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Abstract

Membrane transporters carry key metabolites through the cell membrane and, from a
resource standpoint, are hypothesized to be produced when necessary. The expression of
membrane transporters in metabolic pathways is often upregulated by the transporter
substrate. In E. coli, such systems include for example the lacY, araFGH, and xylFGH
genes, which encode for lactose, arabinose, and xylose transporters, respectively. As a
case study of a minimal system, we build a generalizable physical model of the xapABR
genetic circuit, which features a regulatory feedback loop through membrane transport
(positive feedback) and enzymatic degradation (negative feedback) of an inducer.
Dynamical systems analysis and stochastic simulations show that the membrane
transport makes the model system bistable in certain parameter regimes. Thus, it serves
as a genetic “on-off” switch, enabling the cell to only produce a set of metabolic
enzymes when the corresponding metabolite is present in large amounts. We find that
the negative feedback from the degradation enzyme does not significantly disturb the
positive feedback from the membrane transporter. We investigate hysteresis in the
switching and discuss the role of cooperativity and multiple binding sites in the model
circuit. Fundamentally, this work explores how a stable genetic switch for a set of
enzymes is obtained from transcriptional auto-activation of a membrane transporter
through its substrate.

Introduction 1

Genetic regulatory circuits are fundamental building blocks of functioning cells and 2

organisms. One abundant class of these circuits are genetic switches. Although their 3

construction and function may differ, their common feature is bistability: their output 4

gene expression will flow to and remain at one of two steady-state levels. The 5

distribution of gene expression in a cell culture can then be bimodal. This is not to be 6

confused with mere stochastic bimodality, where the system is not stable, and the gene 7

expression in each cell can fluctuate between the two levels. 8

One classic example of a genetic switch is a system where two repressor proteins 9

each regulate the transcription of the other [1, 2] (illustrated schematically in Fig 1). 10

Here, one stable state is high expression of the first protein and low expression of the 11

second, and the second stable state is the opposite. This switch enables the system to 12
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Fig 1. A schematic of different genetic switches. (A) and (B) show the two
most well-known genetic switches: (A) two mutual repressors and (B) a self-activating
gene. In (C), a very much simplified version of the circuit that we investigate in this
paper can be seen, where the similarity to the switch in (B) is clear. A complete version
of the model circuit can be found in Fig 2.

have a memory: if something induces expression of either one of the proteins, the 13

system will remain in this state until a significant perturbation occurs. Another 14

well-known and even simpler example is an auto-activating circuit in which a protein 15

activates its own transcription [3]. This gives the system an “on-off” switch. 16

Through physical and mathematical modeling, we investigate a more complex switch 17

system where the bistability is due, as we will show, to a membrane transport protein. 18

Such a switch is common for metabolic processes in biology, for reasons discussed below. 19

Existing models in the literature tend towards one of two extremes: either highly 20

detailed descriptions of specific, complicated networks (e.g., [4]), or Hill function 21

descriptions that coarse-grain all complexity into a few parameters with inscrutable 22

microscopic physical meaning. We aim for a middle ground in this work. We seek an 23

intuitive understanding through a simple model of a minimal system, with only the 24

essential components and interactions for the questions we pose. Yet we still model 25

these components explicitly and discuss the necessary model complexity for a physically 26

correct model. 27

The key feature of the type of system we investigate is the indirect activation of the 28

transporter gene by the transporter substrate, leading to positive feedback similar to 29

the aforementioned “on-off” switch. An example for such an architecture is the lac 30

operon, where lactose indirectly activates the expression of lactose permease. Other 31

examples in E. coli include the araFGH and xylFGH operons, which contain genes for 32

arabinose and xylose transporters, respectively. For lac and araFGH, bistability has 33

indeed been observed and attributed to such a positive feedback loop, for example in 34

the well-known study of Novick and Weiner, among other works [5–12]. A eukaryotic 35

example is the glucose transporter GLUT-2 in liver and β-cells [13, 14], though this 36

system is much more complex than the following analysis. 37

It is quite conceivable that this auto-activation process is common to many 38

substances that a cell would want to accumulate. Such a switch enables the cell to sense 39

and respond to its environment: if the substrate enters the cell, it activates the 40

production of membrane transporters. The cell then starts accumulating the substrate, 41

thereby “testing” the substrate’s presence in the extracellular environment. If there is 42

enough, the expression stabilizes at an “on” state and the cell has, in a short-term sense, 43

adapted. When there is not enough substrate, the operon, which often encodes for a 44

whole set of enzymes for this one metabolite, switches “off” again. Such a mechanism 45

could be involved in various cases of short-term adaptation. 46

A key element of this mechanism is the presence of a transcription factor which is 47

always expressed at a low level (often at copy numbers of order ∼ 10) and which binds 48

to the transporter substrate. This is resource efficient for the cell, as this low copy 49

number transcription factor acts as an “always on” sensor to detect the substrate, 50

allowing high copy numbers of the membrane transporter and its attendant operon to 51

be expressed only when their substrate is actually present. The transcription factors 52

LacI, AraC, and XylR all appear to fill this role [5–12,15,16]. 53

For our modeling, we focus on the xapABR genetic circuit from E. coli as a case 54

study. It is similar to lac, but less complex. Instead of lactose, its purpose is to make 55

use of the nucleoside xanthosine as an energy source [17, 18]. The circuit is made up of 56

two operons: one that encodes for XapR and another that encodes for XapA and XapB. 57

XapR appears to be a transcription factor that is induced by xanthosine and activates 58
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the xapAB promoter, in close analogy to AraC, XylR, and also LacI. 1 The xapAB 59

promoter has been suggested to have two binding sites for XapR [19], but the promoter 60

architecture and function is not yet fully understood. The transcription of xapR seems 61

to be constitutive and not auto-regulated [19]. Structural homology to other 62

transcription factors suggests that XapR appears in dimers where one dimer can bind 63

two xanthosine molecules [20]. The protein XapA is a purine nucleoside phosphorylase 64

that degrades xanthosine into components (ribose and xanthine) that can be fed into 65

metabolic pathways [17,18]. XapB on the other hand is a membrane transporter of 66

xanthosine [19,21]. 67

Experimentally it was found that the expression level of xapAB among cells follows a 68

bimodal distribution and that the system seems to be bistable [22]. We aim to 69

understand which of the circuit’s features are necessary for bistability and investigate its 70

behavior in different parameter regimes. In the following section, we will discuss the 71

details of our model. After estimating the free parameters we then present the 72

observations we made through phase diagrams, followed by the results from stochastic 73

simulations. 74

Model 75

Step by step modeling of the system 76

In this section, we present our model of the xapAB genetic circuit. Fig 2 shows an 77

overview of this model. The qualitative picture of the circuit switching its state is as 78

follows: 79

� In the initial absense of XapB, small amounts of xanthosine permeate into and out 80

of the cell (discussed in more detail below). 81

� XapR is induced by xanthosine. 82

� The induced XapR binds to the xapAB promoter, leading to transcription. 83

� From this mRNA transcript, translation produces the two proteins XapA and 84

XapB. 85

� XapB actively transports much larger amounts of xanthosine into the cell and 86

XapA degrades xanthosine. 87

� Production of more XapA and XapB is balanced by decay or dilution through cell 88

divisions. 89

Because xanthosine induces the transcription factor XapR, we have positive and 90

negative feedback loops due to XapB and XapA, respectively. The remainder of this 91

subsection discusses each of the above steps in detail, leading us to a set of two coupled 92

ODEs. More in-depth explanations can be found in S1 Text. 93

Induction of XapR. We treat dimers as the only form of XapR that appears in the 94

cell. Each dimer can bind two xanthosine molecules [20]. The 95

Monod-Wyman-Changeux (MWC) model is used to describe the fraction of XapR 96

1One might object that LacI represses its target operon, while XapR, AraC, and XylR activate their
target operons. However, the analogy we wish to draw is that the qualitative logic of their inducers are
all identical, i.e., the presence of their respective inducer causes their target operon to be transcribed.
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Fig 2. Model of the xapAB circuit. The XapR dimers are induced by xanthosine
and the induced XapR binds cooperatively as an activator to the xapAB promoter. For
these two steps, quasi-equilibrium is assumed. If both XapR binding sites are occupied
and the polymerase is bound, the gene is transcribed at rate rm. The mRNA decays at
rate γm, and both proteins are translated at rate rp and decay at rate γp. XapA
degrades xanthosine with Michaelis-Menten parameters ka and Ka. Similarly, XapB is
treated as a Michaelis-Menten enzyme which imports (kb,i,Kb,i) and exports (kb,e,Kb,e)
xanthosine. Furthermore, xanthosine enters and leaves the cell through non-specific
transport, proportional to rates knup and ξknup, respectively.

Fig 3. The promoter states. We consider only the completely occupied state as
active and all other states (faded out in the figure) as completely inactive. The
parameters are the interaction energy of the two XapR dimers ∆Ecoop and the
dissociation constants KXapR and KP of XapR and polymerase to the promoter,
respectively. The concentrations of polymerase and active XapR are denoted by [P] and
[XapR].

dimers in the active state, which has the form 97

[XapR]A = [XapR]tot

(
1 + [x]

KxA

)2

(
1 + [x]

KxA

)2

+ eβ∆Ex

(
1 + [x]

KxA

KxA

KxI

)2 . (1)

A detailed discussion of the MWC model can be found in [23]. In Eq 1, [x] is the 98

xanthosine concentration, and [XapR]A and [XapR]tot denote the concentration of 99

active and total XapR dimers, respectively. Furthermore, KxI and KxA are the 100

dissociation constants of xanthosine to the inactive and the active XapR dimer, 101

respectively, and ∆Ex stands for the energy difference between the inactive and the 102

active states of the protein. We expect ∆Ex > 0 and KxA < KxI for inducible 103

activation. This corresponds to XapR being mainly inactive in the absence of 104

xanthosine and becoming mostly active at high concentrations of xanthosine. 105

Transcription. Transcription and translation of the xapAB gene, regulated by the 106

induced XapR, produce the two proteins XapA and XapB. We start with transcription 107

and assume that the binding of XapR and polymerase to the promoter is at 108

quasi-equilibrium. The polymerase binding is modeled as independent of that of XapR, 109

and all influence of the activator is pushed into the transcription rate. Furthermore, the 110

binding energy of XapR to each of its two sites is assumed to be the same. A discussion 111

of these simplifications can be found in S1 Text. 112

In Fig 3, all possible states of the promoter in our model and their corresponding 113

thermodynamic weights are shown. [P] denotes the polymerase concentration, and 114

∆Ecoop stands for the interaction energy of the two XapR dimers. If cooperativity in 115

transcription factor binding is neglected, this is set to zero. Furthermore, KXapR and 116

KP denote the dissociation constant of XapR and polymerase to the promoter, 117

respectively. In statistical mechanics language these dissociation constants are 118

equivalent to NNS

V eβ∆EXapR and NNS

V eβ∆EP , respectively, with NNS being the number of 119

non-specific binding sites on the DNA, V the volume of the cell, and ∆EXapR and 120

∆EXapR, respectively, the interaction energies of XapR or polymerase with the 121

promoter. 122

We consider only the state where both XapR binding sites are occupied as active 123

and all other states as inactive, meaning they have transcription rate equal to zero. 124

Experiments show that the expression becomes very weak when one of the XapR 125
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binding sites is removed from the promoter, suggesting that this simplification is 126

reasonable [22]. Furthermore, we find that in the bistable parameter range, considering 127

the single occupancy states as active instead has almost no influence on the results (see 128

also S1 Text). 129

With [m] being the mRNA concentration, rm the transcription rate, γm the mRNA 130

decay rate, and pactive the probability of the promoter being in the active state, we 131

obtain 132

d[m]

dt
= rmpactive − γm[m] (2)

pactive =
w8∑8
i=1 wi

=
[P]

KP + [P]

(
[XapR]A
KXapR

)2

e−β∆Ecoop

1 + 2 [XapR]A
KXapR

+
(

[XapR]A
KXapR

)2

e−β∆Ecoop

(3)

Here, wi stands for the thermodynamic weight of the ith state in the order in which 133

they are listed in Fig 3. As written above, the partition function factorizes into a 134

polymerase and a XapR term because of our assumption of independent binding, which 135

is further discussed in S1 Text. Note that because rm implicitly contains the gene copy 136

number per cell, it has units of M−1 s−1 and not just s−1. This rate equation gives the 137

mean mRNA concentration 〈[mRNA]〉 = rm
γm
pactive, which we will need in the next 138

paragraph. The mean can also be found from the full chemical master equation, which 139

is shown in S1 Text. 140

Translation. The next step in our modeling progression is translation. As a 141

simplification, we write [p] = [XapA] = [XapB] for the general protein concentration. 142

This assumes that the rates of transcription, mRNA decay, translation, and protein 143

decay are the same for both proteins, which, as discussed in S1 Text, does not have a 144

significant influence on the results. We write the following rate equation for the protein 145

concentration, where rp denotes the translation rate, γp the protein decay rate, and 146

〈[m]〉 the mean mRNA concentration: 147

d[p]

dt
= rp〈[m]〉 − γp[p]. (4)

Xanthosine dynamics. Having described how xanthosine activates the synthesis of 148

XapA and XapB through XapR, we now close the feedback loop by setting up a 149

xanthosine rate equation. 150

There are two significant mechanisms for transport of xanthosine across the cell 151

membrane. In the induced system, the main transporter is XapB, whereas in the 152

uninduced system, there is almost no XapB. Instead, xanthosine can enter the cell 153

through the two nucleoside transporters NupC and NupG, which have a very low 154

affinity for xanthosine [21]. All these transporters, XapB, NupC, and NupG, are 155

powered by the proton gradient across the membrane [21], which is why we assume their 156

kinetic scheme to be similar to that of the lac permease (as it is described in [24]). 157

There can be import and export of xanthosine, and which one dominates depends on 158

the proton and xanthosine concentrations on the two sides of the membrane. In both 159

cases, a proton and a substrate need to bind to the transporter on one side of the 160

membrane and detach from it on the other side before the empty transporter moves 161

back to the other side again. We refer the reader to S1 Text for a detailed description of 162

the transport and its modeling, and just state the result here. We model influx and 163

efflux separately. For XapB, we use Michaelis-Menten kinetics with parameters kb,i, 164

Kb,i for influx and kb,e,Kb,e for efflux. For the Nup transporters, we also use 165

Michaelis-Menten kinetics but, because of the transporter’s low affinity for xanthosine, 166
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we can linearize the Michaelis-Menten term as kcat[x]/(KM + [x]) ≈ k̃[x] (i.e., 167

KM � [x] across the physiologically relevant range for [x]). For the rate parameters k̃, 168

we write knup for influx and ξknup for efflux. 169

After transport into the cell, XapA degrades xanthosine. We model this using 170

standard Michaelis-Menten kinetics, with parameters ka,Ka (corresponding to turnover 171

rate and Michaelis constant, respectively). Transport and degradation then leads to the 172

xanthosine rate equation 173

d[x]

dt
=

(
kb,i

c

Kb,i + c
− kb,e

[x]

Kb,e + [x]︸ ︷︷ ︸
XapB

− ka
[x]

Ka + [x]︸ ︷︷ ︸
XapA

)
[p] + knup (c− ξ[x])︸ ︷︷ ︸

NupC & NupG

. (5)

Recall that [x] is the intracellular xanthosine concentration, while c denotes the 174

extracellular concentration. Because kb,i > kb,e and Kb,i < Kb,e, influx dominates at 175

low intracellular xanthosine concentrations. At much higher intra- than extracellular 176

xanthosine concentrations, the efflux term takes over. More details on the 177

aforementioned steps and a discussion of passive diffusion can be found in S1 Text. 178

Nondimensionalization 179

We have now formulated the behavior of the system in terms of the rate equations for
mRNA, protein, and xanthosine. These equations can be nondimensionalized, which
reduces the dimension of parameter space. We measure time in units of γ−1

p and
concentrations in units of Ka (except XapR, where the equations make it more natural
to use KXapR). In Table 1, all the nondimensional parameters and their definitions are

listed. Furthermore, we define [m]a ..= [m]
Ka

, [p]a ..= [p]
Ka

, [x]a ..= [x]
Ka

, and τ ..= γpt. Using
these definitions, the following equations are obtained

d[m]a
dτ

= ρm
[XapR]R,A

2
e−∆εcoop

1 + 2[XapR]R,A + [XapR]R,A
2
e−∆εcoop

− γmp[m]a (6)

d[p]a
dτ

= ρp[m]a − [p]a (7)

d[x]a
dτ

=

(
kβ,i

[c]a
Kβ,i + [c]a

− kβ,e
[x]a

Kβ,e + [x]a
− kα

[x]a
1 + [x]a

)
[p]a (8)

+ kη ([c]a − ξ[x]a)

with [XapR]R,A = [XapR]R

(
1 + [x]a

KχA

)2

(
1 + [x]a

KχA

)2

+ e∆εx

(
1 + [x]a

KχA

1
KIA

)2

Very little is known about the xap system, and thus, there are almost no measured 180

values for the free parameters. Nevertheless, we were able to estimate a reasonable 181

range by using values from similar, well studied systems and by exploiting physical 182

constraints or relations between parameters. The results of these estimates are shown in 183

Table 1. They are based on a choice of γp = 5 · 10−4 s−1 and Ka = 5 · 10−5 M. A 184

detailed derivation can be found in S1 Text. 185

Results and discussion 186

In the modeling process in the previous section, we have obtained three coupled 187

differential equations. In this section, we will analyze these equations with deterministic 188

methods and stochastic simulations. Analytical closed-form solutions could not be 189
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Table 1. Nondimensional parameters and their estimated values.

Param. Definition Estimated range Value used

ρm
..= rm

γpKa

[P]
KP+[P] ≈ 10−3±2 10−3

γmp
..= γm

γp
≈ 101±0.5 101

ρp
..=

rp
γp

≈ 102±0.5 102

[XapR]R ..= [XapR]tot
KXapR

≈ 100±2 100

[c]a ..= c
Ka

(∈ [0, 103]) 13

kβ,i ..=
kb,i
γp

≈ 104±1 5 · 104

kβ,e ..=
kb,e
γp

≈ 103±2 103

kα ..= ka
γp

≈ 102±0.8 102

kη ..=
knup
γp

≈ 100±3 5 · 10−1

ξ = ξ ≈ 0.8± 0.1 0.8

Kβ,i
..=

Kb,i

Ka
≈ 101±2 101

Kβ,e
..=

Kb,e

Ka
≈ 102±2 102

KχA
..= KxA

Ka
≈ 102±1 · 10∆εx−5 102

KIA
..= KxI

KxA
≈ 102±1 102

∆εx ..= β∆Ex ≈ 2 to 2 (ln (KIA)− 1) < 12 5
∆εcoop

..= β∆Ecoop ≈ 0− 10 5

The left column shows all nondimensional parameters that appear in the final equations.
In the middle are their definition and estimated values. They are based on
γp = 5 · 10−4 s−1 and Ka = 5 · 10−5 M. Note that the range of the three MWC
parameters depends on each other, but they can still be chosen independently. The
range given for [c]a denotes the estimated “interesting” range in which switching
happens, but [c]a can of course exceed these values. Details on the parameters and their
estimation can be found in S1 Text. Finally, the last column shows the value that we
use for the rest of this paper, unless otherwise noted. An explanation of this choice will
follow in the next section.
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Fig 4. Phase portraits showing bistability. 3D and 2D phase portraits for one set
of parameters that leads to bistability. The parameter values are listed in Table 1. Note
that all the concentrations ([m]a, [p]a, [x]a) are measured in units of Ka = 5 · 104 nM.
The surfaces in (A) and the curves in (B) are the nullclines of the state variables, and
their intersection points, marked in red in (B), are the steady-state solutions of the
system. The region shaded in gray in (B) leads to negative concentrations and is
unphysical. A vector plot of (B) that also shows the magnitude of flow at each point
can be found in S1 Text.

obtained and would, if they existed, probably not be helpful due to their large 190

complexity. Finding such solutions requires solving a fifth order algebraic equation. 191

Deterministic phase portraits 192

A standard way to analyze dynamical systems deterministically is to plot phase 193

portraits. In the following, we present such plots where the state variables are the 194

mRNA, the protein, and the xanthosine concentration. 195

From a 3D to a 2D system. Fig 4A shows the 3D phase portrait for a 196

representative set of parameters (shown in Table 1), whose choice is explained below. 197

The plot looks rather complicated at first but can be understood intuitively. The three 198

surfaces are the nullcline surfaces and the gray lines point in the direction in which the 199

dynamical system moves at each point. The surfaces intersect in three points, which are 200

the steady-state solutions of the dynamical system. For this choice of parameters, the 201

system first flows towards the mRNA nullcline (independent of the initial condition), 202

then it moves along that surface to the intersection with the protein nullcline, and lastly, 203

it moves along that intersection line to one of the three intersection points of all three 204

surfaces. 205

It is important to point out that, for a different set of parameters, the dynamics can 206

be quite different. There are, for example, scenarios where the xanthosine kinetics are 207

roughly as fast as the mRNA kinetics and the dynamics unfolds in two steps: first to 208

the intersection of the mRNA and the xanthosine nullcline, then along that curve to the 209

protein nullcline and thereby to a fixed point. 210

A usual simplification with genetic circuits like this is to assume the mRNA 211

concentration to be at steady-state, i.e., to write d[m]a
dτ = 0 and solve this for 212

[m]a([p]a, [x]a) to simplify the 3D to a 2D system. This restricts the dynamics to the 213

green surface in our plot, which is reasonable here because as explained above, the 214

system first flows towards that surface before either the protein or the xanthosine 215

concentration changes significantly. However, as already pointed out, this is different for 216

other parameter values, and thus, this assumption does not hold in general. If the 217

xanthosine dynamics are faster than the mRNA dynamics, the system first flows 218

towards the xanthosine nullcline. In that case, forcing it onto the mRNA nullcline leads 219

to significant changes in the dynamics. 220

Nevertheless, the steady-state solutions and the qualitative features that we address 221

in this paper remain the same. Because the 3D plots are rather hard to read, we will, in 222

the following, make the compromise to show a 2D version of the phase portraits but 223

ensure that all of our statements also hold true in 3D space. As explained above, it 224

makes the most sense here to do this by setting d[m]a
dτ = 0. The resulting equations can 225

be found in S1 Text. In particular, we define ρ ..=
ρmρp
γmp

for everything that follows. 226
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Bistability. We map the mRNA nullcline surface (green in Fig 4A) onto a plane to 227

show it as the 2D plot in Fig 4B. From this 2D plot, it can clearly be seen that for the 228

chosen parameters, there are three steady-state solutions. Because the system is 229

restricted to the mRNA nullcline surface, these steady-state solutions are the same as 230

those in the 3D plot (d[m]a
dτ = 0 on the nullcline and d[p]a

dτ = 0, d[x]a
dτ = 0 for the 2D fixed 231

points). One can see from the vector field that the two outer fixed points (labeled 1 and 232

3) are stable and the middle one (labeled 2) is unstable and serves as a sort of 233

“switch-point” between the other two. This means that there are two stable states the 234

cell can be in, one at high (point 3) and one at low (point 1) expression. As a result, 235

there is bistability and the distribution of expression among cells can be bimodal, 236

depending on initial conditions. 237

The bistability corresponds to the experimental observations [22], so the model 238

passes this sanity check. Furthermore, the xanthosine and protein concentrations at the 239

upper fixed point have the expected order of magnitude: the xanthosine concentration is 240

roughly 10− 100 mM, and there are roughly 500 proteins, which is just a bit lower than 241

what was measured for the number of Nup transporters [25] which fulfill a similar 242

purpose. We do not have well founded expectations for the other fixed points, so no 243

comparison can be made here. Nevertheless, the orders of magnitude at the lower fixed 244

point – roughly 1− 10 nM of xanthosine and around 5 proteins – seem quite reasonable. 245

Note that [x]a ≈ [c]a at the lower fixed point because there is only weak accumulation 246

due to Nup and a few XapB transporters. 247

As already mentioned, we are working with one specific set of parameters here and 248

we will now explain this choice of values. Firstly, they were picked roughly in the middle 249

of the range that was estimated beforehand for this parameter (see Table 1 and S1 250

Text). Secondly, we chose parameters that allow clear bistability in the phase portraits 251

as well as in the stochastic simulations (see later), which, of course, is not the case for 252

any possible choice of parameters. Thirdly, by the corresponding choice of parameters it 253

was ensured that the mRNA number per cell at the “switch-point” is around 1: this is 254

large enough to enable the system to clearly resolve the two stable fixed points (as we 255

will see from the stochastic simulations later on), but is low enough to lead to mean 256

mRNA numbers that are very reasonable (see [26] for the average mRNA numbers in 257

bacterial cells). The protein and xanthosine concentrations followed from this, but with 258

some variation in the parameters they could still be tuned to a certain extent. 259

As a remark we point out that we have not observed any oscillations in the system. 260

Intuitively, they might be expected when the XapA rate is significantly larger than the 261

XapB rate, but it turns out that oscillations cannot be obtained. Why they do not occur 262

can be understood when looking at the regions that are bounded by all three nullclines: 263

on these boundaries, the streamlines point into the bounded regions, so deterministically, 264

they serve as trapping regions from which the system cannot escape. Once inside, the 265

only possible trajectory is non-oscillatory flow towards the stable fixed point. 266

For a different set of parameters, the orders of magnitude in the plots and even the 267

qualitative behavior can change. In the following, we will discuss some interesting 268

features of the system that can be observed through the phase portraits. 269

The extracellular xanthosine concentration. The parameter that is the 270

experimentally most easily tunable and biologically the most relevant is the 271

extracellular xanthosine concentration. When it is increased in experiments, the cells go 272

from (1.) all being in the low expression state to (2.) the population being in a mixed 273

state with some cells in a low expression state and others in a high expression state 274

(all-or-none phenomenon) and then to (3.) all being in the high expression state [22]. If 275

our model is correct, it should exhibit the same qualitative behavior. Indeed we find 276

exactly this: as can be seen in Fig 5, increasing [c]a makes the high stable fixed point 277
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Fig 5. Phase portraits for different extracellular xanthosine concentrations.
All parameters but [c]a are as presented in Table 1. The extracellular xanthosine
concentration in these plots is [c]a = 101 in (A) and [c]a = 5 · 102 in (B) (recall that
[c]a ..= c

Ka
with Ka = 5 · 10−5 M, so [c]a is dimensionless). Tuning [c]a moves the orange

line (xanthosine nullcline), but the blue curve (mRNA nullcline) is unchanged (see
also S1 Text). It can clearly be seen that in (A) there is only the lower fixed point
(fixed point number 1), whereas in (B) there is only the upper one (fixed point number
3). In between lies the bistable case that was shown in Fig 4.

Fig 6. Phase portraits without XapA or XapB. All parameters are as presented
in Table 1. In (A), the XapA term was removed from the kinetic equations. In (B), the
equations lack the two terms from XapB. These plots clearly show that XapA has
almost no influence on the qualitative behavior of the system (i.e. bistability and the
order of magnitudes), but XapB is the essential feature for bistability.

appear and then, for even higher [c]a, the lower one disappears. Thus, for low [c]a the 278

only stable point of the system is at low expression, and for high [c]a there is only high 279

expression. In between, there are two deterministically stable expression levels. 280

Furthermore, we found that in the absence of xanthosine, i.e., setting [c]a = 0 (not 281

shown here), there are roughly 2-3 copies of XapA and XapB, which agrees very well 282

with measurements, where around 2 copies per cell were found [25]. In addition, the 283

parameter KχA (dissociation constant of xanthosine from active XapR) can be tuned 284

such that the extracellular xanthosine concentration [c]a in the switching-regime is 285

similar to that in the experiment. It was found that the cell only adapts at very high 286

xanthosine concentrations of almost a millimolar [21] which is not completely 287

unexpected when recalling that for lac, cells also limit themselves to glucose as long as 288

possible. Interestingly, because there is no parameter other than KχA that tunes the 289

critical value of [c]a, this tells us that KχA is large as argued in the estimation of KχA 290

in S1 Text. Thus, we predict that the interaction between xanthosine and XapR should 291

be weak. 292

The roles of XapA and XapB. While it is clear that the bistability in the model 293

system is due to the feedback loop from XapA and XapB, it is not intuitively clear if 294

both XapA and XapB are necessary. The model implies that the bistability is due to 295

XapB only. XapA is neither sufficient nor necessary and, within the estimated 296

parameter regime, does not even have a significant influence on the system. This can be 297

seen from the plots in figure 6. Degradation of xanthosine by XapA lowers the 298

xanthosine and protein concentration at the upper fixed point by a small amount and 299

could, in principle, thereby make the high-expression solution vanish. For our choice of 300

all other parameters, bistability only vanishes for kα > 104 which is far from what has 301

been measured. However, a higher effective rate could, in principle, be achieved by 302

different translation rates of XapA and XapB (see simplifications of the model in S1 303

Text). Hence, we cannot exclude the possibility that XapA becomes so strong that it 304

makes bistability impossible, but this is an extreme case. XapB, on the other hand, is 305

essential; without it the system only has the one fixed point at low expression.2 306

For a cell, the minimal effect of XapA on bistability is a useful feature: by coupling 307

XapA and XapB on an operon, XapA is switched on and off together with XapB but it 308

does not significantly disturb this adaptation mechanism, while its kinetic parameters 309

2Seeger et. al. [19] observed that ∆xapB mutants could survive, but grew extremely slowly, with
xanthosine as the only carbon source, which makes sense in light of Fig 6. With xapB removed, the
switch never activates and the cells are forced to survive with an extremely meager quantity of XapA to
metabolize the abundant xanthosine.
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Fig 7. Phase portraits for less or no cooperativity. Most parameters are as
presented in Table 1, changes are mentioned below. Fixed points are marked in red. In
(A), there is only one xanthosine binding site on XapR and everything unchanged for
the XapR-promoter binding. Two parameters are changed: ρ = 0.07 and [c]a = 6. This
is necessary to compensate for the weaker induction such that the system is bistable. In
(B), there is only one XapR binding site on the promoter and everything is unchanged
for the xanthosine-XapR binding. Two parameters are changed: ρ = 0.13 and [c]a = 3.
In (C), there is only one xanthosine binding site on XapR and also only one XapR
binding site on the the promoter. Two parameters are changed: ρ = 0.1 and
[XapR]R = 5. Whereas bistability is retained in (A) and (B), it cannot be obtained
anymore in (C).

and expression levels can be chosen somewhat freely as necessary for metabolism. By 310

having a membrane transporter gene on an operon whose expression is activated by the 311

transporter substrate, the expression of a whole set of enzymes can be turned on and off 312

depending on the presence of the substrate. It seems likely that this mechanism of 313

short-term adaptation of a single cell to its environment may be used by cells for many 314

metabolic processes. 315

The role of cooperativity. The model has two cooperatively interacting binding 316

sites for XapR on the xapAB promoter and two cooperative binding sites on XapR for 317

xanthosine. It is interesting to consider whether the cooperativity is a necessary feature 318

for bistability. This question is motivated by the importance of cooperativity in “typical” 319

genetic switches [2, 27]. 320

If, as a purely theoretical consideration, we remove either the second xanthosine 321

binding site on XapR or the second XapR binding site on the promoter, leaving 322

cooperativity in only one component of the system, we find that the system still has a 323

bistable parameter regime. However, this bistable parameter range is smaller than in 324

the original model, which makes the system less stable: small stochastic fluctuations in 325

the parameter values can collapse the system to monostability, possibly leaving it in the 326

wrong state and without its ability to adapt. But only when the second binding site is 327

removed in both places, leaving no cooperativity in the system, do we find that it is 328

insufficiently non-linear to produce bistability. An example of the three scenarios (only 329

cooperative XapR, only cooperative promoter, no cooperativity) can be seen in Fig 7. It 330

follows that there need to be either two xanthosine binding sites on XapR or two XapR 331

binding sites on the promoter (or both) in order to obtain a switch-like behavior. 332

One can also ask how much cooperative interaction is needed between the two 333

binding sites. For the promoter, the amount of cooperativity is given by ∆Ecoop in our 334

model, and we find that setting ∆Ecoop = 0 has almost no influence on the phase 335

diagrams. For XapR, we cannot test how much interaction is needed: the two binding 336

sites interact indirectly, because the active state is much likelier if two xanthosine 337

molecules are bound, and thus there is no continuous tuning parameter for the 338

cooperative interaction like ∆Ecoop in the case of the promoter. 339

Note that we are not writing Hill equations and measuring cooperativity in terms of 340

the Hill coefficient. If Hill equations were to be used for the modeling, the Hill 341

coefficient could have values between 1 and 2, which would yield bistability for large 342

enough values, but not for lower ones. This could be investigated more rigorously 343

similar to the analysis of a simple genetic switch in [27]. However, we refrain from 344

looking for a minimal Hill coefficient in our system, because we do not find this very 345

insightful. Hill equations only describe some specific limit cases of cooperative systems, 346

but for example do not account for interaction energies and assume the partially bound 347

states (e.g. only one XapR bound to the promoter) to never be populated. We suggest 348
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Fig 8. Distributions from stochastic simulations and the corresponding
phase portraits. Apart from [c]a, the parameters are the same as in Table 1. For the
distributions, the simulations were run 5000 times for 106 s each (simulated time) and
started at a mRNA, protein and intracellular xanthosine count of 0. We show the two
cases of unimodality (low expression in (A) and high expression in (C)) as well as the
case of bimodality in (B). The values of [c]a are 12 in (A), 18.5 in (B), and 25 in (C)
(recall that [c]a ..= c

Ka
with Ka = 5 · 10−5 M, so [c]a is dimensionless). The output from

the stochastic simulations is in good agreement with the concentrations at the fixed
points in the deterministic phase portraits.

that cooperativity should be explored more in-depth and a more rigorous analysis of the 349

role of cooperativity in simple genetic switches should be done before returning to more 350

complex systems like this one. 351

Stochastic simulations 352

Stochastic simulations of the full 3-dimensional system of mRNA, protein, and 353

xanthosine were run for comparison with the deterministic results. In S1 Text, we 354

present the underlying chemical master equation of the system. Because of the two 355

different fixed points at low and high expression, the protein copy numbers in the 356

problem vary from less than five to several thousand. Even worse, xanthosine copy 357

numbers may range as high as 107 at the high expression fixed point. For such large 358

copy numbers, the number of reaction firings that must be simulated with Gillespie’s 359

classical algorithm leads to an impractical computational cost. This would make 360

Gillespie’s τ-leap algorithm ideal for the high expression state. On the other hand, 361

τ-leaping cannot be used for the small protein copy numbers in the low expression state, 362

or the mRNA copy number which remains of order ten or less in both states. For these 363

reasons, we chose to work with the algorithm described in [28], a hybrid form between 364

Gillespie’s classical and his τ-leap algorithm. We gratefully worked with the Python 365

implementation of this algorithm in StochPy, version 2.3 [29]. 366

Bimodality and the extracellular xanthosine concentration. This stochastic 367

approach results in the same bimodal distributions that were already seen in the 368

deterministic investigation and experimental studies. Fig 8 shows the distribution of 369

protein expression found in the simulations for different values of the extracellular 370

xanthosine concentration. The parameters that were used are the same as in the 371

previous section (listed in Table 1). To obtain the distributions, we ran the simulation 372

5000 times for a simulated time of 106 s each and started at a mRNA, protein and 373

intracellular xanthosine count of 0. 374

The results agree very well with the deterministic fixed points and experiments: the 375

mean numbers of mRNA, protein, and xanthosine in the stochastic results are as 376

predicted from the phase portraits. It does, however, become clear that the phase 377

portraits do not tell whether the cells will actually populate both the high and the low 378

expression state, because they do not show the effective barrier height between the two 379

states. In Fig 8(A), a deterministically bistable scenario is shown where the cells never 380

switched to the high expression state during the run time of our simulations. 381

We found that the two lower fixed points (marked as 1 and 2 in Fig 4) need to be 382

very close like in Fig 8(B) to give bimodality. For lower [c]a, meaning larger distance 383

between the first and second fixed point, almost no switching was observed. Of course, 384

switching is also a matter of the waiting time and stochastic effects: if one waits for 385

long enough, it should eventually occur. However, switching times of more than several 386

hours are not at the center of this investigation and would mean that switching is 387
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Fig 9. Time evolution of protein (XapA/XapB) from one run of the
simulation. The simulation was run once for 5 · 105 s and started at an mRNA, protein
and intracellular xanthosine count of 0. In this case the system switched into the
high-expression state after 105 s. The parameters that were used are the same as in
Table 1, the only exception being the extracellular xanthosine concentration, which was
chosen to be [c]a = 25 (recall [c]a ..= c

Ka
, Ka = 5 · 10−5 M) just as in Fig 8(B).

extremely unlikely. There are two aspects that become relevant in this context that we 388

neglect in our analysis but briefly mention here: transcription and translation bursts 389

lead to higher stochasticity and cell division leads to some discontinuity in the process. 390

Note that while the deterministic analysis assumes the variables to be continuous, 391

the simulations work with discrete numbers of mRNA, protein, and xanthosine. This 392

per se is no problem, because the deterministic analysis describes the mean values and 393

the simulation fluctuates around this mean. If, however, the mRNA number at the third 394

(high) fixed point is too low, the system will not be able to resolve the two points 395

anymore. It is too low when the distance between the first and the third fixed point 396

becomes as low as the stochastic fluctuations in the system, which is around 3 mRNA 397

molecules. In Fig 8, the mRNA number at the low fixed point was fluctuating between 398

0 and 2 with a mean significantly smaller than 1, and at the high fixed point it was 399

varying between 2 and 6. 400

Time evolution and switching times. Fig 9 shows the time evolution of the 401

protein concentration for one exemplary run of the simulation. Again, the simulation 402

was started with a mRNA, protein and intracellular xanthosine count of 0 and was run 403

for a simulated time of 5 · 105 s. In this specific example, switching occurred after 105 s. 404

Comparing this to the experimentally expected timescales [22] is difficult, because 405

the switching time strongly depends on the extracellular xanthosine concentration. 406

Experiments were always stopped after a few hours, and in this time, the cell 407

population might not reach its steady-state expression distribution. Hence, the 408

distribution could be bimodal when the experiment is stopped but become unimodal 409

after further waiting. That way, extracellular xanthosine concentrations that are too 410

high for deterministic bistability could lead to experimental bimodality if the 411

experiment is stopped too early. In this case, the observed switching time would be 412

shorter, which makes the comparison to our simulations even harder. Thus, we cannot 413

say if it is problematic that the 105 s is larger than what was found in the experiment. 414

Nevertheless, we do warn the reader that the timescales in the simulations should be 415

taken with reservation. Cell divisions are not considered here, and neither is the 416

burstiness of transcription and translation. This means that stochasticity may be larger 417

in the real system which should have an influence on the timescales and probably 418

shorten the time until switching occurs. 419

Hysteresis. In Figs 8 and 9, the simulations were started at initial intracellular 420

concentrations of 0 to investigate what happens if xanthosine is suddenly added to the 421

cell’s environment. We can now ask the opposite question: what happens when 422

xanthosine is removed from the extracellular environment? To answer this, the 423

simulation was started with initially fully induced cells, i.e. at the mRNA, protein and 424

intracellular xanthosine counts of the high fixed point in the corresponding phase 425

portrait. 426

The resulting distributions can be found in S1 Text. They show clear hysteresis 427

effects: there exist extracellular xanthosine concentrations where initially uninduced 428

cells remained uninduced and initially induced cells remain induced. Only when the 429
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second and the third fixed point are very close can initially induced cells switch to the 430

uninduced state. Interestingly, this behavior is symmetric to the “switching on” in the 431

previous paragraphs, where the lower two fixed points needed to be about as close as 432

the upper two need to be now for “switching off”. 433

In other words, cells only change their metabolism to xanthosine if enough of the 434

latter is around, but after they have switched, this metabolic state is stable even if the 435

xanthosine concentration decreases to a certain extent. This stability explains what was 436

observed by Novick and Weiner [5] for the lac operon: when induced cells were 437

transferred into lower concentrations of lactose, they remained induced, even though 438

uninduced cells could not become induced at these concentrations. 439

Conclusion 440

In this paper, we propose a simple model for genetic circuits containing a membrane 441

transporter whose gene expression is, directly or indirectly, activated by its substrate. 442

We have shown that such a system can be bistable and thus work as a genetic switch 443

which reacts to the extracellular concentration of the relevant metabolite. This switch 444

has very useful biological features. First, coupling of the transporter with, for example, 445

an enzyme which metabolizes the transporter substrate creates a genetic switch that 446

enables short-term adaptation of the cell’s metabolism to its environment. Second, the 447

switch is stabilized by hysteresis effects when the extracellular substrate concentration 448

decreases, which explains previous experimental findings. 449

We have found that no bistability can emerge from the genetic circuit unless at least 450

one component has two binding sites for its activator. Additional binding sites or 451

cooperativity seem to increase the stability of the switch. In addition, simply knowing 452

the experimental switching concentration of xanthosine permits us, for example, to infer 453

the approximate value of the dissociation constant between the transcription factor 454

XapR and the inducer xanthosine. The value we infer is roughly one to two orders of 455

magnitude larger than what has been measured for LacI and IPTG [30], meaning the 456

interaction of XapR and xanthosine is rather weak. 457

Phase diagrams, showing for which parameters the system is bistable and for which 458

there is only the lower or the upper stable fixed point, could be calculated from 459

arguments made in [27]. However, the simulations showed that deterministic bistability 460

does not mean that bimodality occurs, which is why we have refrained from showing 461

such diagrams. Furthermore, the timescales in the problem could be investigated more 462

thoroughly, for example the dependence of the switching time on [c]a, but such an 463

analysis would probably need to account for the burstiness of transcription and 464

translation as well as for cell divisions, which is anything but straightforward. 465

All model parameters could be reasonably estimated despite the paucity of 466

experimental knowledge about the model system. The concentrations of mRNA, 467

protein, and xanthosine at the fixed points as well as all qualitative features are as 468

expected from similar systems and the few experiments on the xap circuit, which 469

suggests that the model captures the relevant components of the system correctly and is 470

able to describe its dynamics. Furthermore, the modeling results let us, to some extent, 471

understand why the biological system is constructed the way it is. By keeping the 472

model as minimal as possible, but still modeling every part explicitly with an 473

appropriate complexity, we can investigate the interesting features while still being able 474

to understand the influence of all parameters and their interplay intuitively. 475

With the framework given in this text, it should be straightforward to model other 476

promoters, regulatory pathways or enzymes and thereby adapt the model to other genes 477

and metabolites. Examples include lac, ara, and xyl, but we suspect that many if not 478

most metabolic processes involve the adaptation mechanism that we have investigated 479
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here, and that much can be understood about them through our model. This apparent 480

success demonstrates once more that even for broadly unknown systems, rigorous 481

physical modeling can potentially offer an efficient way to gain a very thorough 482

understanding of the behavior of the system. 483

Supporting information 484

S1 Text. The aforementioned further information. Discussion of 485

simplifications in the model, parameter estimation, elaborations on the results, and the 486

chemical master equation of this circuit. 487
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