S4: Fano factor vs mean plot for simulated Poisson distributed data.
Simulated mRNA FISH data with Poisson distributed mRNA copy numbers (circles)
is analyzed over a range of mean mRNA levels to evaluate our analysis code. Since
the simulated data is Poisson distributed, the true value of the Fano factor is 1.
However, we see here that the measured Fano factor is always slightly greater than
one. This persistent noise represents the “quantization error” discussed in the text;
the expected contribution to the Fano factor from quantization error is indicated
by the height of the green bar. For comparison, the crosses are the Fano factors
(corrected for gene copy number noise) from our constitutive expression strains (data
from Fig. 2B). The different colors (black and red) represent two distinct methods
for quantifying the resulting mRNA signal. For the black symbols, individual mRNA
spots are identified and quantified (divided by the intensity of a single mRNA) and
rounded to the nearest whole number of mRNA and the copy number in a cell is the
sum of the number of mRNA in each identified spot for a given cell. The red symbols
correspond to summing the signal of all identified spots in a cell and determining
a cell’s copy number by dividing the summed signal by the single mRNA intensity
(and, in this case, not rounded). This second method (red symbols) is used in this
work, but this choice does not significantly influence the outcome.
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Figure S5: Experimental comparison of mean mRNA FISH measurements
to enzymatic assay.
Direct comparison of the average mRNA copy number to the average enzymatic
activity of the encoded protein for every data strain and condition used in the text.
The red line is a linear fit to the data. Error bars are standard deviation from multiple
measurements.
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Figure S6: Fano factor contribution from gene copy number variation.
Predicted contribution to the Fano factor from gene copy number variation for three
distinct mean expression levels, 1 (blue curve), 5 (red curve) and 10 (green curve)
mRNA copies per cell per gene copy. The effect increases with transcription rate and
is largest when the gene spends approximately half the cell cycle with 1 copy and the
other half with 2 copies.
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Figure S7: Quantifying the extrinsic noise contribution of repressor copy
number variation.
(A) Single-cell repressor distribution for the negative binomial distribution with var-
ious choices for the parameter n and for a Poisson distribution. (B) Predicted Fano
factor for simple repression with a static value for the repressor copy number without
distribution (solid black line) along with the Fano factor for the distributions shown
in (A) of this figure. Even when the distribution is quite wide, the added noise above
the intrinsic piece is relatively small.
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Figure S8: Quantifying the extrinsic noise contribution of RNAP copy num-
ber variation.
(A) Negative binomial model of RNAP copy number distribution with width cho-
sen to coincide with reported literature values [3]. (B) The resulting contribution
to the Fano factor from extrinsic noise in RNAP copy number. The solid lines are
the theoretical predictions without any source of extrinsic noise for constitutive (red
solid line) and simple repression (black solid line) and with RNAP fluctuation noise
(corresponding dashed lines).
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Figure S9: mRNA copy number histograms for constitutive expression. Ob-
served mRNA copy number distributions for library of 18 constitutive promoters.
For each promoter, we plot the predicted mRNA copy number distribution assum-
ing Poissonian production and degradation, both with (black circles) and without
(dashed blue lines) accounting for gene copy number variation. The log-likelihood ra-
tio (LLR) of the observed data with and without accounting for copy number variation
is shown on each histogram. Accounting for gene copy number variation substantially
improves agreement between theory and data, as indicated by positive LLRs. The
mean number of cells included in a histogram is 1238± 267 cells for each sample.
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Figure S10: Fano factor vs. mean mRNA copy number. The data from Fig. 3
of the main text are plotted without subtracting the effect of gene copy number
variation. (A) Fano factor vs. mean mRNA copy number for two promoters (choices
of r/γ): 5DL1 (red points) and lacUV5 (green points) while tuning kR

on by inducing
LacI to varying levels. The parameter-free predictions from the kinetic theory of
transcription are shown as dashed lines in the corresponding color holding promoter
(r/γ) and repressor binding strength (kR

off) constant. For reference, the black data is
the constitutive data from figure 2. (B) Fano factor vs. mean mRNA copy number for
lacUV5 while tuning kR

off by changing repressor binding site identity at fixed repressor
copy number, each color is a different induction condition from red (lowest LacI
induction) to blue (highest LacI induction). Again, the predictions from the kinetic
theory of transcription are shown as dashed lines in the corresponding color. For both
panels, not subtracting gene copy number variation slightly worsens the fit between
theory and data, but the overall conclusion that variability is promoter architecture
dependent is not affected. Error bars are the result of bootstrap sampling of the
expression measurements in each sample
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Figure S11: Analysis of small cell and large cell data subsets in constitutive
expression.
Each individual constitutive expression sample measurement (multiple measurements
of all 18 strains) is divided into two subsets of “large” and “small” cells based on cell
area. The division line between these sets is chosen such that small cells are expected
to have one copy of the reporter gene while large cells are expected to contain two
copies. (A) Mean mRNA copy number of large cells vs mean mRNA copy number
of small cells within the same sample. The mean copy number of the large cells
is double the mean copy number of the small cells, supporting the assertion that
the data sets are correctly divided based on gene copy number. (B) Fano factor vs
mean mRNA copy number for the full data sets (purple diamonds, as from Fig. 2B),
large cells (red circles) and small cells (black squares). The Fano factor for the full
data samples agrees with the noise prediction including quantization noise, RNAP
fluctuation noise and gene copy number noise. The subsets, divided to remove gene
copy number variation in a sample, are described best without the gene copy number
noise term. All error bars are the result of bootstrap sampling of the expression
measurements in each sample.
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4 Supplementary Tables

Name Sequence Name Sequence

lacZ1 gtgaatccgtaatcatggtc lacZ37 gatcgacagatttgatccag

lacZ2 tcacgacgttgtaaaacgac lacZ38 aaataatatcggtggccgtg

lacZ3 attaagttgggtaacgccag lacZ39 tttgatggaccatttcggca

lacZ4 tattacgccagctggcgaaa lacZ40 tattcgcaaaggatcagcgg

lacZ5 attcaggctgcgcaactgtt lacZ41 aagactgttacccatcgcgt

lacZ6 aaaccaggcaaagcgccatt lacZ42 tgccagtatttagcgaaacc

lacZ7 agtatcggcctcaggaagat lacZ43 aaacggggatactgacgaaa

lacZ8 aaccgtgcatctgccagttt lacZ44 taatcagcgactgatccacc

lacZ9 taggtcacgttggtgtagat lacZ45 gggttgccgttttcatcata

lacZ10 aatgtgagcgagtaacaacc lacZ46 tcggcgtatcgccaaaatca

lacZ11 gtagccagctttcatcaaca lacZ47 ttcatacagaactggcgatc

lacZ12 aataattcgcgtctggcctt lacZ48 tggtgttttgcttccgtcag

lacZ13 agatgaaacgccgagttaac lacZ49 acggaactggaaaaactgct

lacZ14 aattcagacggcaaacgact lacZ50 tattcgctggtcacttcgat

lacZ15 tttctccggcgcgtaaaaat lacZ51 gttatcgctatgacggaaca

lacZ16 atcttccagataactgccgt lacZ52 tttaccttgtggagcgacat

lacZ17 aacgagacgtcacggaaaat lacZ53 gttcaggcagttcaatcaac

lacZ18 gctgatttgtgtagtcggtt lacZ54 ttgcactacgcgtactgtga

lacZ19 ttaaagcgagtggcaacatg lacZ55 agcgtcacactgaggttttc

lacZ20 aactgttacccgtaggtagt lacZ56 atttcgctggtggtcagatg

lacZ21 ataatttcaccgccgaaagg lacZ57 acccagctcgatgcaaaaat

lacZ22 tttcgacgttcagacgtagt lacZ58 cggttaaattgccaacgctt

lacZ23 atagagattcgggatttcgg lacZ59 ctgtgaaagaaagcctgact
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lacZ24 ttctgcttcaatcagcgtgc lacZ60 ggcgtcagcagttgtttttt

lacZ25 accattttcaatccgcacct lacZ61 tacgccaatgtcgttatcca

lacZ26 ttaacgcctcgaatcagcaa lacZ62 taaggttttcccctgatgct

lacZ27 atgcagaggatgatgctcgt lacZ63 atcaatccggtaggttttcc

lacZ28 tctgctcatccatgacctga lacZ64 gtaatcgccatttgaccact

lacZ29 ttcatcagcaggatatcctg lacZ65 agttttcttgcggccctaat

lacZ30 cacggcgttaaagttgttct lacZ66 atgtctgacaatggcagatc

lacZ31 tggttcggataatgcgaaca lacZ67 ataattcaattcgcgcgtcc

lacZ32 ttcatccaccacatacaggc lacZ68 tgatgttgaactggaagtcg

lacZ33 tgccgtgggtttcaatattg lacZ69 tcagttgctgttgactgtag

lacZ34 atcggtcagacgattcattg lacZ70 attcagccatgtgccttctt

lacZ35 tgatcacactcgggtgatta lacZ71 aatccccatatggaaaccgt

lacZ36 atacagcgcgtcgtgattag lacZ72 agaccaactggtaatggtag

Table S1: Names and sequences of LacZ mRNA probes.
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Operator kR
off(s−1)

Oid 0.0023

O1 0.0069

O2 0.091

O3 2.1

Table S2: Repressor dissociation rates. These rates are taken directly from
refs. [2] and [31]. The dissociation rate of the Oid operator was directly measured in
vitro, while the O1, O2, and O3 dissociation rates were computed using the ratios of
these binding sites’ equilibrium occupancies to that of Oid.

aTc concentration R (copy number) [R] (nM) kR
on(s−1)

0.5 ng/mL 0.21 0.35 0.0010

2 ng/mL 5.9 9.8 0.026

10 ng/mL 50 83 0.22

Table S3: Repressor binding rates. As described in the supplementary text, these
rates were computed by combining the association rate per repressor reported in
ref. [32] with an estimate of the repressor copy number at each aTc concentration. The
overall association rate is then the product of the estimated repressor copy number
with the association rate per repressor molecule.
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