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I. THEORY

A. Preliminary definitions

In these calculations, the structure of the membraneM is described by a set of embedding maps X : R2 → R3. We
use arbitrary local coordinates σ1 and σ2 on the membrane. The pull-back metric on the surface is gij = ∂iX

α∂jX
α

where the latin indices will refer to the coordinate system on the membrane, M, and the greek indices will refer to
the R3 embedding space and we use the Einstein convention (sum repeated indices). The measure on the membrane
is
√
g ≡

√
det gij . The curvature is described by the shape operator, and is defined as:

S ≡ −dXα ⊗ dnα, (1)

where d is the exterior derivative on M, and nα is the outward unit normal to the surface. The sum of the
principal curvatures is the trace of the shape operator, S ≡ tr S = gijSij , which is twice the mean curvature H,
and the Gaussian curvature is the determinant of the shape operator K ≡ det S = 1

2ε
k
i ε

l
j S

ijSkl, where ε ki is the
two-dimensional Levi-Civita symbol.

B. Helfrich-Canham-Evans theory

The membrane deformation free energy is described by the canonical theory of bilayer membranes, proposed
independently by Helfrich, Canham and Evans [1–3]:

E =
∫
M

d2σ
√
g
[

1
2kC (S − C)2 + kGK

]
, (2)

where the bending modulus kC is typically 10− 20 kBT [4] and kG is the Gaussian bending modulus. By the Gauss-
Bonnet theorem, the second term in the bending energy kGK contributes only a topological term to the free energy
and is therefore irrelevant for describing closed membranes (e.g. see Nakahara [5]). We also wish to note that the
Helfrich energy is functionally identical to the Area Difference Elasticity model (ADE) up to the first variation. The
effect of an area difference between the two leaflets of the membrane is to produce an effective spontaneous curvature.
Incorporation of the parameter C in the Helfrich model can therefore be interpreted to include the contribution of
ADE (more detail on this can be found e.g. in Seifert’s review of the mechanics of fluid membranes [6]). Note that
the 1

2kCC
2 term in the energy can be absorbed into the definition of the tension.

Shortly after this model was proposed, Jenkins [7] derived the Euler-Lagrange equations for the bulk of the
membrane in the presence of a constant external pressure. In a companion paper, Jenkins [8] and more recently
Steigmann [9] discussed more abstract models and the general constitutive relations relating force density and couple
to local curvature.

C. Membrane forces in the bulk

To derive the equations for local force balance, we introduce the local Lagrange multiplier α, which represents the
membrane tension. (The area of the membrane is essentially inextensible.) The constrained energy is [7, 10]:

E′ = E +
∫
M

d2σ
√
g
(
α− 1

2kCC
2
)
, (3)

where we have offset the tension by − 1
2kCC

2. We use the virtual work principle to derive the local forces (see, for
example, Landau and Lifshitz [11]):

0 = δE′ −
∫
M

d2s
√
g ~f · δ ~X, (4)

for mechanical equilibrium where ~f is an externally applied force required to cancel the elastic response, ~fint. The
derivation of the equilibrium equations is now quite straightforward and analogous to the result found by Jenkins
[7]. In the bulk of the membrane the internal elastic response force is

f⊥int = Sα− kC
[
∇2S − 2 (S − C)K + 1

2S
3
]
,

~f
‖

int = 0, (5)
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Figure S1: Panel A: The membrane M is defined by a series of embedding maps X : R2 → R3. The membrane surface is
locally parameterized in the coordinates (s1, s2). Panel B: At the boundary of the membrane Γ = ∂M, we define a set of

orthonormal vectors: the outward surface normal ~n, the outward boundary normal ~N and tangent ~T ≡ ~n× ~N . Panel C: A
membrane with three external forces applied. Dotted lines indicated contours Γ and Γ′. The external forces in these regions
can be computed with line integrals.

where ∇2 is the Laplace-Beltrami operator or, alternatively, the two-dimensional Laplacian on the curved manifold
M and ⊥ and ‖ denote forces normal to and in the plane of the membrane, repectively. These equations reduce to
those derived for constant pressure [7, 10] and are analogous to those derived for generalized theories [8, 9]. There are
several points to note about these equations. Since the membrane is assumed to be fluid in-plane, the elastic response
is significantly simplified. In the plane of the membrane, only potential-like forces can be supported [8], since shear
forces or torques normal to the plane of the membrane will induce flow in the membrane. Furthermore, any shape
can be supported by normal forces alone, resulting in a constant tension α. Consequently, we have ~f

‖
int = 0.

D. Membrane forces at the boundary

The approach for calculating these forces is exactly analogous to the calculation in the bulk. The mathematics
and results in this section are well known; see, for example, Refs. [12–16]. Let us define two additional unit vectors
in the plane of the membrane at the interface: ~N is the outward facing normal and the tangent vector is defined
~T ≡ ~n × ~N . When these projection vectors appear as a subscript they refer to projections of vectors, tensors, or
operators. For instance:

∇N ≡ ~N · ~∇, (6)

STi ≡ ~T · S · ~ei, (7)

AN ≡ ~A · ~N, (8)

where ~ei is the unit vector defined with respect to coordinate si.
When the membrane has a boundary, the principle of virtual work is

0 = δE′ −
∫
M

d2s
√
g ~f · δ ~X

−
∮
∂M

ds
[
~F · δ ~X − LN~n · ∇Nδ ~X

]
, (9)

for mechanical equilibrium, where ~F is the internal force density on the boundary and LN is the internal normal
couple on the boundary required to put the membrane into mechanical equilibrium. The forces are conveniently
written in terms of the membrane stress tensor. The differential force applied on the boundary of a differential
region of membrane by its neighbor is

d~F = ~F ds = ~N ·Σ ds, (10)

where ds is the length of the boundary and ~N is outward facing normal to the differential region (in the plane of the
membrane.) See Fig. S1. The internal force density at a membrane boundary is therefore

~Fint = − ~N ·Σ, (11)
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and the canonical analysis leads to an expression for the internal force density

~fint = ∇ ·Σ. (12)

The variational principle can be used to show that the stress tensor is

Σjα =
([

1
2kC (S − C)2 + α

]
gij − kC [S − C]Sij

)
∇iXα − nα kC∇j (S − C) , (13)

for a Helfrich membrane. The membrane couple is

LNint = [kC (S − C) + kGSTT ] . (14)

E. Total force balance

Noether’s theorem guarantees that the total internal force and torque must cancel. (The mathematics and results
in this section are well known in the literature [12–16].) The same must be true for the total external force and
torque. We will develop the force cancellation explicitly since it will prove quite useful for computing external forces.
The total internal force for a membrane with a boundary is

~Fint =
∫
M

d2s
√
g ~fint −

∮
∂M

ds ~N ·Σ = 0, (15)

where we have integrated by parts to show that the forces cancel. This formalism can be quite convenient for
computing external forces applied in a localized region of the membrane M′. Force cancellation implies that the
integrated external bulk force is equal to minus that on the boundary Γ ≡ ∂M′. The total bulk external force must
be equal to the total internal force on Γ:

~Fext ≡
∫
M

d2s
√
g ~fext = −

∮
Γ

ds ~N ·Σ. (16)

These concepts are illustrated graphically in Fig. S1. Consider a fluid lipid bilayer membrane with forces applied
as shown in the Figure. The total external force F1 applied to the membrane can be equivalently calculated as an
integral over an areal region M′ or as an integral on the bounding contour Γ:

~F1 = −
∫
M′

d2s
√
g ~fint = −

∮
Γ

ds ~N ·Σ. (17)

The total external force in the region M′′, bounded by contour Γ′, can be computed similarly:

~F1 + ~F3 = −
∫
M′′

d2s
√
g ~fint = −

∮
Γ′

ds ~N ·Σ. (18)

There are two advantages to calculating the external force as a contour integral rather than an integral over an areal
region:

1. The internal force ~Fint on the boundary has been integrated relative to ~fint therefore it is one order lower in
derivatives (third order instead of fourth order) making it more tractable numerically.

2. We may determine the external force without detailed knowledge of the structure of the membrane in the areal
region; as long as the boundary has been well-determined experimentally, we may measure the force on the
region internal to that boundary.

F. Lagrange multipliers

In the paper, we loosely refer to tension, pressure, and spontaneous curvature as Lagrange multipliers. In me-
chanics, treating tension and pressure as Lagrange multipliers is justified since the area and the volume are very
close to conserved (see Fig. S8, panels A and B). (The area expansion modulus of a lipid membrane is much larger
than kCS

2.) The justification for treating these quantities as Lagrange multipliers in statistical physics is more
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subtle. Even though the membrane is inextensible microscopically, at low tension, volume, area and curvature are
hidden in thermal fluctuations leading to an entropic (rather than enthalpic) response to macroscopic area expansion.
Furthermore, the spontaneous curvature is certainly not strictly a Lagrange multiplier since the total curvature is
not conserved even from a purely mechanical (non-thermal) standpoint. The justification for invoking Lagrange
multipliers is that they yield the same first-order variations of the energy (forces) as the rigorous theory. It is only
at the second-order variation of the energy that the Lagrange multipliers fail to describe the variation of the energy
correctly. For example, to calculate the fluctuations around an equilibrium configuration, the Lagrange multipliers do
not suffice. An instructive example is the sphere. In the reservoir (Lagrange multiplier) theory, vesicles are unstable
to radial expansion. This is the canonical nucleation problem for bubbles forming in liquid. On the other hand, if
the vesicle constraints are treated correctly, these radial expansion modes are infinitely stiff in the mechanics theory.

G. Derivatives and thermal noise

One important concern about the conformational force computations that we have proposed in this paper is that
these computations depend on the third derivative of the experimentally determined structure of the membrane. To
what extent does experimental noise impair our ability to make force computations?

We can estimate the effect of thermal noise on the force determination in the linearized theory. If we ignore the
determination of the Lagrange multipliers, it can be shown that the force sensitivity of this technique scales inversely
with the spatial sensitivity. This relation arises for the same mathematical reasons as “Heisenberg Uncertainty” in
wave mechanics.

The equal partition theorem predicts that the error in the integrated force due to thermal fluctuations is

δF ∼
(

2π2 kT kc C
3 ` 3

) 1
2

, (19)

where ` is the spatial resolution and C is the circumference of the region of interest. We expect this expression to
be an over estimate of the error since this term is the estimate of the error for the highest derivative term in the
force, which is not typically the dominant term in the force. (For instance, in a tether, this term is negligible.) We
can estimate the size of this error for the tethering experiments by setting the resolution equal to the radius of the
region of interest:

δF ∼ 0.1 pN×
(

kc
20kT

) 1
2
(

1µm
R

)1

, (20)

which is roughly consistent with our force computations using structures determined from single images, rather than
averaged structures. Higher force sensitivity can be achieved by reducing the resolution1 of the force computation.
To write this expression in a form reminiscent of the Heisenberg Uncertainty Principle, we can write:

δF δX ∼ 0.1 pNµm×
(

kc
20kT

) 1
2
. (21)

II. COMPUTATIONAL DETAILS

A. Spline representation

We implemented the vesicle spline representation with the MATLAB command interp1 and the v5cubic option.
This interpolation scheme was chosen because it was convenient to implement in MATLAB. It possesses a number

1 Reduced resolution implies increasing R.
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of desirable features: (i) The cubic splines were constructed with C2 smoothness2. (ii) The interpolation method
implemented by the v5cubic option makes use of basis functions with modest support3.

B. Calculation of curvature and forces

To implement the calculation of the membrane bending energy, we computed the curvatures from the spline
interpolation by finite difference, then numerically integrated the energy. To compute vertex forces, we used a finite
difference technique: we deformed the contour by perturbing vertices in the direction of the surface normal and then
used Eq. 4 to compute the forces. To compute the integrated forces, we used the generalized Stokes theorem (Eq. 15)
and a finite difference strategy of moving the membrane region, defined by the contour, by a slight amount ∆z in
the axial direction and computing the change in the energy ∆E, giving us a force F = ∆E/∆z. A notable benefit of
finite-difference numerical differentiation of the energy is that it helps to avoid computation of the third derivatives
present in Euler-Lagrange shape equations for force density.

C. Vesicle tracing

In a typical experiment, fifty image frames were captured at each step in an extension series. An extension series
usually consisted of between fifty and sixty steps, split between outward and inward movement, with a step size
of roughly 1.5 µm. The integration time was chosen to give sufficient statistics to allow each frame to be traced
independently. For the calculations in the main text, we constructed an average image from all the image frames at
each step in the extension series. (The additional frames were captured for the analysis of the fluctuations [17].)

The vesicle conformation is represented by a cubic spline. The control points for a typical image are shown in
panel A of Fig. S2. The positions of the spline control points in the direction parallel to the membrane contour
were chosen by hand for each extension. We attempted a number of automated procedures for choosing the contour
length positions of the points but these algorithms were difficult to implement in a robust manner.

2 Continuous up to the second derivative. This property was helpful for ensuring accurate finite-difference approximation of the curvature
when computing forces.

3 The interpolated curve over each segment depends on the positions of the two nearest neighboring points on each side. Other options
with larger or smaller supports produced curves that differed more noticeably from the vesicle contours.
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Figure S2: Capturing the membrane conformation: A fluorescence image of a vesicle from a force-extension series. The
vesicle conformation is represented as a cubic spline. The positions of the control vertices are fit from the fluorescence profile.
The red vertices were traced from the fluorescence image shown in the figure; the blue vertices correspond to a trace of the
mean of the fifty images at this extension. The vesicle is assumed to be axially symmetric. The localized fluorescence in the
body of the vesicle is the result of an internal vesicle. The increase in external osmotic pressure often leads to a budding
transition. Note also that the beads are not fluorescent themselves, they appear fluorescent due to the aggregation of lipid
there.
(B) Fitting control point positions. The positions of the control points normal to the contour were fit to the fluorescence
profile (red curve), employing an empirical model (blue curve). The intensity values shown here were taken from a one
dimensional slice of the image, shown as a blue dotted line in panel A.

The positions of the control points in the direction normal to the membrane contour were fit to the fluorescence
profile, employing an empirical model. A good model for the fluorescence profile was found to be a convolution of a
structure function with a Gaussian point spread function:

Ij(ρ; ρ0) = ΨPSF ⊗ I0(ρ; ρ0), (22)

where I is the intensity at vertex j at position ρ, defined as the distance, normal to the surface, to the axis of
symmetry. ρ0 is the position of the membrane and I0 and ΨPSF are the structure function and Gaussian point spread
function respectively. The structure function is

I0(ρ; ρ0) = Aδ(ρ− ρ0) +Aδ(ρ+ ρ0) +BΘH(ρ+ ρ0)ΘH(ρ0 − ρ), (23)

where A and B are constants, δ is the Dirac delta function, and

ΘH(x) =

{
1, x ≥ 0
0, x < 0.

(24)

is the Heaviside step function. The Gaussian point spread function is defined to be

ΨPSF(x) = exp(−x2/2b2), (25)

where b is the point spread width. We have idealized the in-plane membrane as an infinitely thin surface, normal to
the plane of focus, with a delta function source of fluorescence. The out-of-focus membrane is represented as a region
of uniform intensity (the Heaviside function). A number of more elaborate (non-empirical) models were implemented
but this model led to the best approximation of the observed fluorescence profile. The fit to a typical fluorescence
profile is shown in panel B of Fig. S2.

In principle the force measurement should not depend on the vesicle representation (the parallel positions or
number of the spline control vertices ). This representation independence is shown in Fig. S3. Two independent
tracings of the vesicle images show that the results for the force on the vesicle do not depend sensitively on the
positions of the spline control points, as asserted.
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Figure S3: The conformational force is independent of the tracing representation. The figure shows two independent
tracings of the vesicle extension series; the first tracing is the data shown in the text. It is clear that the two tracings are in
quantitative agreement with one another, confirming that our results are not sensitive to a particular choice of spline control
points.

D. Proximal Equilibrium Approximation

Analysis of the fifty image frames at each step in the extension and retraction series yielded a traced contour
representing the axisymmetric shape of the vesicle. After determining the membrane structures, the Lagrange
multipliers (pressure P , tension α, and spontaneous curvature C) are determined. The condition of (approximate)
mechanical equilibrium was used to calculate these three multipliers.

In mechanics, there are three equivalent ways of expressing this equilibrium: at every point on the membrane
(i) the energy associated with normal displacement of membrane is minimized, (ii) the force is zero, and (iii) the
normal displacement to the equilibrium position is zero. Without fluctuations, all three of these statements are
exactly equivalent. Therefore, for conformations that are dominated by deterministic mechanical forces rather than
fluctuations, all three formulations of equilibrium should be equivalent. When fluctuations are important, one must
consider the minimization of the free energy which includes the contribution from fluctuations [17].

Although these approaches for determining proximity to equilibrium appear equivalent, we argue that, from an
experimental standpoint, using the normal displacements as the objective function (the “distance objective function”)
is the most powerful. The first advantage of the distance objective function is that the position of vertices is
determined in the experiment, not the force or energy at each vertex. It is therefore most natural to describe the
experiment in terms of the observables. But most importantly, the distance objective function is least susceptible
to high-frequency (short-contour-length) noise. For configurations that are close to equilibrium, the distance can be
computed by multiplying the vertex forces by the stiffness matrix:

ψ = −K−1f⊥. (26)

High frequency modes, associated with uncorrelated error in determining the positions of the vertices, can compromise
the vertex forces, which depend on a fourth-order derivative of vertex position. But, the error-associated forces are
canceled by the forces at neighboring vertices4. In essence, to determine the Lagrange multipliers, we wish to
high-pass filter these forces to remove the error. Computing the estimated equilibrium displacement provides this
desired filtering. High-frequency modes are stiff (have large stiffness eigenvalues) and are therefore suppressed in the
estimated equilibrium displacement.

4 The sum of vertex forces, the integrated force, is rather insensitive to the high-frequency noise.



9

A particular choice of Lagrange multipliers produces a trial configuration of the membrane with control vertices
displaced from their positions in the observed experimental shape. These displacements from corresponding vertices
in the trial and observed membrane shapes are the estimated equilibrium displacements. To compute the Lagrange
multipliers, we apply the Proximal Equilibrium Approximation: we calculate the vertex estimated equilibrium dis-
tances, ψi, and then minimize the sum of the squares of the equilibrium distances over the entire contour (excluding
the regions near the bead attachment points) with respect to the Lagrange multipliers. (This minimization with
respect to the spontaneous curvature is illustrated in Fig. S4.) The outcome of the Proximal Equilibrium Approxi-
mation analysis is the values of P , α and C as well as the forces at each vertex on the membrane, calculated solely
from the shape of the membrane and the membrane bending modulus.
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Figure S4: The determination of C. The Lagrange multipliers are determined by the Proximal Equilibrium Approximation:
the sum of the squared equilibrium displacements (ψi) are minimized with respect to a three-dimensional parameter space
corresponding to (α, p, C).
Panel A. The plot shows the

P
i ψ

2
i landscape along the direction of smallest curvature, parameterized by C.

Panel B. The estimated equilibrium shape in the neck for three C values corresponding to the vertical lines in Panel A is
depicted. The green curve, corresponding to C = 0.2 µm−1 (close to the optimal C value), qualitatively matches the observed
symmeterized conformation (black).

Step by step, the Proximal Equilibirum Approximation is carried out as follows:

1. The observed membrane shape is represented as a discretized mesh: a cubic spline with an associated set of
vertices serving as anchor points. We fix the vertices near the points of contact with the trapped beads, where
forces are applied.

2. We then compute the vertex forces fi as a function of the Lagrange multipliers at each vertex i.

3. We calculate the estimated equilibrium displacement ψi at each vertex i. For configurations that are close to
equilibrium, the distance can be computed by multiplying the vertex force by the stiffness matrix:

ψ = −K−1f⊥, (27)

where K is the stiffness matrix computed by taking the second variation of the Helfrich energy, including
Lagrange Multipliers.

4. We minimize the sum of the squares of the equilibrium displacements for all non-fixed vertices to determine
the Lagrange multipliers.

Note that this algorithm is applied once to find ψ, and is not applied recursively to determine the
minimal configurations. ψ is therefore a linear estimator to the equilibrium configuration. A more
complete version of Fig. 2 from the main text, describing the Proximal Equilibrium Approximation, is shown in
Fig. S5. Panel B shows the vertex forces for the vesicle depicted in Fig. S2. Force balance in the body of the vesicle is
achieved by equilibrium between pressure and tension, whereas in the neck of the vesicle force balance is dominated
by equilibrium between tension and elastic forces. The corresponding estimated equilibrium displacements are shown
in Fig. S5, panel C.
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Figure S5: The Proximal Equilibrium Approximation.
(A) Vesicle conformation: The axisymmetric vesicle conformation is represented by a cubic spline. The control vertices
are drawn as points along the contour. In the panel inset, we show a schematic diagram of the vertex force, fi, the estimated
equilibrium configuration (dotted line), and equilibrium displacement, ψi, of vertex i, defined as the normal displacement to
the vertex equilibrium position (gray vertex). The summed force at vertex i, F i

z , is the sum of the z components of the vertex
forces in the dark-gray region made by excluding vertices with z < zi. F

i
z is the total force applied by the right hand side of

the vesicle in the z direction. In the proximity of the bead attachment points, the membrane structure cannot be resolved with
sufficient precision to make reliable force estimates and these regions (light gray on the left and right of both panels) are not
analyzed when solving for the pressure, tension and spontaneous curvature of the membrane with the Proximal Equilibrium
Approximation.
(B) Vertex force. The vertex force fi is the sum of components from membrane elasticity, tension, pressure, and spontaneous
curvature (SC). In equilibrium, the forces should balance (up to thermal fluctuations) and indeed the total vertex force (black
curve) is close to zero for the optimized Lagrange multipliers. In the body of the vesicle, force balance is dominated by tension
(red curve) acting to contract the vesicle radius, and pressure (blue curve) acting to expand the radius. In contrast, in the
vesicle tether, force balance is dominated by the competition between elasticity (green curve) acting to expand the tether
radius, and tension (red curve) acting to contract the tether radius. The induced spontaneous curvature acts principally in
the neck of the vesicle where there is a transition between the two regions.
(C) Estimated displacement to equilibrium. Although equilibrium implies force balance, it is difficult to determine
the Lagrange multipliers from force balance directly since the vertex force is inherently noisy. Multiplying the vertex force
fi by the inverse stiffness matrix gives the equilibrium displacement ψi, the estimated spatial distance to the equilibrium
configuration at vertex i. This calculation has the effect of locally averaging the vertex force and suppressing noise (and
thermal fluctuations). The distance to equilibrium along the normal to the membrane surface is shown in panel C. We
determine the optimal Lagrange multipliers by minimizing the sum of squares of the vertex equilibrium displacements.
(D) Summed force: The summed force is the total force applied by the right hand side of the vesicle. In equilibrium,
this force can be computed from the boundary of the region; it is independent of the structure of the internal region. This
property is of great importance since it implies that we need not resolve the region proximal to the bead attachment. The
total integrated force (black) is approximately constant throughout the body of the vesicle as expected, since the forces are
applied only at the poles of the vesicle. The force is also shown decomposed into individual contributions from pressure,
tension, spontaneous curvature and elasticity with colors as given in panel B.

1. Relation to the techniques employed by Baumart et al.

Baumgart and coworkers have also performed direct analysis of axisymmetric membrane conformation in order
to determine material parameters and the line tension in multiphase vesicles [18]. In contrast, we have proposed
that forces can be computed directly from membrane structure. If the pressure, tension, and spontaneous curvature
are unknown, we have proposed that in some cases they may be computed by making an ansatz about the location
of applied forces and applying the Proximal Equilibrium Approximation to determining these Lagrange Multipliers.
Both PEA and the work of Baumgart et al. [18] determine Lagrange Multipliers by comparing the observed structure
to a minimal structure.

The Baumgart strategy is to compare the minimized structure of vesicles as a function of the material parameters
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to the observed vesicle structure acquired by fluorescent microscopy. The minimal vesicle structures are computed via
direct integration of the axis-symmeterized Euler Lagrange equations. The observed and computed structures are fit
by comparing the longitudinal-tangent angle. Cleary the proposed scope of our proposed method for conformational
force computation is greater, but can the use of the PEA to determine the Lagrange Multiplier be viewed as an
extension of the Baumgart et al technique?

Certainly from a qualitative stand point, both techniques are similar since both quantitatively analyze the observed
structure. But the direct extension of the Baumgart technique presents a number of problems. (i) The Euler-
Lagrange equation can only be integrated when the observed structure is axis-symmetric. For the analysis of the
tethered structures, this is sufficient, although the technique that we have described can be extended to conformations
without symmetry. (ii) Furthermore, the direct integration of the Euler-Lagrange equations to compute tethered
vesicles is numerically problematic, as has been discussed previously [19]. In fact, the use of the Baumgart technique
could only be used to analyze a small subset of the structures described in this paper. The numerics described in
this paper are based finite-difference techniques which are neither limited to small deformation, nor limited to the
description of axisymmetric membrane conformations.

Why does the PEA use a linear estimator to the minimal conformation instead of the minimal conformation, as
described by Baumgart et al? (i) The linear estimators can be computed much faster that the minimal structure.
For shapes close to equilibrium—small perturbations away from equilibrium, the linear estimator is sufficient. (ii)
The use of the linear estimator gives a clear relation between vertices in the observed and minimized shape, implying
that is is straightforward to define a measure that quantifies the distance to equilibrium.

We compare vertex positions between observed and minimal structures because the membrane position is (i)
directly observed and (ii) is less susceptible to noise. The comparison of the observed and minimal structures in the
Baumgart et al. paper is performed in terms of the longitudinal-tangent angle. For non-axisymmetric shapes, there
is no unique surface tangent, but presumably this technique could be generalized using a normal, which is unique,
instead of a tangent.

2. Applicability of the Proximal Equilibrium Approximation

To apply the Proximal Equilibirum Approximation, the conformation must be close to mechanical equilibrium,
rather than fluctuation dominated. The key question is: are the fluctuation-induced forces larger than the mechanical
forces that result in the mean conformation? Theoretical calculations5 suggest that this question is resolution
dependent but that structures that are reproducible (not fluctuation dominated) do give meaningful results when
the Proximal Equilibirum Approximation method is applied. The effect of thermal fluctuations on the consistency
of the Proximal Equilibrium Approximation can be tested directly: we generated membrane tracings from both
individual image frames as well as from the mean of the fifty images at each step in the extension/retraction series.
The analysis of traces from individual image frames results in a distribution of force measurements whose mean can
be taken as the value of the force at that step in the experiment. The mean force from the 50 individual tracings
varied by an average of 0.07 pN from the value of the force calculated from the traced average image, a value that
is small in comparison with other sources of error in the experiment.

A second limitation of the Proximal Equilibrium Approximation is the approximate degeneracy of some membrane
conformations with respect to the Lagrange multipliers. Perhaps the most obvious example is the sphere. The
Proximal Equilibrium Approximation essentially solves for the Lagrange multipliers by balancing the elastic and
constraint forces. For the sphere, there are no elastic forces to balance6. Since the elastic forces vanish, there
is a two-dimensional continuum of Lagrange multipliers that satisfy the force balance equations. Obviously, the
sphere is a special case, but shapes at the tethering transition point appear to have only a weak dependence on the
spontaneous curvature. Uncertainties in the spontaneous curvature appear to dominate the error in conformation
force computation. (See Fig. S8.)

A final limitation of the Proximal Equilibrium Approximation is the necessity of guessing and excluding points
where external forces are applied when computing the Lagranger multipliers. While the location of the applied forces
is obvious in the analysis of deformed vesicles, for biological examples, the position of the applied forces may not be
known. Indeed, in many examples, the contacts may be so frequent as to not permit large, force-free regions to be

5 By perturbing around a flat configuration, we can analyze the contribution of thermal fluctuations to the measured forces. As the
resolution of the vertex grid is increased, the force resolution is reduced.

6 The fact that the elastic force vanishes for the sphere isn’t obvious. The easiest way to see this is to compute the elastic energy of a
sphere. In the energy, the factors of R (the radius) from the area and curvature cancel leading to an energy that is scale independent.
The radial forces are therefore zero.
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identified and analyzed7. On-the-other-hand, in biological applications, the pressure can be completely neglected and
the tension and spontaneous curvature may be regulated by the cell or determined using other techniques [20]. If the
Lagrange multipliers are known, it is straightforward to compute membrane forces without applying the Proximal
Equilibrium Approximation.

E. Error computation for the conformational force

The error in the force computed from the conformation of the membrane was estimated in two ways in our analyses.
One method consists of tracing each of the 50 images at each step in the extension/retraction series, applying the
Proximal Equilibrium Approximation and then analyzing the resulting distribution of force, pressure, tension and
spontaneous curvature measurements. This is the method used to generate the r.m.s. errors on the force shown in
the main text.

Another method consists of calculating confidence intervals for the Lagrange multipliers and then deriving the
error in the force based on those uncertainties. This can be done by standard methods; see, for example, Bevington
and Robinson [21], whose analysis we follow here. The Proximal Equilibrium Approximation amounts to a non-linear
least squares fit of the membrane contour given values for the pressure, tension and spontaneous curvature to the
observed membrane contour. The χ2 goodness-of-fit parameter in the Proximal Equilibrium Approximation is:

χ2 =
∑
i

1
σ2
i

[yi − yobs]
2
, (28)

where σi is the uncertainty in the position of vertex i in the direction normal to the membrane contour, yobs is the
observed position of the vertex in the normal direction and yi is the position of the ith vertex given parameter values
P , α and C. The uncertainty in the normal positions, σi, was essentially constant for each of the vertices in a given
image from our experiments. In the neighborhood of the minimum χ2 value found by the Proximal Equilibrium
Approximation, we may use a Taylor expansion of our fitting function, yi, to find:

∆aj = εjkβk (29)

where ∆aj is the uncertainty on the jth parameter, εjk is the error matrix and βk is the derivative of χ2 with respect
to the kth parameter. This was the technique used in generating the errors shown as dotted lines on the plots of
pressure, tension and spontaneous curvature in Fig. S8 below. More generally, after finding the optimal point in χ2

space, we may calculate the χ2 values in the neighborhood of this point and find contours in parameter space where
χ2 increases by a given amount to find arbitrary confidence intervals on the parameters. We found that using the
χ2 method of estimating confidence intervals on the parameters predicted larger errors than the r.m.s. method from
the 50 images at each step in the experiment.

7 In the experiments described in this paper, the deformation incurred by tethered vesicles is so large that the body of the vesicle cannot
be treated as a reservoir with constant Lagrange multipliers. In most biological systems of interest, the size of the remodeled regions
is small in comparison with the size of the cell. For cellular-scale membrane deformations, membrane force computations are unlikely
to be of interest since it is not the membrane mechanics which dictates the shape, but the underlying structure of the cytoskeleton.
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III. EXPERIMENTAL DETAILS
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Figure S6: Panel A: The mean PSD voltage plotted versus extension number for a three extension data set. The trap
deflection (and force) are proportional to the PSD voltage. The last three circled points are the zeros for the experiment
with beads unattached to the vesicle. The initial points on the trace correspond to beads bound to the vesicle, but without
extension. Binding the vesicle causes an anomalous force due to scattering of light. See discussion in the caption of Fig. S7.
Panel B: The voltage variance versus extension number. The voltage variance is inversely proportional to the trap stiffness.
Note first that the voltage variance is stable relative to its magnitude throughout the extension. (The data has been plotted to
accentuate variations by not including zero on the y axis.) As the force is increased in the first extension, the voltage variance
is increased slightly, corresponding to a slight reduction in the trap stiffness, as would be expected due to the large-deflection
non-linearity in the trap. Two larger features are visible in the voltage variance at extension numbers 65 and 110. These
features are the result of changes in the local structure of the vesicle surrounding the bead. See discussion in the caption of
Fig. S7.

1. Vesicle-induced force artifacts

Although the vesicle does not significantly affect the trap stiffness, it does affect the DC offset of the PSD. If the
trap is zeroed without contact with the vesicle, the presence of the vesicle in the beam scatters light, leading to an
offset voltage at the PSD. It was therefore necessary to assume a zero on bead contact. The beads were bound to
the membrane by squeezing the vesicle between the trapped beads.

We also discovered that changes in the vesicle conformation in proximity to the bead could also lead to force
artifacts. The evidence for this effect is discussed in Fig. S7. Data sets where the vesicle tethered on the pole
opposite from the force sensor did not appear to show these anomalous forces, presumably because the local vesicle
conformation was not appreciably changed by deformation.

We also note that the trapping force is susceptible to drift in the sub-piconewton regime. Due to the competing
effects of drift and systematic uncertainties related to membrane-induced beam scattering, the most meaningful com-
parisons between the conformational force and the trapping forces are differences between conformations separated
by a few extension steps since the membrane-induced scattering is similar and the drift between adjacent steps is
smaller than between measurements taken ten to twenty minutes apart. As a practical matter of reducing the influ-
ence of drift and low-tension vesicle structure induced force anomalies, the DC offset was calculated by minimizing
the difference between the trapping force and conformational force at high force.
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Figure S7: A limitation of measuring trap forces in the presence of a vesicle. The vesicles themselves scatter the
trapping beam, which can result in the detection of anomalous forces. In the figure above, we depict the most compelling
evidence for this effect. At the beginning of this data set, an internal vesicle is bound to the lipid aggregate surrounding the
bead. Between extension numbers 65 and 66, the vesicle is released and diffuses into the body of the outer vesicle. This release
causes a precipitous drop in the detected trap force (black curve). For reference purposes, we have also plotted the force
calculated from the membrane conformation (blue curve). A similar offset in force is observed upon attachment of the force
detection bead to the vesicle. Rigorously, this implies that at best we can detect relative forces, not absolute forces. Similar
anomalies occur when the vesicle becomes tethered at the detection bead, due to a dramatic change in local vesicle structure.
The most reliable force traces resulted from vesicles tethering at the extension bead. In spite of these complications, the trap
stiffness was not significantly affected by the vesicle.
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IV. ADDITIONAL DATA

In this section, we provide a more extensive presentation of the experimental data. We present both the vesicle
structures and the Lagrange multipliers computed for the extension series shown in the main text. In Section IV B,
we present force-extension data from other vesicle extension series.

In Fig. S8, we show a complete set of traced membrane conformations for the vesicle force extension curve discussed
in the main text. Under extension, the vesicle undergoes a shape transition to a tethered conformation. The body
of the vesicle is supported by tension-induced contractive forces which balance the outward force of pressure. But,
as the radius of curvature shrinks at the tether neck, the tension forces increase as R−1, overcoming the outward
pressure. The tether neck radius shrinks until the outward-acting elastic force, which scales like R−3, stabilizes the
conformation. This force cancellation is illustrated explicitly in Fig. S5 in Section II D.
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Figure S8: Tension, pressure and spontaneous curvature of a tethered vesicle. In this figure we plot the estimated
pressure p, tension α and spontaneous curvature C as a function of extension number for an extension (pink region) and
contraction (blue region) of a vesicle. The volume V , area A and integrated curvature S are also shown. Panels A and B:
In the top panes of Panels A and B, the apparent volume and area of the mean conformation are plotted versus extension
number. The volume and area of the membrane are fixed, therefore the change in apparent volume and area upon extension
and contraction is the result of volume and area hidden in fluctuations from the mean, cylindrically-symmetric conformation.
In the lower panes of Panels A and B, the vesicle pressure and membrane tension are plotted versus extension number as
determined by PEA, respectively. The pressure and tension rise steadily with tether extension and are peaked, as expected,
at the maximum extension.
Panel C: The Integrated curvature and spontaneous curvature as a function extension number. The spontaneous curvature
is predicted to be a linear function of the integrated curvature by the ADE theory. This linear relationship is not observed
and explanations for the failure of the ADE model to predict the spontaneous curvature are discussed in the text.
Panel D: The vesicle conformations. In the figure above we show the symmeterized mean vesicle conformations with the
corresponding extension numbers for the data analyzed in the text.

A. Lagrange multipliers

As described in Sect. II D, the Lagrange multipliers for each configuration are determined by applying the Proximal
Equilibrium Approximation. Although we refer to these quantities as Lagrange multipliers, they have a simple
physical interpretation: P , α, and C are the pressure, tension, and spontaneous curvature respectively. From a
macroscopic mechanics perspective, the pressure and tension are essentially constraint forces since the membrane
area and volume are essentially inextensible at the forces applied in this experiment. Spontaneous curvature is more
subtle. Two important effects contribute to the spontaneous curvature: (i) the number of lipid molecules in each
leaflet relative to the leaflet area, and (ii) asymmetries in the composition or solvent environment of the two leaflets.
The Area Difference Elasticity model (ADE) describes how the leaflets expand and contract in order to accommodate
the area difference between bilayers [6]. We found that the values of all three of the Lagrange multipliers evolved
with the vesicle conformation. These results are shown in Fig. S8 where the Lagrange multipliers are plotted as a
function of the extension number. In Fig. S9, we plot the effective constitutive relations for the vesicle.
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Figure S9: Effective constitutive relations for a tethered vesicle. In this figure we plot force versus length, tension
versus area, pressure versus volume and spontaneous curvature versus integrated curvature for the vesicle shown in the main
text. The black points indicate measured values and the blue regions show the corresponding errors in the ordinate variable.
We note that the error in the right-most points on the the tension and pressure plots, which appear here to be small and
approximately constant, are actually dominated by the errors in area and volume, respectively, which are not shown. The
predicted theoretical curve according to Eq. 30 (which did not require a fit) is shown in red for C versus integrated mean
curvature.

1. Pressure and tension

At the beginning of the extension (the end of the retraction) in Fig. S8, there is a steep rise (drop) in the apparent
volume and area of the membrane contradicting the claim that the vesicle volume and area are incompressible. This
is entropically induced elasticity: although the actual volume and area of the membrane are nearly incompressible,
some volume and area are hidden in the thermal membrane undulations. In Fig. S9, the fluctuation-dominated
regime is clearly visible, corresponding to the “constant” tension and pressure regimes. In the high-tension limit,
little membrane remains in membrane undulations and the tension and pressure can be interpreted as constraint
forces. This regime is characterized by the constant area and volume at high tension as shown in Fig. S9.

2. Spontaneous curvature

The evolution of the spontaneous curvature is perhaps the least intuitive and understood of the Lagrange multi-
pliers. The ADE theory predicts the dependence of spontaneous curvature on membrane deformation [6, 22, 23]:

C = −KADE (〈S〉M − S0) , (30)

where KADE is a non-local bending modulus and

〈S〉M ≡ SA
−1 = A−1

∫
M

d2σ S, (31)
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is the mean summed curvature over the deformed vesicle and S0 is a constant. If the membrane is initially equilibrated
by the slow processes of lipids flipping between leaflets, we would expect S0 to be zero for the undeformed vesicle.
In Fig. S9, this simple linear dependence on the mean summed curvature is not observed.

Unfortunately, there are a number of important considerations that may complicate the interpretation of the mea-
sured spontaneous curvature. (i) The relative error in the determination of the spontaneous curvature is larger than
the other two Lagrange multipliers. (ii) In the fluctuation-dominated regime, the Proximal Equilibrium Approxima-
tion is problematic since the thermal undulations are large. Furthermore, the mean summed curvature reported in
Fig. S9 does not account for the curvature in fluctuations, whereas mean summed curvature in Eq. 30 does include
fluctuations. Like the membrane area, a considerable amount of the curvature is in membrane undulations at low
tension. The summed mean curvature in the averaged conformation becomes more negative as the membrane is
deformed, but as the tension is increased with membrane deformation, the curvature in undulations becomes less
negative as it approaches zero. Therefore, the effect of entropy makes the interpretation of the dependence of the
spontaneous curvature on the mean summed curvature problematic. (iii) Finally, there is also an important experi-
mental consideration with regards to Eq. 30. This prediction depends on the assumption that the number of lipids
in each bilayer is constant. Although the process of lipid transfer between leaflets is thought to be too slow to affect
our experiments, all the vesicles in our experiments were functionalized and the osmotic pressure was lowered signif-
icantly, inducing budding transitions in many of the vesicles. These transitions may lead to defects in the membrane
wall that could affect the lipid number either by allowing faster interchange between leaflets or by the opening of
small, partially budded features on the membrane surface. Also, the effect of the optical bead interaction with the
membrane cannot be ignored. In our experiments we observed the build up of fluorescence around the beads as the
experiment progressed. While the fluorescent lipid may have originated from small vesicles in solution, it may also
have been aggregated from the body if the vesicle itself, upsetting the fine balance of the lipid number in the body of
the vesicle. Although it is difficult to draw any definite conclusions from the spontaneous curvature data, this data
suggests that we may still not understand the nature of spontaneous curvature at physiological tensions.

B. Other extension series

In this section we present force measurements from other vesicles that were not included in the main text. In each
plot, the red curve is the force measured from the optical trap and the blue curve represents the force measured from
the conformation of the membrane using the Proximal Equilibrium Approximation.
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Figure S10: Data set 2: Anomalous forces due to light scattered by the membrane itself are apparent in the first few steps
of this extension in the trap force; see Fig. S7 and discussion for more details. Data set 3: Anomalous forces due to light
scattered by the membrane itself are apparent in the trap force. We found that data sets where the vesicles tethered on the
extension side resulted in the best quantitative agreement with the conformational force. This is probably a result of the
dramatic membrane conformational changes at the tethering pole which, in turn, lead to changes in the membrane induced
scattering. Data set 4: This figure shows excellent agreement between the trap and conformational force. Data set 5: This
figure shows an extreme example of the anomalous trapping forces induced by large-scale membrane conformational changes
at the force sensor bead. Data set 6: This figure shows excellent agreement between the trap and conformational force for
higher forces. Data set 7: This figure shows excellent agreement between the trap and conformational force.
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