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A variety of biomolecular systems rely on exploratory dynamics to reach target locations or states
within a cell. Without a mechanism to remotely sense and direct motion towards a target, the system
must sample over many paths, often including resetting transitions back to the origin. We explore
how exploratory dynamics can confer an important functional benefit: the ability to respond to
small changes in parameters with large shifts in the steady-state behavior. However, such enhanced
sensitivity comes at a cost: resetting cycles require energy dissipation in order to push the system out
of its equilibrium steady state. We focus on two concrete examples: translational proofreading in the
ribosome and microtubule length control via dynamic instability to illustrate the trade-offs between
energetic cost and sensitivity. In the former, a thermodynamically driven activation step enhances
the ability to distinguish between substrates and decoys with small binding energy differences.
In the latter, resetting cycles enable catalytic control, with the steady-state length distribution
modulated by sub-stoichiometric concentrations of a reusable catalyst. Synthesizing past models of
these well-studied systems, we show how path-counting and circuit mapping approaches can be used
to address fundamental questions such as the number of futile cycles inherent in translation and the
steady-state length distribution of a dynamically unstable polymer. In both cases, a limited amount
of thermodynamic driving is sufficient to yield a qualitative transition to a system with enhanced
sensitivity, enabling accurate discrimination and catalytic control at a modest energetic cost.

It is our great pleasure to contribute to this special issue
dedicated to the life and work of Prof. Erich Sackmann.
Sackmann was a pioneer in the broad field dedicated to
using the tools of physics to understand the fascinating
phenomena of life. One of the most intriguing aspects
of living organisms that makes them so different from
their inanimate counterparts is the expenditure of en-
ergy to maintain nonequilibrium steady states. Many
of the phenomena that exploit such energy consump-
tion share features of exploratory dynamics: sampling
many paths with occasional resetting en route to a tar-
get state. Common examples include biological polymer-
ization in processes such as replication, translation, and
cytoskeletal filament dynamics. In this paper, we exam-
ine two case studies (protein translation and microtubule
growth) linking the energetic cost and functional benefits
of exploratory dynamics.

INTRODUCTION

One of the fundamental challenges faced by living cells
is the need to carry out their functions while ‘blind’ –
lacking a centralized omniscient organizer that can di-
rect cellular components where to go and which interac-
tions to perform in what order. Above the cellular scale,
biological dynamics can be at least somewhat directed:
individual cells follow gradients of chemotactic signals
to find food or escape danger [1], morphogen patterns
regulate tissue rearrangements and cellular differentia-
tion [2], organisms make use of sensory organs to find
distant targets. Within a cell, however, exploratory dy-
namics reigns supreme [3]. Whether searching through

physical space or through chemical state-space, cells rely
on dynamics that follow a characteristic pattern: blindly
sampling through the available states, fixing and ampli-
fying the targets when a trajectory stumbles across them,
and resetting unsuccessful trajectories to try again.

Such exploratory dynamics was first noted in the con-
text of dynamically unstable microtubules that engage in
search-and-capture cycles of random growth and rapid
depolymerization to find chromosomes when construct-
ing the mitotic spindle [4, 5]. The same principle applies
to other spatial search problems in the cell. For exam-
ple, the ability of neurons to localize mitochondria in re-
gions of high energy demand [6] relies on ‘sushi-belt’ dy-
namics [7], where a motile population of organelles con-
stantly cycles via motor-driven transport through neu-
ronal projections, with regions of enhanced stopping en-
coded through local increases in calcium [8] or glucose
concentrations [9]. In the endocytic pathway, endosomes
bearing activated receptors must wander through the cel-
lular periphery until they encounter other organelles that
trigger phosphoinositide conversion and deactivate the
signal [10, 11].

Analogous exploratory processes occur on the molec-
ular scale, particularly in the context of sensing and
proofreading. First introduced to explain the accuracy
of polymerization-based information transfer [12, 13], ki-
netic proofreading relies on chaining together interme-
diate states that the system must pass through before
reaching a target. By providing multiple opportunities
to reset back to the origin from each intermediate state,
such proofreading can amplify the likelihood of following
a pathway involving ‘right’ versus ‘wrong’ interactions.
Thus, a ribosome searches for the next amino acid to add

https://arxiv.org/abs/2506.00775v1


2

to a growing polypeptide chain by exploring through in-
termediate states that might involve the right or wrong
tRNA. The higher rate of resetting (release of the tRNA)
for the wrong amino acid allows a greater probability that
the final step of peptide elongation is reached only with
the correct amino acid. Similar exploration through in-
termediate states shows up in sensory systems, such as T-
cell activation [14] or chemotactic signaling [15]. In both
cases, incorrect ligands that bind weakly to receptors are
more likely to be released, resulting in resetting during
each intermediate step. Proofreading through resetting
is also thought to contribute to the self-assembly of large
multimeric structures, including sequence-specific RecA
filament formation on DNA [16] and viral RNA packag-
ing [17].

Protein quality control systems provide additional ex-
amples of exploratory dynamics that leverage resetting
to accurately sort components into distinct pathways.
The ubiquitinating enzyme APC is able to distinguish
its substrates among myriads of decoy proteins by se-
quentially marking multiple lysine groups on the target
protein, eventually triggering the degradation of the sub-
strate [18]. The resulting difference in APC binding affin-
ity on ubiquitinated substrates versus non-ubiquitinated
decoys makes it more likely that only the correct proteins
are targeted for degradation. In the secretory pathway,
newly translated proteins are tagged by the addition of
glycan chains that facilitate binding to chaperones which
help fold the proteins [19]. Multiple cycles of glycosyla-
tion in the ER allow chaperones to make several attempts
at folding a nascent protein before it proceeds towards
the terminal pathways of export or degradation [20].

Given the prevalence of resetting dynamics in intracel-
lular systems, a natural question is why this approach
is so common and what advantages it might offer to the
cell. The effects of resetting on speed in subcellular ex-
ploration are considered in previous work [21, 22] and ad-
dressed in a cohesive framework in another article within
this issue [23].

Instead of considering the temporal advantages, here
we illustrate how exploratory dynamics enhances sensi-
tivity: the ability of the cell to respond to small dif-
ferences in system parameters. We contend that seem-
ingly distinct functional objectives, including concerted
activation of specific signaling molecules, accurate dis-
crimination of targets from decoys, and regulation of
molecular assembly size, are all manifestations of the
same phenomenon: namely that exploratory dynamics
magnifies the effect of changing system parameters (in-
puts) on steady-state observables (outputs). Such sen-
sitivity comes at a cost of energy expenditure because
exploratory dynamics with resetting necessarily involves
cycles that break detailed balance. Using kinetic proof-
reading and microtubule length regulation as examples,
we show how signal gain depends on energy dissipa-
tion and the concomitant driving of systems away from
equilibrium detailed balance toward non-equilibrium ex-
ploratory dynamics. Importantly, we show that energy

expenditure through driving one transition can qualita-
tively change the response function to parameters else-
where in the system.
One manifestation of this phenomenon is catalytic con-

trol – a ubiquitous feature of biomolecular regulatory sys-
tems, where a reusable catalyst (such as a kinase) alters
the state of its substrates. Because a catalyst modifies
transition barriers only, the input parameter (catalyst
concentration) can have no effect on steady-state output
under equilibrium conditions. However, in the presence
of driven exploratory dynamics, the steady-state prob-
ability of different substrate states can in fact become
dependent on the level of catalyst present. This fea-
ture enables a small (sub-stoichiometric) number of reg-
ulatory molecules to trigger large-scale changes in cel-
lular state. Examples include the whole-sale ubiquitina-
tion and degradation of specific classes of proteins during
mitosis [18] and the catalytic regulation of microtubule
length during cell division [24]. Such catalytic control re-
quires energy dissipation somewhere in the system, even
when the catalysis step itself does not couple to an ex-
ternal energy source.
In this paper, we investigate how exploratory dynam-

ics with resetting allows biochemical systems to enhance
their sensitivity, enabling accuracy in the presence of de-
coys and catalytic control. For concreteness, we focus
on two key biological examples that illustrate these fea-
tures: single-step kinetic proofreading in ribosomal trans-
lation, and multi-step resetting in microtubules undergo-
ing dynamic instability. Along the way, we highlight two
pedagogically useful approaches to describing such sys-
tems: path-counting (which intuitively incorporates ex-
ploratory dynamics), and circuit mapping (which clarifies
the relation between energetic driving and steady-state
distributions). These systems highlight both the func-
tional benefits of resetting dynamics and the concomitant
cost in energy dissipation.

KINETIC PROOFREADING IN THE RIBOSOME

The notion of accuracy can be defined for stochastic re-
action systems where there are multiple terminal states of
which only a particular subset is considered ‘correct’. In
many biological systems, accuracy is enhanced through
the use of multiple intermediate states, with the probabil-
ity of resetting to the origin higher for pathways leading
to the wrong terminal state – a process that has been
termed ‘kinetic proofreading’ [12, 14, 25–27]. At equilib-
rium, the error rate (ratio of wrong to right pathways se-
lected) is bounded by the difference in free energy change
from the initial to the final state [28]. By contrast, sys-
tems with actively driven resetting cycles can surpass this
bound, combining the energy differences in multiple in-
termediate states to achieve higher fidelity [29].
The distinction between kinetic and thermodynamic

proofreading [28, 30] can be concretely illustrated by two
distinct biomolecular copying processes. In the case of
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DNA replication, the polymerase need only distinguish
between four options for the next nucleic acid to be added
to the chain. DNA polymerases that are deficient in
proofreading exonuclease activity (which removes mis-
matched nucleotides after they are incorporated into the
chain) are nevertheless able to achieve error rates on the
order of 10−5. Their fidelity relies on a combination of
steric shape-matching for the correct nucleotide in the
polymerase binding pocket and the classic base-pairing
hydrogen bonds [31, 32]. By contrast, there are 20 pos-
sible tRNAs that can bind to the ribosome during trans-
lation, only one of which is cognate to a given codon on
the mRNA and would lead to incorporation of the cor-
rect amino acid. The difference in binding energies for
distinct anti-codons relies on the formation of 1-2 hydro-
gen bonds and is thus limited to only a few kbT [33]. For
a 20-fold excess of wrong tRNAs, this implies an error
rate well above 10%. On the scale of a 300-amino-acid
long peptide, being able to build an error-free chain even
half of the time would require error rates below 0.2%, ne-
cessitating the introduction of energy-consuming kinetic
proofreading cycles.

A number of theoretical works have sought to eluci-
date the connections between energy dissipation, speed,
and accuracy of a proofreading system [27, 29, 34]. Even
for a simple single-step enzyme, accurately distinguish-
ing between cognate and non-cognate substrates requires
product formation to be slow compared to the binding-
unbinding equilibration [35]. From the same principle,
the forward step in multi-stage proof-reading pathways
must be arbitrarily slow to reach the minimal possible
error rate, highlighting a trade-off between speed and
accuracy [36]. Furthermore, because kinetic proofread-
ing relies on resetting, each such resetting cycle implies a
cost in terms of additional time required to reach the tar-
get. For multi-step pathways, the time to reach a target
scales exponentially with the number of states if reset-
ting is more likely than forward stepping, and linearly
otherwise [27]. Since each intermediate state provides an
extra opportunity for proofreading, accuracy comes at a
cost in speed. This trade-off has also been noted in mod-
els of T-cell activation [14] and chemosensory receptor
arrays [15, 34].

The relevant energetic cost for a proofreading system
depends on both the dissipation per turn of the resetting
cycle and the typical number of such cycles before reach-
ing the target state. Thus, for translational proofreading
we could ask how many tRNAs are released from the
activated state before an amino acid is successfully in-
corporated into the growing polypeptide chain. In other
words, given the large excess (i.e.≈20-fold) concentra-
tion of wrong versus right tRNAs, how many GTP must
be hydrolyzed per elongation event? This question has
been formulated in terms of the total entropy produc-
tion (dissipation rate normalized by the incorporation
rate) [28], and in terms of the number of futile cycles [29].
Some fundamental bounds have been proposed for relat-
ing the dissipation (including waste) and the error rate

of a proofreading system. At equilibrium, the error rate
is equal to the ratio of Boltzmann factors for the right
versus wrong products [37]. For non-equilibrium proof-
reading systems, the error rate can be driven up or down
by an exponential factor incorporating both the total en-
tropy production and the ‘excess work’ put into the sys-
tem beyond the overall free energy difference for incor-
poration [28]. For multistage proofreading schemes, the
minimal energy cost necessary to sustain a particular er-
ror rate decreases with both the number of intermediate
states and the right-vs-wrong discrimination factor for
resetting from each intermediate state [29].
These generalized results, however, can be difficult to

apply to specific proofreading schemes, particularly if
there are constraints on certain kinetic rates in the sys-
tem. In particular, the reverse transitions associated with
resetting can be so rare that they are never observed ex-
perimentally and cannot be directly measured. Despite
being in some sense unphysical, models with irreversible
arrows often provide a complete description of actual
quantitative measurements for a reaction circuit [38]. Ir-
reversible arrows then imply that the reverse transitions
are infrequent enough to have little effect on the parti-
tion ratios of the system [29]: the choice of transition at
each step in the exploratory dynamics.
Below we seek to provide a pedagogically helpful anal-

ysis of a classic single-intermediate model of translational
proofreading. We begin with a model incorporating ir-
reversible transitions, using a path-counting approach to
compute the number of excess GTP hydrolyzed per elon-
gation event. More complex reaction schemes can also be
reduced to this simple model. We then expand the path-
counting approach to incorporate fully reversible steps
and demonstrate how increasing energetic driving causes
the system to transition between distinct regimes, with
intermediate driving strength but large numbers of fu-
tile cycles required to approach the greatest accuracy.
Overall, active driving enhances the sensitivity of trans-
lational proofreading to small changes in tRNA binding
energy, enabling it to accurately discriminate between
correct and wrong amino acids for incorporation into the
peptide chain.

Irreversible Model

As shown in Fig. 1, we represent translational elon-
gation via a classic simplified reaction scheme, as pro-
posed by Hopfield in his seminal work on kinetic proof-
reading [12]. This scheme begins with an empty ri-
bosomal binding site (denoted as the R state). A re-
versible binding step allows a tRNA loaded with the cor-
rect (C) or wrong (W) amino acid to interact with the
template strand. The wrong amino acids are expected to
be present in excess of the correct ones, by a factor g. On
average, we would expect an excess on the order of g ≈ 20
(BNID 108611,105274, 105273). For simplicity, we as-
sume that the tRNA arrival is diffusion-limited, so that
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FIG. 1. Schematic of the classic 2-step kinetic proofreading
model for translation. The states are: R = empty ribosome,
RC = ribosome with correct amino acid bound, RW = ribo-
some with wrong amino acid bound, RC∗, RW ∗ = ribosome
with correct or wrong amino acid, after GTP hydrolysis.

the binding rate for the correct amino acid is kb and the
rate for the wrong amino acid is gkb. Even in the absence
of proofreading, we would expect some discrimination be-
tween tRNAs carrying right and wrong amino acids based
on their different binding energies. The thermodynamic
limit on accuracy [28] is then set by the equilibrium ratio
of wrong versus correct tRNAs bound to the ribosome,
expressed as fpassive = ge−β∆ε, where ∆ε = εw − εc is
the difference in binding energies, and we adopt the no-
tation β = 1/kBT . For much of what follows, we will use
the convention of defining dimensionless energies such as
∆1 = β∆ε. Given these conventions, we set the off-rates
for the reversible interaction to be ku1 and ku1e

∆1 for the
correct and wrong amino acids, respectively.

In a somewhat whimsical analogy (illustrated in
Fig. 2), we can describe translational elongation as en-
try of visitors to a particularly selective clubhouse. The
first reversible binding step might then correspond to a
swinging door with a passive sign declaring who can come
in. This passive filter allows for some discrimination, but
does not completely keep out unwelcome visitors who
might sneak through the swinging door. As in protein
translation, a subsequent active step to check the visi-
tors’ identity is needed.

The next step in the translational elongation pathway
involves the hydrolysis of GTP (in the EF-Tu cofactor
associated with the tRNA). This hydrolysis serves as a
tightly-coupled energy source, transitioning the ribosome
to an activated state (RC∗ or RW∗). We assume the
same hydrolysis rate kh regardless of which amino acid
is present. Because of the large free energy change asso-

ciated with GTP hydrolysis and phosphate release, this
step is taken to be effectively irreversible.
The activated state provides an opportunity for proof-

reading in that the tRNA can again disassociate from
the ribosome, essentially serving as a reset in the overall
exploratory dynamics. The release process is also dis-
criminatory, with the correct tRNA falling off at rate ku2
and the wrong one at rate ku2e

∆2 . The quantity ∆2 can
correspond to either the difference in binding energy be-
tween the right and wrong tRNAs, or to a difference in
the barrier heights for dissociation [30]. Either way, we
assume the activated state is so high on the energy land-
scape that the dissociation process is irreversible. For
the dissociated tRNA to return to the ribosome, it must
again pass through the reversibly bound state.
In our analogy, the proofreading step corresponds to an

active identity check at the inner door of the clubhouse
(Fig. 2, rightmost panels). Such a step is costly in that
it requires an energy-consuming “Maxwell’s Demon” to
open the inner door selectively for the correct visitors.
However, it has the advantage of more accurately vetting
which visitors are allowed to enter the clubhouse. The
sequential passive then active filtering steps, allow for
high accuracy to be achieved without overworking the
demon, since the number of undesired visitors attempting
to sneak through the swinging door is already reasonably
low.
Finally, there is an irreversible step for forming the

peptide bond to incorporate the new amino acid into the
growing peptide chain. We assume this step occurs with
rate kp, regardless of the amino acid identity. In our
analogy, this corresponds to the final step of visitors be-
ing permanently sworn into the exclusive club.

Model solution

The kinetic scheme illustrated in Fig. 1 represents
a network of Markovian transitions between states.
Steady-state fluxes along the one-way arrows could be
found by solving the corresponding master equations [29].
However, for purposes of conceptual clarity, we take the
alternate approach of treating this as a stochastic fluc-
tuating system [39], imagining the ribosome hopping be-
tween the different states. We are interested in the av-
erage cost per amino acid added to the nascent polypep-
tide chain, in particular as a result of the large excess
in “wrong” tRNA/amino acid pairs. More precisely,
starting in the empty state (R), how many hydrolysis
events must occur before the system reaches a termi-
nal state, elongating the peptide chain by an additional
amino acid? This provides a measure of the energetic
cost per amino acid for building a nascent peptide chain.
The energetic cost can then be compared to the fidelity of
translation, expressed as the error rate f (ratio of wrong
versus correct amino acids incorporated into the chain).
As the system hops between the discrete states, there

is a choice at each step of which outward arrow to follow.
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FIG. 2. Pictorial description of the two-step process whereby correct and wrong tRNA-amino acid pairs are distinguished.
The first step is passive and involves a preference for one type of tRNA-amino acid pair over all the others. The second
energetically costly active step provides a second chance to distinguish correct and wrong tRNA-amino acid pairs.

The splitting probabilities at each state can be obtained
from the ratio of rates on the outward arrows. Starting
from the poised R state, the probabilities of binding the
correct tRNA (pbc) or the wrong tRNA (pbw) are given
by

pbc =
1

1 + g
, pbw =

g

1 + g
. (1)

The probabilities of unbinding (pu1c, pu1w) or undergo-
ing hydrolysis (phc, phw) from the RC and RW states,
respectively, are given in turn by

pu1c =
ku1

ku1 + kh
, pu1w =

ku1e
∆1

ku1e∆1 + kh
, (2a)

phc =
kh

ku1 + kh
, phw =

kh
ku1e∆1 + kh

. (2b)

Similarly, from the activated states, the probabilities
of unbinding (pu2c, pu2w) or peptide elongation (ppc, ppw)

are given by

pu2c =
ku2

ku2 + kp
, pu2w =

ku2
ku2e∆2 + kp

, (3a)

ppc =
kp

ku2 + kp
, ppc =

kp
ku2e∆2 + kp

. (3b)

We note that these are splitting probabilities for a ribo-
some assumed to be starting in a specific state; they do
not directly include the steady-state probability of being
in that state or the resulting flux along any given ar-
row. Because the system is Markovian, we can define a
probabilistic weight for any multi-step path (from a given
starting state) by multiplying the probabilities of all the
steps. The weights of different paths can then be added
together.
An individual “interaction event” between a ribosome

and a tRNA consists of any path that leaves from the R
state and then either returns to R or proceeds to elonga-
tion, with no intervening visits to R. The probability that
an interaction includes a hydrolysis event is the sum of
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two terms, corresponding to paths with correct or wrong
binding and results in the expression

phyd = pbcphc + pbwphw. (4)

Similarly, the probability of a ribosome-tRNA interaction
resulting in elongation is given by

pel = pbcphcppc + pbwphwppw. (5)

We want to calculate the average number of hydrolysis
events preceding an elongation step. This can be done
quite simply using conditional probabilities, a unifying
concept that has been recently highlighted for its utility
in clarifying the exploratory dynamics of biological pro-
cesses [40]. The problem at hand is equivalent to a classic
probability question: “If you throw a fair 6-sided die un-
til you first get a 6, how many throws of the dice do you
need on average if you only count the throws with even
faces?”. Since only even throws are counted, we need the
probability of success (rolling a 6), conditional on the
roll being even. This conditional probability is given by

p = P (6|even) = 1/3. The average number of even rolls
to reach a 6 (including the last one) is then 1/p = 3.

For the proofreading case, the conditional probabil-
ity of a ribosome-tRNA interaction leading to elon-
gation, given that a hydrolysis event occurs, is p =
P (elongation|hydrolysis) = pel/phyd. We therefore com-
pute the average number of futile hydrolysis events (not
counting the one that successfully leads to elongation) as

⟨n⟩ = 1

p
− 1 =

pbcphc(1− ppc) + pbwphw(1− ppw)

pbcphcppc + pbwphwppw

=
pbcphcpu2c + pbwphwpu2w
pbcphcppc + pbwphwppw

.

(6)

Notably, this average number of futile cycles can also
be intuitively expressed as the ratio of unsuccessful
to successful hydrolysis events: ⟨n⟩ = (1 − p)/p =
P (not elongation|hydrolysis)/P (elongation|hydrolysis).
Plugging in Eq. 1- 3 gives the result in terms of kinetic
parameters:

⟨n⟩ = ku2
kp

[(
ku1e

∆1 + kh
) (

ku2e
∆2 + kp

)
+ ge∆2 (ku1 + kh) (ku2 + kp)

(ku1e∆1 + kh) (ku2e∆2 + kp) + g (ku1 + kh) (ku2 + kp)

]
(7)

The error rate can also be expressed as the ratio of
probabilistic weights for paths with the wrong tRNA
leading to elongation versus paths with the correct tRNA:

f =
pbwphwppw
pbcphcppc

=
g(ku1 + kh)(ku2 + kp)

(ku1e∆1 + kh)(ku2e∆2 + kp)
. (8)

We note that this specific proofreading scheme can be
mapped to a more general model that incorporates tran-
sitions between multiple intermediate states. The general
scheme (see Appendix, Fig. 11) includes any system that
has a single energy-consuming irreversible transition be-
tween a set of initial states and a set of activated states,
followed by either return to the initial state or an ir-
reversible elongation. In particular, this includes both
the Hopfield model in Fig. 1 and certain more detailed
models that incorporate codon recognition, accommoda-
tion, etc [38]. The probabilistic approach here can be
applied after computing splitting probabilities and mean
first passage times between the coarse-grained sets of
states in the general system.

Accuracy and cost in irreversible model

The energetic cost of translational elongation can be
computed from the number of hydrolysis events, as ∆E =
(⟨n⟩+1)ϵGTP where ϵGTP is the change in free energy as-
sociated with hydrolyzing one ATP molecule. We note

some features of this energy cost are apparent from Eq. 7.
First of all, the energy cost is not dependent on the bind-
ing rate kb of the tRNAs, as expected since binding ini-
tiates all interactions, whether they are futile or not.

If the release step is indiscriminate between right and
wrong amino acids (∆2 → 0), then the number of excess
hydrolysis events becomes ku2/kp (the rate of falling out
of the activated state, relative to the rate of peptide bond
formation). This is expected since each time a tRNA en-
ters either activated state there is a constant probability
of ppc of proceeding to elongation versus falling off. In
this case, the calculation of ⟨n⟩ is equivalent to asking
how many times a biased coin (with probability ppc of
showing heads) must be flipped before the first heads is
obtained (⟨n⟩ = 1/ppc − 1 = ku2/kp). In this limit, the
energetic cost of elongation can be minimized by prevent-
ing release of the activated state (ku2 → 0) or effectively
removing the indiscriminate proofreading step from the
system. The same limit is obtained when there are no
wrong amino acids present in the system (g → 0).

We next consider the limit where hydrolysis is much
slower than the unbinding rate (kh ≪ ku1), allowing the
initial binding step to equilibrate before each hydrolysis
occurs. This limit was also assumed in past analyses of
kinetic proofreading processes [12, 27]. In this case, the
average count of excess hydrolyses, and the error rate
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ratio of release to elongation rates (ku2/kp) is raised. Dot-
ted purple line marks the passive error rate in the absence of
proofreading. This is also equal to the excess hydrolysis count
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the fundamental fidelity limit for the proofreading system,
which can only be achieved reached with an infinite number
of hydrolyses per elongation. Results shown are in the limit
kh → 0, with ∆1 = 4,∆2 = 12, g = 20.

simplify to

⟨n⟩ kh→0−−−−→ ku2
kp

[
e∆1

(
ku2e

∆2 + kp
)
+ ge∆2 (ku2 + kp)

e∆1 (ku2e∆2 + kp) + g (ku2 + kp)

]
,

(9a)

f
kh→0−−−−→ ge−∆1

(
kp + ku2

kp + ku2e∆2

)
. (9b)

In this limit, neither the energy cost nor the fidelity are
dependent on the unbinding rate ku1. Instead, they are
determined by the discrimination energy for the initial
binding step (∆1), and for dissociation during the proof-
reading step (∆2), as well as the fold-excess of wrong
amino acids (g) and the relative rate of release during
proofreading (ku2/kp). Both error rate and the excess
hydrolysis count are plotted in Fig. 3, as a function of
this release rate.

In the regime where the release rate during proofread-
ing is very low (ku2 ≪ kp), there are very few excess
hydrolysis events (⟨n⟩ → 0). However, the system also
loses its ability to proofread since no incorrect tRNAs
are released after they enter the activated state. The
error rate then approaches the thermodynamic limit for
passive binding: fpassive = ge−∆1 .
As the release rate increases, we enter an intermedi-

ate regime where the correct tRNA has a low chance of
being released during proofreading but the wrong tRNA
has a high chance of being released: ku2 ≪ kp ≪ ku2e

∆2 .

In addition, we also assume ge−∆1 ≪ ku2

kp
e∆2 , implying
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FIG. 4. Limited energetic cost allows for near-optimal fi-
delity. The average number of excess hydrolysis events ⟨n⟩ is
plotted versus the error rate f . Each curve corresponds to a
fixed value of ∆2, with increasing release rates ku2 moving to
the left along the curve. Dashed black line marks the ther-
modynamic error rate for the hydrolysis itself, corresponding
to the probability that the wrong tRNA reaches the activated
state. Large values of the release discrimination energy ∆2

allow for the plateau value of excess hydrolysis to extend to
low overall error rates. Results shown are in the limit kh → 0,
with ∆1 = 4, g = 20, kp = 1.

that the probability of activated release for wrong amino
acids is high enough to overcome the error inherent in
the initial binding. Since most wrong tRNAs are then
released after activation, the average number of excess
hydrolysis events is equal to the (thermodynamic) error
rate of the hydrolysis process itself: ⟨n⟩ ≈ ge−∆1 . No-
tably, this quantity is independent of ku2, giving rise to a
plateau region where the excess hydrolysis count remains
flat while the error rate continues to decrease (Fig. 3).
In the regime where the release rate is high for all tR-

NAs (ku2 ≫ kp), the error rate approaches its funda-
mental limit [12] of fmin = ge−∆1−∆2 . However, in this
regime the number of excess hydrolysis cycles approaches
infinity as many release events precede each successful in-
corporation.
A direct relation between the error rate and the num-

ber of excess hydrolysis events, in the limit of kh → 0,
can be written as

⟨n⟩ =
(
fpassive − f

f − fmin

)(
fmin + ffpassive

fpassive + ffpassive

)
, (10)

where the error rate is always constrained to lie in the
range fmin < f < fpassive. For the case where ∆1 =
∆2, this expression is identical to that previously derived
for the minimum number of futile hydrolysis cycles in a
reversible proofreading system with a fixed error rate [29].
From this relation (plotted in Fig. 4), we again see

the three regimes for the error rate. For the lowest
error rates (f → fmin), the proofreading process be-
comes exceedingly wasteful as ⟨n⟩ goes to infinity. For
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the highest error rates (f → fpassive), the excess hy-
drolysis count goes to 0: there is no waste, but the
system also loses the accuracy boost due to proofread-
ing. In the intermediate plateau regime, corresponding
to fmin ≪ {ffpassive, f} ≪ fpassive, the hydrolysis count
is approximated by ⟨n⟩ ≈ ge−∆1 . The plateau becomes
wider, accessing lower error rates, when there is greater
discrimination for release of correct versus wrong tRNAs
(higher ∆2, or larger ratio of fpassive/fmin).
The plateau region implies that a relatively low error

rate, close to the thermodynamic limit, can be achieved
with only a modest cost in terms of the number of ex-
cess hydrolysis events. From published estimates of the
kinetic parameters for translational elongation [33], we
assume a binding discrimination energy in the range of
∆1 ≈ 2 − 4kbT , comparable to a couple of hydrogen
bonds, and a g = 20 fold-excess of wrong amino acids.
The average excess hydrolysis count in the intermediate
regime is then ⟨n⟩ ≈ 0.3− 2.7.
The difference in release rates from the activated state

is not well characterized. However, so long as its value is
high enough to enable the plateau region to extend be-
yond the desired error rate for translational elongation,
∆2 does not substantially affect the expected number of
hydrolysis events per incorporated amino acid. For a typ-
ical error rate of f ≈ 10−4, this requires ∆2 ≳ 9−11, de-
pending on the specific value of binding energy selected.
For release discrimination energies that are more than
(log 2)kbT below this cutoff value, the desired error rate
cannot be achieved at any cost of excess hydrolyses.

Overall, despite the high excess concentration of wrong
amino acids, the energetic cost per elongation step is
quite low – in the range of 1.3− 3.7 GTP molecules hy-
drolyzed per new amino acid incorporated. This is due
largely to the fact that the binding energy ∆1 provides an
initial non-energy-consuming discrimination step, such
that 30− 80% of the tRNAs reaching the activated state
are already bearing the correct amino acid. Without this
discrimination in the binding energy, the ribosome would
need to hydrolyze on average 20 GTP molecules to incor-
porate each amino acid, in order to achieve the necessary
low error rates in translation. In the clubhouse analogy,
even a rough selection of who comes through the swinging
doors can greatly reduce the number of identity checks
the demon has to perform.

Reversible model: proofreading on a landscape

The model schematic in Fig. 1 makes use of one-way
arrows and thus does not explicitly define the energy
cost associated with each hydrolysis cycle. This model
is applicable when the reverse rates for both the activa-
tion (hydrolysis) step and the subsequent release step are
small enough to be negligible. Specifically, they must be
small compared to other outward arrows from the same
states in order to not contribute to the splitting proba-
bilities.

GTP GDP
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gkur
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gkb
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ku1eΔ1
ku2eΔ2

ku2

kp

GTP GDP
kp

ribosome - correct
tRNA complex, RC

ribosome - wrong
tRNA complex, RW
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ribosome, R

activated correct
complex, RC*

correct
elongation
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elongation
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kh

krw
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EW*

EC*
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Δ2

Δ1

ϵbind

ϵact

(A)

(B)

FIG. 5. Schematic of proofreading model with reversible
transitions and thermodynamic driving. (a) Blue arrows and
rates indicate reverse transitions not included in the original
model. Red arrows show additional driven reaction rate along
the activation step. (b) Example energy landscape describing
the states involved prior to elongation. Energy levels shown
here are for a single tRNA, and so do not include the ad-
ditional factor of g associated with higher concentration of
wrong tRNAs. All energy steps labeled (∆1,∆2, ϵbind, ϵact)
are taken as positive numbers in units of kbT .

A more general form of the model with reversible tran-
sitions can be used to explore the relation between the
thermodynamic driving force and the fidelity of the sys-
tem. Such a model requires defining an energy landscape
for the system, as illustrated in Fig. 5. To constrain the
space of possible schemes, we make a few key assump-
tions. First, we assume that the final elongation step,
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FIG. 6. Trade-off between accuracy, driving, and cost for
reversible proofreading system. (a) Error rate f is plotted
against the thermodynamic driving force ϵdrive. Black curve:
reversible model. Red curve: irreversible limit with total acti-
vation rate set to kh = k0

he
ϵdrive . Dashed blue line is the limit

for the irreversible model with small kh. Dotted blue line is
the limit where discrimination occurs entirely in the release
step. Dash-dotted blue line shows the thermodynamic limit
for the minimal possible error rate. The green lines mark the
region of optimal driving: ϵact−ϵbind+∆1+log kur

kr
< ϵdrive <

ϵact − ϵbind + log kb
kr

. Activation barrier is set to ϵact = 20.

(b) Average number of active transitions to reach elongation,
plotted versus the error rate. Each curve corresponds to a
different activation barrier ϵact, with the driving force ϵdrive
increased along each curve. Dashed black line shows thermo-
dynamic minimal error rate ge−∆1−∆2 . Parameters are: ∆1 =
4,∆2 = 8, ϵbind = 6, kr = 10−6, kur = 10−6, kb = 104, g = 20.

which proceeds at rate kp is still effectively irreversible.
The elongated chain thus serves as an absorbing state for
the system, and we focus our attention on the kinetics of
the transitions preceding this state.

For the energy landscape shown in Fig. 5b, there is
an energy drop of ϵbind upon the binding of the cor-

Δ

Δ

Δ

Δ

Δ

FIG. 7. Minimal energy cost to reach a desired error rate
Minimal energy per elongation E∗ is plotted as a function
of the rescaled error rate, defined as an interpolation be-
tween the minimum value fmin = ge−2∆ and the passive value
fpassive = ge−∆, on a logarithmic scale. Both binding energy
differences are assumed to be the same, with each curve cor-
responding to a fixed value of ∆1 = ∆2 = ∆. The energetic
cost is minimized over all values of ϵbind, ϵact, kr, kur, with
fixed parameters kb = 104, g = 20.

rect tRNA, and an energy difference of ∆1 between the
bound state with the wrong versus the correct tRNA. We
assume that any external thermodynamic driving is lo-
calized specifically to the activation transitions (RC →
RC∗, RW → RW ∗). We would then expect the energies
of the activated states (EC∗, EW∗) to be high, so that
the release from these states can occur with substantial
probability without any additional driving. We define the
energy increase from the bound to the activated state for
the correct tRNA to be ϵact = EC∗ −EC . The difference
in activated energies for wrong versus correct tRNAs is
given by ∆2 = EW∗ − EC∗, corresponding to the addi-
tional discrimination that allows for proofreading.

As in the original model, we assume that the rates
of release from the activated state are ku2 for correct
tRNAs and ku2e

∆2 for wrong ones. Correspondingly, the
reverse transitions for an individual tRNA, regardless of
identity must be kur = ku2e

−(ϵact−ϵbind). Because the
wrong tRNAs are present in g-fold excess, we assume this
reverse process to have rate gkur for the wrong tRNA.

The activation transition is assumed to have a single
low basal rate of k0h in the absence of driving. The corre-
sponding reverse rates for correct and wrong tRNAs are
then given by kr = k0he

ϵact , krw = k0he
ϵact+∆2−∆1 . Given

the much higher energies of the activated states, the equi-
librium probability of those states (and concomitantly
the elongation flux) will be very low. An additional
driven process is needed (red arrow in Fig. 5a) to push the
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system towards elongation. This process could represent
the hydrolysis of GTP and/or release of GDP from the
Ef-Tu elongation factor. We assume the rate α associated
with this driving is the same regardless of the tRNA iden-
tity. The corresponding thermodynamic driving force can
then be expressed as ϵdrive = log(1 + α/k0h) [41, 42].

The model with reverse transitions can be solved as
before by combining the splitting probabilities to com-
pute the error rate f of elongating with the wrong versus
the correct tRNA, and the average number of transitions
through the driven activation step (⟨N⟩) to reach elon-
gation. The final expressions (with derivation provided
in Appendix) are:

f =
ppw(pbwphw + purw)/(1− prwphw)

ppc(pbcphc + purc)/(1− prcphc)
, (11)

⟨N⟩ =

[
(pbc+purcprc)phc

1−prcphc
+ (pbw+purwprw)phw

1−prwphw

(pbcphc+purc)ppc

1−prcphc
+

(pbwphw+purw)ppw

1−prwphw

]
(1− e−ϵdrive)

(12)

where purc, purw are the splitting probabilities for going
directly from the empty R state into an activated state
along the reverse release pathway, prc, prw are splitting
probabilities for the reverse activation transition, and
phc, phw are splitting probabilities of going towards the
activated state from the bound state (along either the
basal or the active arrow).

As plotted in Fig. 6A, increasing the driving force for
activation has a non-monotonic effect on the accuracy of
the system. When there is no driving, the basal activa-
tion rate k0h is so low that the system primarily reaches
the activated state through the reverse-release pathway
(rates kur, gkur). In this case, the difference in bind-
ing energy ∆1 becomes irrelevant and the error rate ap-
proaches the known value for a simple substrate-selective
enzymatic reaction [35, 36]:

f → g
kp + ku2

kp + ku2e∆2
. (13)

As the driving force rises, the binding and activation
pathway begins to dominate, and the error rate de-
creases until the activation transition becomes effec-
tively irreversible. The only splitting probabilities in
Eq. 11, 12 that depend on the driving force are phc, phw.
The transition to the irreversible system occurs when
pbwphw > purw, or equivalently ϵdrive > ϵact − ϵbind +
∆1 + log(kur/kr). At that point, the error rate reaches
the value given in Eq. 9b for the irreversible system, and
further driving does not improve the accuracy. If the
driving force becomes much higher, the rapid activation
transition prohibits the system from sensing the differ-
ence in binding energy ∆1 and it again approaches the
limit in Eq. 13 where the only discriminating step is re-
lease from the activated state. The transition to this
increased error rate occurs when k0h + α > ku1 or equiv-
alently when ϵdrive > ϵact − ϵbind + log(kb/kr).

In the reversible model, the energetic cost for elon-
gating the peptide by one amino acid can be expressed
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FIG. 8. Energetic driving enhances sensitivity to substrate
binding (a) For a single type of tRNA (g = 0), probabil-
ity that an interaction will successfully result in elongation is
plotted against the binding energy. The activation barrier is
held fixed at ϵact = 20. Each curve corresponds to a differ-
ent driving force. Dashed and dotted green lines show two
different exponential scalings. (b) Sensitivity to the binding
energy (defined as d log pelong/dϵbind), as ϵbind = 6 is plotted
as a function of driving force.

as E∗ = ⟨N⟩ ϵdrive: the product of the thermodynamic
driving force for each activation cycle and the number of
such cycles required per elongation event. The tradeoff
between futile cycles and accuracy is evident in Fig. 6b.
Approaching closer to the minimal possible error rate re-
quires a higher energy for the activated state (ϵact), which
in turn raises the release rate and the number of futile
cycles, as well as the concomitant energy cost.

The range of possible error rates, and the total en-
ergy E∗ needed to achieve a certain error, depend on
the binding energy differences ∆1,∆2 distinguishing cor-
rect versus wrong tRNAs. The minimal possible error
for the active system is given by fmin = ge−∆1−∆2 . A
passive equilibrium system can only achieve the error
of fpassive = ge−max(∆1,∆2). By numerically minimizing
over all the other kinetic parameters, we can compute the
minimal cost for sliding between these two error limits,
as shown in Fig. 7. Errors above fpassive can be achieved
at zero cost. Pushing towards the minimal possible value
of fmin requires an infinite energetic cost. For reasonable
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values of the binding energy difference ∆ (corresponding
to a few hydrogen bonds), an energy cost on the order of
10− 20kbT per elongation step is sufficient for approach-
ing close to the minimal error, after which the cost begins
to grow steeply.

Energy dissipation in the translational proofreading
system allows it to more accurately discriminate among
tRNAs with similar binding energies. This property can
be couched in terms of sensitivity or signal gain: the in-
put signal is the binding energy of a particular tRNA
and the output is the likelihood that the tRNA will suc-
cessfully transfer its amino acid to the peptide chain
each time it interacts with the ribosome. In Fig. 8,
we quantify this output by plotting the success ratio
s = pelong/(1− pelong) for a system with only one type of
tRNA present (i.e. g = 0). The more sensitive this ratio
is to the binding energy, the more capable the system will
be of distinguishing between tRNAs with small binding
energy differences. For a passive system with ϵdrive = 0,
the success ratio scales exponentially with the binding
strength in both the strong binding and weak binding
limits. In the presence of strong energetic driving and
weak binding, the success ratio exhibits a quadratically
steeper scaling, implying greater sensitivity of the sys-
tem. When binding is very strong, then unbinding be-
comes vanishingly unlikely and the system loses its abil-
ity to stack multiple binding energy differences, revert-
ing back to the lower sensitivity. The classic definition
of sensitivity as the derivative of the logarithm of the
output [43] is plotted in Fig. 8B, demonstrating that in-
termediate driving confers the greatest sensitivity values.

As summarized in Fig. 9 this simple proofreading sys-
tem exhibits three regimes with increasing driving force,
which can be seen in both Fig. 6A and Fig. 8B. At very
low driving, hydrolysis is extremely unlikely, and elonga-
tion can only be achieved when the tRNA bypasses the
binding and hydrolysis step to enter the active state di-
rectly. The error rate is then determined entirely by the
binding energy difference in the activated state (∆2), cor-
responding to a sensitivity of 1. At intermediate driving,
the hydrolysis pathway dominates, and the irreversible
model becomes an adequate description of the system.
Within this regime, the error rate is determined multi-
plicatively by two factors that each correspond to the
error rate of a single Michaelis-Menten enzyme. Each
factor depends on the binding energy difference and in-
volves a balance between the release rates and the rate
of transitioning forward to the next state. In the limit
where release dominates, the error rate scales exponen-
tially with the sum of both binding energy differences
(∆1 +∆2), but the requisite number of futile cycles and
the concomitant energetic cost approaches infinity. This
limit corresponds to a sensitivity of 2. When excess driv-
ing is applied, the tRNA has no chance to unbind before
hydrolysis and the error rate is again determined only by
a single binding energy difference (∆2), with sensitivity
approaching 1.

Overall, translational proofreading serves as an illus-

trative case study of the tradeoff between energetic driv-
ing, total cost of futile cycles, and the accuracy of the
system in distinguishing between substrates with small
differences in binding energy.

CATALYTIC CONTROL OF DYNAMIC
INSTABILITY

In the simple proofreading scheme described above, ac-
tive driving enables the system to better differentiate the
right vs wrong substrate, despite the fact that the driven
rate itself is not substrate-dependent. Instead, proofread-
ing makes the system more sensitive to the pre-existing
difference in release rates for the two substrates. We pro-
ceed to further explore this feature of exploratory dynam-
ics with resetting: the ability to regulate system behavior
by tuning passive transition rates.
Specifically we focus on control by reusable catalysts

present in much smaller quantities than the reactants
themselves. At thermodynamic equilibrium, the pres-
ence of a catalyst can only alter the transition barriers
but not change the steady-state distribution of a system.
However, many biomolecular systems engage in catalytic
control, where a catalyst modulates the probability dis-
tribution at steady state. Unlike allosteric control via
ligand binding [44], catalytic control implies that the reg-
ulator molecule can be reused over and over again, while
the substrates maintain some memory of their interaction
with it. Consequently, the catalyst can be present at sub-
stoichiometric concentrations compared to the substrate,
enabling the cell to carry out its tasks with limited re-
sources. For example, some kinases are more than three
orders of magnitude lower in concentration than their
target substrates [45]. The prevalence of catalytic con-
trol relieves spatial crowding constraints when multiple
regulatory proteins are necessary to tune protein activity
or assembly.
Catalytic control requires the system to be driven

out of equilibrium. Recent work demonstrated that the
change in probability distribution due to the addition of
a catalyst is bounded by twice the total applied thermo-
dynamic force [42]. The presence of driving can make
the steady state of a system sensitive to catalysts fa-
cilitating other transitions that are not themselves ac-
tively driven. Such systems are qualitatively distinct
from molecular machines that dissipate energy to directly
push the system towards a target state. Instead, they
rely on exploratory dynamics that sample many path-
ways, enabling multiple points of regulation by different
catalysts present in sub-stoichiometric concentrations.

Microtubule length control model

Here, we illustrate a concrete manifestation of this phe-
nomenon in the context of microtubule length regulation
by catalytic factors that destabilize the end cap at the tip
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1 No driving force. All visitors enter, but the wrong ones are more likely to be ejected.

2 Sufficient driving force. Visitors verified through the outer door first, and only then energy expended to open the inner door. Only a few visitors successfully enter.

2a Same as (2) above. Inner door wide open, all the visitors pass through inner door. No chance to eject them.

2b Same as (2) above. After entering the outer door, the wrong visitors get ejected but the right ones are allowed to stay.

2c Same as (2) above. Eject both right and wrong visitors after letting them through the outer door.

3 Excess driving force. Open the outer door too fast, so visitors get in whether they respect the sign or not.

e–Δ2

Visitors bypass outer doors and arrive at inner door directly.

FIG. 9. Summary of regimes in translational proofreading model. Limiting cases are shown for (1) No driving, (2) Sufficient
driving to approach the irreversible model, and (3) Excess driving. The splitting probability limits, the error rate f , the driving
force ϵdrive, and the total energetic cost are listed for each regime.
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FIG. 10. Catalytic regulation of microtubule length. Self-
assembly of tubulin subunits into filaments, with complete dis-
assembly events (catastrophes) (A). This process can be mapped
to a circuit diagram (B). Eq. 1 gives the mean length as a
function of catastrophe rate and thermodynamic force, which
can be interpreted as the GTP concentration (color bar; C). At
equilibrium (blue line), catastrophe rate has no influence on mean
length. At physiological GTP concentration (red), the predicted
kcat dependence is in excellent agreement with the measured
mean microtubule length at interphase and mitosis, which differ
only in the catastrophe rate (C). The catastrophe rate linearly
tunes mean microtubule length above a critical thermodynamic
force (GTP concentration). Parameters and measured lengths
are taken from Ref.[46].

of the growing microtubule. The elementary steps consti-
tuting microtubule self-assembly are shown in Fig. 10A
in the absence of rescue from catastrophe [47]. The state
space contains an infinite number of possible states corre-
sponding to increasing lengths of the microtubule. The
forward elongation process in this simple model is fol-
lowed by the hydrolysis of GTP to GDP, whose rate
determines the size of the GTP-containing microtubule
end-cap.

In a system where GTP and GDP are allowed to fully
equilibrate, the reversible assembly of tubulin onto the
filament occurs with forward and reverse rate constants
kf and kr. Thus, kf/kr = e−βG, where G is the equilib-
rium dimer binding free energy. In cells, GTP is kept at
high concentration in excess of its equilibrium level, effec-

tively giving rise to an additional forward rate constant
α, which is proportional to excess [GTP] up to a satura-
tion concentration. The thermodynamic driving force is
ϵdrive = ln [1 + α/kf ].
Assembly is counteracted by a catalyzed catastrophe

process with rate constant kcat, allowing for the complete
disassembly of the microtubule in a regulatable manner
[48, 49]. Catastrophe is triggered by the stochastic dis-
ruption of the growing microtubule cap [50], which allows
cap-modifying substrates to act as sub-stoichimetric cat-
alysts of microtubule shrinkage. Microtubule-associated
proteins that trigger catastrophe include both ATP-
consuming motors in the kinesin family [51] and passive
factors such as Op18/Stathmin [52]. Notably, stathmin
levels in the cell are estimated to be sub-micromolar [53],
while tubulin can reach concentrations in the hundreds
of micromolar [54], indicating that this enzyme must act
as a reusable catalyst.
Microtubule catastrophe serves as a resetting step for

the exploratory dynamics of the microtubule length. The
dynamic instability steady state is reached when catas-
trophe balances net dimer addition, resulting in a length
distribution that is distinct from the equilibrium steady
state of the system [47] and is dependent on the level of
catalysist present.
Although these processes have been modeled math-

ematically [55] and via computational simulations [56],
the complexity of the dynamical system consisting of nu-
merous reversible reactions, has limited our quantitative
understanding of how system parameters control micro-
tubule length distributions. Previous work has estab-
lished the intrinsic speed-up of non-equilibrium polymer
reorganization kinetics compared to equilibrium reorga-
nization [57]. An article within the current issue [23]
highlights how the exploratory dynamics of growing mi-
crotubules enable them to rapidly find targets within
the cell. The resetting catastrophe process thus provides
clear benefits to the speed of the system. Here we high-
light the additional advantage of non-equilibrium driving
in enabling steady-state length regulation via a catalyst.

Length distribution depends on catalytic rate

Equilibrium theory teaches that catalytic rate con-
stants cannot affect the mean value of any observable.
In contrast, the microtubule length probability distribu-
tion P (L) reaches a steady-state where the mean length is
known to depend explicitly on the catalytic rate kcat. In
the limit of strong driving, with near-irreversible catas-
trophe and forward-biased growth, the mean length has
previously been computed as ⟨L⟩ = (α+kf−kr)/kcat [58].
In this regime, a catalyst which only decreases the energy
barrier to catastrophe leads to a proportional change in
the mean length, in violation of the equilibrium rule.
Such catalytic regulation is known to occur during the
eukaryotic cell cycle, where increased kcat causes the de-
crease in microtubule length necessary for cell division
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[59]. However, the switching on of catalytic control as a
function of thermodynamic driving has not been estab-
lished.

The reaction scheme in Fig. 10A is a generalization of
the single-step proofreading circuit shown in Fig. 1. In
the appendix, we demonstrate how the method of count-
ing weighted paths can be applied to a simplified system
where the catastrophe process is irreversible. We use
this approach to compute the distribution of lengths at
which catastrophe occurs. For catastrophe to be nearly
irreversible in an equilibrium system, the free energies
of longer states must be much higher, and most micro-
tubules can only reach a very short length before under-
going catastrophe. For a driven system however, it is
possible to extend this distribution to arbitrarily long
lengths by raising the probability of stepping forward
rather than reversing or undergoing catastrophe at each
state. Because this probability depends on the catastro-
phe rate kcat, the resulting system is necessarily sensi-
tive to the level of catalytic enzyme. This sensitivity is
analogous to proofreading fidelity, allowing the system to
accurately convert different levels of catalyst to different
responses.

We note that the path-counting approach becomes pro-
hibitively tedious for complex reaction systems, includ-
ing when reverse catastrophe transitions are included.
The approach can be automated in the form of matrix
algebra [60], or replaced with approaches that rely on
solving the chemical master equation [29] or on graph-
theoretic methods that count spanning trees across the
network [61]. However, to maximize our intuition regard-
ing the role of energetic driving, we turn to an alternate
technique that involves mapping the system to an ef-
fective circuit framework [41] (Fig. 10B), with batteries
representing driven transitions (E ∝ α/kf ).

By leveraging techniques for simplifying electronic cir-
cuits, we can then compute a closed-form expression for
the steady-state length distribution of microtubules (See
Appendix C):

P (L)/P (1) =
kcat

kcat − α(eβG − 1)
e−βG(L−1)

+
α(eβG − 1)

α(eβG − 1)− kcat
e−D(L−1), (14)

where P (1) is the monomer fraction, and

D ≡ − ln [1−
√

(α+kcat+kf−kr)2+4kcatkr−(α+kcat+kf−kr)

2kr
].

When catastrophe is equally likely from all states,
this expression can also be used to compute the
distribution of lengths at which catalysis occurs:
Pcat(L) = P (L)/[1 − P (1)], matching the results
obtained by counting paths.

Although mean filament length has been calculated us-
ing generating functions [62], this is the first time that
the full distribution P (L) has been solved and the role of
the thermodynamic force isolated. Interestingly, P (L) is

a superposition of two exponential functions, correspond-
ing to the equilibrium and nonequilibrium contributions,
respectively. The double exponential explains why previ-
ous attempts to fit P (L) generated from numerical sim-
ulations to a single exponential distribution led to poor
fits [62].

Fig. 10C shows the mean microtubule length as a func-
tion of catastrophe rate as predicted by Eq. 14 using mea-
sured rate constants [46], for varying α corresponding to
different GTP concentrations. As expected, if α = 0
(blue line) then Eq. 14 reduces to the equilibrium single-
exponential distribution, which is independent of kcat.
However, as the system is driven from equilibrium, the
length distribution jumps between two distinct regimes
with qualitatively different dependence on kcat. The
jump occurs when α exceeds kr − kf . In the strongly-
driven regime, for which (α + kf − kr)/kcat ≫ 1, Eq. 14
simplifies to ⟨L⟩strong = (α + kf − kr)/kcat, which is the
well-known formula cited above. At physiological GTP
concentrations, the predicted mean length is in excellent
agreement with measured lengths [59] in both mitosis
and interphase (circles in Fig. 10C). In the weakly-driven
regime (−(α + kf − kr)/kcat ≫ 1), Eq. 14 simplifies to

⟨L⟩weak = − ln [
α+kf

kr +
kcat(α+kf )

kr(α+kf−kr)
]
−1

; the mean length

is only marginally sensitive to kcat in this regime. The
thermodynamic force, as parameterized by α or [GTP],
controls the transition between the near and far-from-
equilibrium regimes, whose sharpness is inversely pro-
portional to kcat(Fig. 10C). Therefore, a uniquely non-
equilibrium feature (catalytic regulation of an ensemble-
averaged observable) is turned on in a switch-like manner
when the system is driven beyond the threshold level.

DISCUSSION

In this work we highlight how exploratory dynamics
with resetting conveys the advantage of sensitivity to
biochemical pathways. In the case of translational proof-
reading, release from an activated state increases the abil-
ity of the system to select the correct tRNA among an
excess of decoys, rendering it more sensitive to a small dif-
ference in binding energies. For the case of microtubule
length control, resetting through catastrophe allows the
system to be responsive to sub-stoichiometric concentra-
tions of a destabilizing enzyme. In both cases, sensitivity
comes at an energetic cost, requiring GTP hydrolysis to
drive the resetting cycles.

We compute the energetic cost associated with trans-
lational proofreading by starting with the classic Hop-
field and Ninio model, which assumes a single GTP is
hydrolyzed at each irreversible activation step. An intu-
itively simple probabilistic path-counting approach gives
an expression for the number of excess activation cy-
cles. The resulting total energetic cost increases mono-
tonically with the release rate from the activated state,
while the error rate of the system decreases. Notably,
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there is a broad plateau region for intermediate release
rates where the number of excess activation cycles is well-
approximated by the equilibrium error rate for the ini-
tial binding step: ⟨n⟩ ≈ ge−E1 . The plateau spans the
parameter regime where most correct tRNAs proceed to-
wards elongation while most wrong ones are released. In
this case, futile activation cycles occur only when the
wrong tRNA passes through to the activation step.

A key consequence of this plateau is that, despite the
excess of wrong tRNAs, the energetic cost for elongation
remains quite low. The system capitalizes on equilib-
rium discrimination during the initial binding to limit
the frequency of wrong tRNAs proceeding through acti-
vation. Since correct tRNAs are less likely to be released,
this means that only a small number of GTP hydrolysis
events are needed per incorporated amino acid. Concep-
tually this is akin to letting visitors self-filter through
a passive set of swinging doors before allowing them to
proceed to an energy-consuming identity check. Partially
accurate discrimination in the first step implies that only
a few identity checks are needed before an acceptable vis-
itor is permitted to enter.

Models with irreversible transitions are, in principle,
unphysical, requiring an infinite input of energy to com-
pletely preclude reverse transitions. In practice, however,
such models are meant to represent schemes where the re-
verse transition is so unlikely that it does not contribute
to the splitting probabilities of the system. As shown for
the translational proofreading example, increasing ener-
getic driving can push a system towards the irreversible
limit; further driving beyond that necessary to reach this
limit can actually hinder the sensitivity of the system.
Thus, irreversible models constitute a useful limiting case
for quantifying the efficiency of a system undergoing ex-
ploratory dynamics.

In kinetic proofreading, energy dissipation at one point
in the system increases the sensitivity to small differences
in release rates elsewhere, enabling accurate discrimina-
tion in the presence of excess decoys. The sensitivity
jumps sharply when the thermodynamic driving force ex-
ceeds a certain critical value. Analogously, we showed
that the sensitivity of mean microtubule length to the

rate of catastrophe undergoes a switch from logarith-
mic dependence near equilibrium to linear dependence
far from equilibrium. Energetic driving of systems under-
going exploratory dynamics can thus trigger a qualitative
transition in their input-output response functions.

Overall, our results parallel past work [27, 29? ] link-
ing the accuracy, speed, and energy efficiency of active
proofreading systems. We focus on the specific cases of
translational proofreading and catalytic control to con-
cretely illustrate biochemical systems that face a trade-
off in energetic cost versus function. Two pedagogically
useful approaches are demonstrated to analyze these sys-
tems: probabilistic path-counting and mapping to an
electrical circuit system. Both case studies highlight the
importance of driven resetting steps for enhancing sensi-
tivity in conditions where decoy substrate concentrations
may be high or regulator concentrations are limited.

We hypothesize that many other examples of intra-
cellular exploratory dynamics, including quality control
pathways, signaling cascades, cell-cycle associated tran-
sitions, and organelle rearrangements may be analyzed
in an analogous manner to link the energetic cost with
the sensitivity to various control parameters. Future
exploration of such systems may help elucidate the
many functions of the homeostatic energy consumption
defining living cells.
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Appendix A: Fidelity and energetic cost for reversible model

For the model with reversible transitions (Fig. 5A) we can define the following splitting probabilities for correct
and wrong tRNAs, respectively, as:

pbc =
kb

(kb + kur)(1 + g)
, pbw =

gkb
(kb + kur)(1 + g)

(15a)

purc =
kur

(kb + kur)(1 + g)
, purw =

gkur
(kb + kur)(1 + g)

(15b)

phc =
kh

kh + ku1
, phw =

kh
kh + ku1w

(15c)

prc =
kr

kp + kr + ku2
, prw =

krw

kp + krw + ku2w
(15d)

ppc =
kp

kp + kr + ku2
, ppw =

kp
kp + krw + ku2w

, (15e)

where kh = k0h + α = k0he
ϵdrive .

We consider individual interactions of a tRNA with a ribosome, each of which involves leaving the poised R state of
the ribosome and eventually returning to it (possibly with a longer peptide chain), without any intermediate visits to
that state. Each interaction can be resolved through either unbinding, release from an activated state, or elongation.

For a system that reaches the activated RC∗ state, the probabilistic weight of all paths with exactly i activation
transitions since the start of the interaction is:

wi,c = purc(prcphc)
i + pbcphc(prcphc)

i−1, (16)

with an analogous expression wiw for a system in the RW ∗ state. The probability that the interaction resolves in
elongation with the correct or the wrong tRNA (pel,c, pel,w) is then

pel,c = purcppc +

∞∑
i=1

wicppc =
(purc + pbcphc)ppc

1− prcphc

pel,w =
(purw + pbwphw)ppw

1− prwphw
.

(17)

The error rate is given by f = pel,w/pel,c, yielding Eq. 11.
The average number of activation steps for an interaction involving the correct tRNA (Nc) is found by summing

over the corresponding wi,c, multiplied by the probability that the activated state resolves with no further activation
transitions: pfc = 1− prcphc. The result for both correct and wrong interactions is:

Nc =

∞∑
i=0

iwi,cpfc =
(pbc + purcprc)phc

1− prcphc

Nw =
(pbw + purwprw)phw

1− prwphw

(18)

Finally, we can find ⟨N⟩: the average number of driven activation transitions per interaction event, conditional on
that event resolving to elongation. Here we multiply by the fraction of activation transitions that proceed along the
driven arrow rather than the basal activation process: α/(k0h + α) = 1− e−ϵdrive , to yield:

⟨N⟩ =
[

Nc +Nw

pel,c + pel,w

]
(1− e−ϵdrive), (19)

which gives Eq. 12.

Appendix B: Coarse-graining of proofreading schemes

The path-counting approach described here can be generalized to a variety of more complex irreversible proofreading
systems by mapping to the general scheme shown in Fig. 11A. In particular, this includes translational proofreading
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FIG. 11. Alternate schemes for translational proofreading with a single energy-consuming step. (A) General schematic,
where each circle corresponds to a compound state containing no internal driven transitions. Red arrow represents the single
energy-consuming step in the system. (B) Example of more complex proofreading scheme proposed in Ref. [38] to describe
experimental measurements of ribosomal translation. Shaded regions delineate coarse-graining to the compound states in (A).

systems with additional passive transitions incorporating codon recognition, GTPase translocation, or accommodation.
Such schemes (see Fig. 11B as an example) have been used to summarize experimental data on the kinetics of
translational elongation in past work [38, 63]. The generalized scheme considered here uses an analogous coarse-
graining procedure to that described in recently published work by Igoshin, et al [64], which trims states and non-
energy-consuming loops using splitting probabilities and mean-first-passage times between remaining milestone states.

In Fig. 11, the one-way arrows denote reactions where the reverse rates are negligible in their effect on splitting prob-
abilities. The red arrows mark the only energy-consuming steps (eg: GTP hydrolysis), and the energy-consumption
and release arrows denote transitions along distinct pathways. Release from the activated macrostate is assumed to
return the system to the same (green) microstate, regardless of which tRNA is released.

This system can be treated as a heterogeneous continuous-time random walk [65] with Markovian (albeit not
constant-rate) transitions on a simplified coarse-grained network of states. We can define the splitting probabilities
pc, pw for transitioning out of the R into the RC∗ or RW∗ states respectively. Specifically, pc is the probability for a
particle starting in the initial (green) state to first reach the compound state RC∗ before it ever reaches state RW∗.
We can also define the probability ppc that a particle in the RC∗ macrostate will first transition to the elongated
state, before a release occurs, and the probability puc = 1− ppc for the opposite case.

With these definitions, we can proceed using the same analysis as before. Consider each transition out of a state as
the roll of a weighted dice. The probability that the system passes through the RC∗ state and results in elongation
is pcppc. The probability that it passes through the RC∗ state but results in release is pcpuc.

The error rate f and the number of excess transitions over the energy-consuming pathway ⟨n⟩, can then be written
as:

f =
pwppw
pcppc

,

⟨n⟩ = pcpuc + pwpuw
pcppc + pwppw

(20)

We note that the scheme in Fig. 11A is equivalent to a substrate-selective Michaelis-Menten enzymatic reaction.
For such reactions, the accuracy has previously been expressed as a ratio of the catalytic efficiencies kcat/Km for the
cognate versus noncognate substrates [66, 67]. The error rate in Eq. 20 is directly equivalent to such an expression.
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Example scheme for ribosomal translation

For the specific scheme illustrated in Fig. 11B, extracted from Ref. [38], the “R” macrostate can be considered to
include the initial binding and codon recognition transitions, as well as GTPase activation, with the energy-consuming
exit from this macrostate corresponding to GTP hydrolysis. Since the GTPase activation is assumed to be effectively
irreversible, the splitting probability out of the initial compound state is simply the probability that activation with the
correct tRNA occurs before activation with the wrong tRNA (state 3C is reached before state 3W). This probability
can be computed through coarse-graining of the reaction scheme as follows.

First, we find the probability p̂02 that a system starting at state 0 hits the 2C state before the 2W state. This
can be done by considering each time the system leaves state 0 as the start of an independent path. Each such path

must either reach state 2C (with probabilistic weight p
(c)
01 p

(c)
02 ) or state 2W (with probabilistic weight p

(w)
01 p

(w)
02 ) or else

return to the beginning at state 0. The resulting probability of hitting 2C first is then:

p̂
(c)
02 =

p
(c)
01 p

(c)
12

p
(c)
01 p

(c)
12 + p

(w)
01 p

(w)
12

, (21)

where p
(c)
ij is the splitting probability from state i to adjacent state j with the correct tRNA. Similarly, we find the

probability p̂23 that a system starting at state 2 hits the 3C state before returning to the 0 state. Again we consider
the weight of each path leaving state 2 without returning to it, to get:

p̂
(c)
23 =

p
(c)
23

p
(c)
23 + p

(c)
21 p

(c)
10

. (22)

Analogous probabilities are defined for the wrong tRNA. The desired splitting probability for leaving the macrostate
entirely (through GTPase hydrolysis) is then

pc =
p̂
(c)
02 p̂

(c)
23

p̂
(c)
02 p̂

(c)
23 + p̂

(w)
02 p̂

(w)
23

. (23)

Note that this approach can be generalized to recursively compute splitting probabilities for any number of inter-
changing states arranged in a linear array.

Using the rates provided in Ref. [38], and assuming a 20-fold excess of incorrect tRNAs, gives the values pc =
0.05, pw = 0.95. With this particular kinetic scheme there is almost no discrimination between the correct and wrong
tRNAs during the accommodation step, simply because the irreversible GTPase activation rate is taken to be so
high (500/50s−1, for the cognate and non-cognate tRNAs, respectively) as compared to the release rate during codon
recognition (0.2/17s−1 for the cognate and non-cognate tRNAs). Finally, the probability of elongation (rather than
release) post-hydrolysis is ppc = 0.96, ppw = 0.016. With these numbers the error rate is f ≈ 0.32, and the average
number of wasteful excess hydrolysis cycles is ⟨n⟩ ≈ 15.

The proposed kinetic scheme with the claimed rate parameters thus appears to be inconsistent with the observed low
error rates for translational elongation. Furthermore, it would be highly wasteful, with 15 GTP molecules consumed
per amino acid incorporated into the growing peptide chain. This is the case despite multiple steps in the pathway
that discriminate between correct and wrong tRNAs, favoring the former to proceed forward and the latter to be
released. The inefficiency of the scheme is due primarily to the claimed very high rate of GTP hydrolysis, highlighting
again the tradeoff between speed, accuracy, and energy consumption.

Appendix C: Catalytic control from exploratory dynamics with resetting

Below we describe two distinct approaches to computing the steady-state length distribution of a simple model
consisting of reversible motion along a linear set of states, with a constant (catalytically controlled) rate of resetting
to the origin. The first approach uses weighted path counting, analogously to the proofreading models in the main
text, to compute the length at which resetting occurs. This approach is simple enough to compute manually, but is
limited to irreversible resetting transitions. The second approach maps the system to an electric circuit, which can
be analyzed in its entirety using well-established matrix methods.
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FIG. 12. Stone-fence diagram illustrating example path starting in state 1 and ending in state i = 4. Levels correspond to the
sequential state i (eg: length of a microtubule in monomers). The path is decomposed into components that end at the last
visit to each level, and the probabilistic weights of each component are given beneath.

Microtubule length control by irreversible resetting, via path-counting

Here we demonstrate how the approach of adding up probabilistically weighted paths can be extended to larger
reaction systems with multiple intermediate states. The system considered here is a simple model of dynamic insta-
bility (Fig. 10A), in the limit where the catastrophe transitions are effectively irreversible. For a microtubule that
initially starts at length 1, We seek to compute the probability P cat

L that catastrophe occurs from the L state. For
simplicity, we assume that the forward, reverse, and catastrophe rates are constant for all states.

We begin by defining the splitting probabilities at each state. For state i > 1, the probabilities of stepping forward
and backward are, respectively, pf = (kf + α)/(kf + α + kr + kc), pr = kr/(kf + α + kr + kc). From each such
state there is also a catastrophe probability pc = kc/(kf + α + kr + kc). For state i = 1, the probability of stepping
forward is simply 1. In the case where pr → 0, the system steps forward until catastrophe is reached. The probability
this happens in state i is then the product of forward-stepping probabilities for i − 1 steps times the catastrophe
probability: P cat

i = pi−2
f (1− pf ). This probability is normalized over i > 1.

For the case with substantial reversals, the paths can include any number of back and forth steps, so long as they
never go below 0 and end in the ith state. These paths can be conveniently enumerated using stone-fence diagrams
and continued fractions, as previously employed for computing statistics of semiflexible polymers [68, 69]. Specifically,
we define w+

i as the total weight of all paths that start at state i and never go below it. This quantity can be expanded
as

w+
i = 1 + pfw

+
i+1pr + (pfw

+
i+1pr)

2 + . . . =
1

1− pfprw
+
i+1

, i > 1,

w+
1 =

1

1− prw
+
i+1

.

(24)

Here, the first term is a path of length 0, the second includes all paths that step up from the ith level only once (but
can meander arbitrarily at i + 1 and above), the second term corresponds to paths that step up above the ith level
twice, and so on. Because we allow the states to go infinitely high, we must have w+

i = w+, a constant for all states
i > 1. We can then get the closed-form expression:

w+ = (1−
√
1− 4pfpr)/(2pfpr). (25)

Any path starting at 1 and ending at state i (with no intervening catastrophes) can be decomposed into the following
sequential components: the part of the path up to its last visit at 1, then a step up to 2, the next part of the path up
until its last visit at 2, then a step up to 3 and so on until you reach the last section of the path that starts and ends
at i and never goes beneath it. This decomposition for an example path is illustrated in Fig. 12. The resulting total
weight is then multiplied by pc to compute the probability that catastrophe happens at state i:

P cat
i = (w+

1 · 1 · w+
2 · pf · w+

3 · pf . . . · w+
i )pc

= pcw
+
1 w

+(w+pf )
i−2 = (1− w+pf )(w

+pf )
i−2,

(26)

where the last expression accounts for the normalization of the probabilities added up over all states from 2 onwards.



22

This geometric series skews towards longer lengths when the forward stepping probability pf becomes high. This
probability represents a balance between the forward stepping rate versus reversal or catastrophe. At equilibrium,
the catastrophe can only be effectively irreversible if the energies associated with longer-length states are much
higher than shorter ones, implying kf/kr ≪ 1. If there is little driving in the system (α ≪ kr) then this means
pf → 0 and the distribution of lengths becomes peaked at 1, regardless of the rate of catastrophe. On the other
hand, if the system is strongly driven, then w+ → 1 and we recover the limit with unidirectional stepping, discussed
above. The distribution is then determined by pf ≈ α/(α + kc), with the average length at catastrophe given by
⟨Lcat⟩ → (2 − pf )/(1 − pf ) → α/kcat for large α. Thus, active driving allows the steady-state microtubule length to
be linearly sensitive to the level of catalyst present, ensuring catalytic control.

Finally, we note that because the catastrophe rate is the same from each state, the distribution of length upon
catastrophe is directly proportional to the steady-state length distribution: Pi = γP cat

i , where γ = 1 − P1 is an
appropriate normalization constant.

Microtubule catalytic control via the circuit mapping

In terms of the nth mesh current shown in Fig. 10B, the voltage equation taken along the path of the nth battery
is:

Pn+1e
βGn+1 − Pne

βGn =
α

kf
Pne

βGn −RnIn. (27)

where Rn = eβGn/kf and Gn = nG. Note that eβG = kb/kf , where kf and kb are the equilibrium forward and
backward rates, respectively. Using these definitions, we can solve for the probability of the (n+ 1)th state in terms
of the previous state probability and current:

Pn+1 =
(
1 +

α

kf

)
e−βGPn − In

e−βG

kf
(28)

Taking the potential difference from state n+ 1 and state 1 along the catastrophe path:

P1e
βG1 − Pn+1e

βGn+1 = −Rcat,n(In − In+1), (29)

Where Rcat,n = eβGn+1/kcat = Rn+1(
kf

kcat
). Therefore, the (n+ 1)th current is:

In+1 = In − kcatPn+1 + kcatP1e
−βGn (30)

In vector notation, the recursive probability and current equations become:[
1 0

kcat 1

] [
Pn+1

In+1

]
=

[(
1 + α

kf

)
e−βG − e−βG

kf

0 1

] [
Pn

In

]
+

[
0

kcatP1

eβGn

]
(31)

Multiplying both sides by the inverse of the right-hand-side matrix, the recursion relation is:[
Pn+1

In+1

]
= M

[
Pn

In

]
+

[
0

kcatP1

eβGn

]
(32)

where the transition matrix M is given by:

M =

 (
1 + α

kf

)
e−βG − e−βG

kf

−kcat

(
1 + α

kf

)
e−βG kcat

e−βG

kf
+ 1

 (33)

The probability and current of state n in terms of those of state 1 is thus:[
Pn+1

In+1

]
= Mn

[
P1

I1

]
+

n−1∑
k=0

(eβGM)k
[

0
kcatP1e

−βGn

]
(34)

Diagonalizing M :

M = V

[
λ− 0
0 λ+

]
V −1 (35)
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Where the columns of V are the eigenvectors of M and λ− and λ+ are the eigenvalues of M :

λ± =
e−βG

2kf

(
α+ kf (1 + eβG) + kcat ±

√
(α+ kf − kfeβG)2 + kcat(2α+ 2(1 + eβG)kf + kcat)

)
(36)

Which simplifies to the value given in the text:

D = − lnλ− = − ln [1−
√
(α+ kcat + kf − kr)2 + 4kcatkr − (α+ kcat + kf − kr)

2kr
] (37)

Note that λ− ≤ 1 whereas λ+ ≥ 1.
The transfer matrix equation is then[

Pn+1

In+1

]
= V

[
λn
− 0
0 λn

+

]
V −1

[
P1

I1

]
+

n−1∑
k=0

eβkGV

[
λk
− 0
0 λk

+

]
V −1

[
0

kcatP1e
−βGn

]
(38)

Expanding this expression and taking the geometric sum yields Pn:

Pn = P1e
−βG(n−1) kcat

kcat − α(eβG − 1)
+A1λ

n−1
− +A2λ

n−1
+ , (39)

where the A1 and A2 are explicit functions of the elementary parameters. For nonzero kcat the probability mono-
tonically decreases for larger n, thus the coefficient A2 must be zero. Solving this boundary condition for I1 and
substituting into the expression for A1, we obtain the length distribution (Eq. 14 in the main text):

Pn =
kcat

kcat − α(eβG − 1)
P1e

−βG(n−1) +
α(eβG − 1)

α(eβG − 1)− kcat
P1e

−D(n−1), (40)

where D = − lnλ−. For microtubule assembly, the physiologically relevant parameters were obtained from Ref. [46].
From the expression for D, we can see that the mean length and the sensitivity of the mean length to kcat is maximal
in the limit that 4kcatkr/(α+ kcat + kf − kr)

2 << 1(visualized in Fig. 10C). Expanding the expression for D to first
order in this ratio, we obtain:

D ≈ − ln

[
1− kcat

|kcat + α+ kf − kr|

]
(41)

In this limit, the mean length retains linear sensitivity to kcat (that is, the linear approximation to the logarithm is
valid) if α > kr − kf + ∆, where the minimum buffer ∆ is set by the value of kcat because kcat

kcat+∆ must be much

less than 1. Therefore, as stated in the main text, the transition from weak (logarithmic) to strong (linear) catalytic
regulation occurs when α > kr − kf , with the sharpness being inversely proportional to kcat.


