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Cells adapt to environments and tune gene expression by control-
ling the concentrations of proteins and their kinetics in regulatory
networks. In both eukaryotes and prokaryotes, experiments and the-
ory increasingly attest that these networks can and do consume bio-
chemical energy. How does this dissipation enable cellular behaviors
unobtainable in equilibrium? This open question demands quanti-
tative models that transcend thermodynamic equilibrium. Here we
study the control of a simple, ubiquitous gene regulatory motif to
explore the consequences of departing equilibrium in kinetic cycles.
Employing graph theory, we find that dissipation unlocks nonmono-
tonicity and enhanced sensitivity of gene expression with respect
to a transcription factor’s concentration. These features allow a
single transcription factor to act as both a repressor and activator
at different levels or achieve outputs with multiple concentration
regions of locally-enhanced sensitivity. We systematically dissect
how energetically-driving individual transitions within regulatory net-
works, or pairs of transitions, generates more adjustable and sensi-
tive phenotypic responses. Our findings quantify necessary condi-
tions and detectable consequences of energy expenditure. These
richer mathematical behaviors—feasibly accessed using biological
energy budgets and rates—may empower cells to accomplish so-
phisticated regulation with simpler architectures than those required
at equilibrium.
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Introduction1

Gene regulation—to which biology owes much of its2

exquisite sophistication (1)—is replete with network ar-3

chitectures that allow (and credibly depend on) nonequilibrium4

(2–5). To adapt to environmental cues, cells often dynamically5

tune concentrations of transcription factors (6) or inducers6

as their available control variables. This biochemical control7

adjusts the probabilities of cellular states by regulating rate8

constants that depend on the transcription factor or effec-9

tor. The majesty of biological regulation is often woven from10

the specific shapes of these input (transcription factor con-11

centration) to output (average steady-state gene expression)12

relationships. As crucial means by which cells adapt their phys-13

iology and defy environmental variation, these induction curves14

also promise to trace design principles that illuminate how15

spending biochemical energy empowers the very dynamism16

and fidelity of the living. Stubborn (7, 8)—yet increasingly17

well-measured (9–11)—energetic budget mismatches and mys-18

teries about what biochemical energy expenditures accomplish19

place fresh urgency on deciphering how dissipation modifies20

gene regulation.21

How can nonequilibrium relieve fundamental constraints on 22

physiological adaptation, or enhance the flexibility of cellular 23

behavior? To confront this question, here we examine the 24

output behavior of among the simplest closed systems capable 25

of breaking equilibrium using basic reactions pervasive in 26

biology: a cycle of four states. This system can represent the 27

dynamic behaviors of genetic transcription executed by RNA 28

polymerase (RNAP) and regulated by a transcription factor 29

acting as a control variable (Fig. 1A). 30

Given their simplicity, equivalents of the system in Fig. 31

1A have enjoyed earlier study in guises such as enzymatic 32

control (12); remodeling of nucleosomes (5); and other settings 33

in transcription (13, 14). In this work, we use tools from 34

graph theory (15, 16) to explore the full space of transcrip- 35

tional steady-state outputs available for this system under 36

different energetic drives, compared to equilibrium control. 37

We find that all equilibrium responses must be monotonic 38

(with one inflection point) as a function of control variables, 39

such as the concentration of transcription factor, measured 40

in a conventional logarithmic scale. In contrast, we discover 41

that nonequilibrium models can exhibit three types of output: 42

an “equilibrium-like,” monotonic response with one inflection 43

point, potentially displaced from equilibrium; a new —but 44

still-monotonic—shape with three inflection points; and a new, 45

surprising non-monotonic shape with two inflection points, 46

where, for instance, increasing a control variable can change 47

its effect from repression to activation. Combining analyti- 48

cal and numerical analysis, we globally bound the maximal 49
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sensitivities of transcriptional responses. Demonstrating that50

these mathematical behaviors are feasible to access within51

biological energy expenditures around typical rates, we sys-52

tematically analyze the impact of breaking detailed balance53

along each transition rate. This analysis establishes design54

principles for optimizing sensitivity and unlocking dramatic55

behaviors that are especially prone to implicate nonequilibrium56

in measurements.57

These broader, multiply-inflected transcriptional responses58

unlocked by nonequilibrium could be harnessed to achieve use-59

ful physiological functions. Our findings illustrate surprising60

regularity visible from graph theoretic tools, and explicate61

how even primordial biological networks operating out of equi-62

librium can rival the regulatory sophistication of (plausibly)63

larger, slower networks at equilibrium.64

Results65

A model of a pervasive gene regulatory motif. At steady-state,66

a system is in equilibrium (or, equivalently, at detailed balance)67

if, for all pairs of states (i, j), the probability flux kijpi into68

state j equals the flux kjipj into state i, where pi is the prob-69

ability of state i and kij is the rate of transitions from state i70

to j. Otherwise, the system is out of equilibrium and requires71

energetic dissipation to sustain the system’s steady-state. For72

systems closed to external material inputs, nonequilibrium73

steady-states can only be achieved with systems that contain at74

least one cycle; linear or branched architectures at steady-state75

must be at equilibrium (see Supporting Information (SI), §1B:76

Closed steady-state systems are either equilibrium or cyclic77

and (17, 18)). A single cycle is thus the simplest closed set-78

ting where the intriguing new consequences of nonequilibrium79

become possible.80

A cycle of four states emerges naturally from up to two81

molecules binding or unbinding to a substrate. When the82

substrate is a promoter site on the genome S, one molecule is83

RNA polymerase P , and the second molecule is a transcription84

factor protein X that can enhance or impede polymerase bind-85

ing to the genome, the resulting cycle captures transcriptional86

regulation. Specifically, the four states represent the empty site87

of the genome substrate (“S”); the genome substrate bound88

to the transcription factor only (“X”); to the polymerase only89

(“P”); or to both (“XP”). Figure 1A illustrates this central,90

motivating setting. (Note that the transcription factor and91

polymerase concentrations [X] and [P ] do not affect whether92

the system is in or out of equilibrium, and can be tuned while93

separately maintaining any extent of disequilibrium—see SI,94

§1C: The cycle condition relates a ratio of rate constants to95

(non)equilibrium.)96

This square cycle of states pervades gene regulation. In97

one of the widest experimental surveys of prokaryotic regu-98

latory motifs yet available—mapping over one hundred new99

regulatory interactions in E. coli—motifs regulated by a single100

transcription factor, which can often manifest a four-state101

cycle, were found to be the most common regulated architec-102

tures (19), joining similar reports from aggregated databases103

(20). These cyclic architectures contrast the more commonly104

studied motif of simple repression that cannot break detailed105

balance (see SI, §1B: Closed steady-state systems are either106

equilibrium or cyclic) (1, 6, 19–21). The four-state cycle finds107

widespread examples or structural-equivalents in eukaryotic108

gene regulation as well (5, 13, 22, 23). Eukaryotic gene expres-109

sion is a setting where explicit ATP-consumption is especially 110

plausible (3, 4) yet poorly understood (2, 8, 13). 111

Kinetic measurements often justify the assumption that 112

transcription factors bind and unbind with genomes quickly 113

relative to transcription by polymerase. This separation 114

of timescales makes macroscopic gene expression propor- 115

tional to the steady-state probability of finding the system 116

in transcriptionally-active microstates. (We precisely validate 117

this assumption for our setting using plausible transcriptional 118

rates in the SI, §2C: Biologically, timescales are plausibly sep- 119

arated enough that transcription is well represented by small 120

Markov chains.) 121

We note that the average gene production rate 〈r〉mRNA, 122

proportional to gene expression, is a typical and crucial output 123

of interest. This response grows with the net probability that 124

the polymerase is bound, 〈r〉mRNA = r(pP + pXP ), where r 125

is the transcription rate once the polymerase is bound, pp is 126

the probability of the state P where just the polymerase is 127

bound, and pXP is the probability of the state XP where both 128

polymerase and transcription factor are bound. 129

However, other outputs (that depend on other states) may 130

also be biologically or experimentally significant. For instance, 131

the localization of the transcription factors themselves to 132

the genome (to recruit other co-factors or epigenetic modi- 133

fications) can shape biological function independent of the 134

polymerase, e.g. invoking the probability pX . We accommo- 135

date the breadth of these possible outputs by studying how 136

any (nonnegative) linear combination 〈r〉 =
∑

states i

ripi of state 137

probabilities varies with the transcription factor concentration 138

X as a control variable, where ri gives the potency of the 139

ith state. These different outputs and problem settings are 140

captured by adopting particular {ri}, but as we will now see, 141

all are subject to universal behavior. 142

Nonequilibrium steady-state output responses. To explore 143

how these input-output responses operate away from equi- 144

librium, we cannot depart from the equilibrium statistical 145

mechanical models, which use the thermodynamic energies 146

of each state to calculate their probabilities, that suffice for 147

acyclic architectures (such as simple repression) (1, 6, 24–26). 148

Instead, we embrace a fully kinetic description (also known 149

as a chemical master equation or continuous-time Markov 150

chain) based on transitions between states. A large increase 151

in complexity and the number of parameters typically accom- 152

panies this generalization. Fortunately, these dynamics admit 153

a beautiful and powerful correspondence to graph theory that 154

helps tame this complexity (15). Our guide is the Matrix Tree 155

Theorem, which gives a simple diagrammatic procedure on a 156

network’s structure to find stationary probabilities (see Meth- 157

ods and SI, §2D: Deriving the universal form: The Matrix 158

Tree Theorem on the square graph yields a ratio of quadratic 159

polynomials). In brief, the Matrix Tree Theorem asserts that 160

at steady-state, the probability of any state is proportional 161

to the sum of products of rate constants over all spanning 162

trees rooted in that state. Here, a spanning tree is a (directed) 163

subset of edges on the graph of states that collectively visits 164

every state exactly once, privileging a root state, which has no 165

outgoing edges. Figure 1B illustrates these requirements with 166

an example of a rooted spanning tree in our four-state graph. 167

Counting all sixteen rooted spanning trees of the four- 168

state transcriptional system (Figure 1C) and deploying the 169
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Fig. 1. Structure and (non)equilibrium response of a four-state cycle, a fundamental gene-regulatory motif. (A) A square cycle of four-states emerges when up to two molecules
(such as a transcription factorX and polymerase P ) can bind to a common substrate (say a genome). Output observables 〈r〉 are linear combinations of the state probabilities;
for instance, mRNA production scales with the probabilities of transcriptionally active states where polymerase is bound to the genome (states P and XP ). These outputs
vary with the control parameter [X], here schematized as the concentration of a transcription factor. (B) An example of a spanning tree (rooted in state XP) like those that
define steady-state probabilities via the Matrix Tree Theorem. (C) All 16 directed, rooted spanning trees of the four-state cycle in (A): trees are grouped by the root state (in
columns) and by how many participating edges depend on the control parameter X (in rows). As guaranteed by the Matrix Tree Theorem, the steady-state probability of any
state—in or out of equilibrium—is given by the sum of the weights of these spanning trees, introducing up to a quadratic dependence in X in any output, as represented by Eq.
1. (D-F) Three universal output behaviors (regulatory shape phenotypes) can result from this architecture. A monotonic “equilibrium-like” sigmoidal output (D) manifests a
Hill-like or MWC-like response, behavior familiar from equilibrium thermodynamic models. However, exclusively out of equilibrium, new multiply-inflected regulatory shape
phenotypes become possible. Under drive, outputs can (E) vary non-monotonically and reach two inflection points with the control parameter; or show three inflection points
and vary monotonically (F). These richer phenotypes show a wider set of properties that characterize each curve: these include the “leak” value of the observable when the
control variable is absent (〈r〉0 = 〈r〉([X] = 0), in orange; the saturation asymptotic limit as the control variable is maximally present (〈r〉∞ = lim

[X]→∞
〈r〉; in light blue);

the observable’s values at intermediate plateau regions (〈r〉∗; in red); and slopes 1 and 2 at inflection points [X]1 and [X]2 when they are defined (in green and purple,
respectively).
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Tree Theorem explains how probabilities must vary with the170

transcription factor control parameter [X]. Depending on the171

root (separated by column in Figure 1C), each spanning tree172

carries two edges that depend on [X] (top row of Fig. 1C);173

one edge (middle row, Fig. 1C); or no [X]−dependent edges174

(bottom row, Fig. 1C). This structure yields statistical weights175

with up to quadratic scaling with [X]. Hence we find that the176

form of any output function 〈r〉, in or out of equilibrium, is a177

ratio of quadratic polynomials in [X],178

〈r〉 = A+B[X] + C[X]2

D + E[X] + F [X]2 , [1]179

where the coefficients A, B, C, D, E and F are sums of180

subsets of (weighted) directed spanning trees carrying various181

[X]-dependencies (see SI, §2D: Deriving the universal form:182

The Matrix Tree Theorem on the square graph yields a ratio183

of quadratic polynomials). The denominator, the sum of all184

rooted spanning trees and hence also a quadratic polynomial,185

serves as a normalizing factor that converts statistical weights186

to probabilities and represents a nonequilibrium partition187

function.188

Note that while we derived the output form Eq. 1 using the189

particular choice of [X]-dependent arrows appropriate for this190

transcriptional setting, the same formalism can treat many191

other control parameters that appear quite (structurally or192

biologically) distinct from these details, such as a concentration193

of another internal molecule (for instance polymerase, [P ]) or194

an external molecule (for instance explicit drive by [ATP ]).195

The SI, §2H: Driving different arrows in the square graph can196

still yield a ratio of quadratic polynomials gives some further197

examples of different placements of controlled edges that still198

produce a network output with the functional form of Eq. 1,199

and therefore remain precisely addressable by the analysis of200

this paper. Other outputs will require a fresh application of201

the Matrix Tree Theorem and new analysis but benefit from202

the same framework.203

Equilibrium output curves are constrained and always sig-204

moidal. Eq. 1 describes all induction curves, in or out of205

equilibrium, produced by this four-state transcriptional sys-206

tem. When detailed balance does hold, this equation becomes207

equivalent to thermodynamic statistical-mechanical models208

(as it must). We explain algebraic correspondences to ther-209

modynamic models, like those communing with earlier tran-210

scriptional experiments (6, 26), in the SI, §G.3, Validating211

consilience between kinetic and thermodynamic viewpoints. Im-212

portantly, we find that the equilibrium condition demotes any213

observable output to the simpler form of a ratio of linear214

polynomials in [X], namely215

〈r〉eq = A′ +B′[X]
C′ +D′[X] , [2]216

for constants {A′, B′, C′, D′} set wholly by thermodynamic pa-217

rameters (see the SI, §G.1: Demotion of responses to a (mono-218

tonic) ratio of linear polynomials at equilibrium). Not coinci-219

dentally, this functional form formally reproduces or evokes the220

Hill induction, Michaelis-Menten, Langmuir-binding, Monod-221

Wyman-Changeux, or two-state Fermi function forms from the222

equilibrium statistical mechanics of binding commonly used to223

model and fit induction curves in natural (6, 27) or synthetic224

(28) settings. This equilibrium curve is paradigmatic of our225

biochemical intuition—sigmoidally saturating, with one point 226

of inflection, with respect to transcription factor concentration 227

[X] in a conventional logarithmic scale (see Fig. 1A and the 228

SI, §2E: Discussion on observable conventions: the logarithmic 229

control variable). 230

New regulatory shape phenotypes unlocked by nonequilib- 231

rium. How much more complex is the regulation realizable 232

by nonequilibrium outputs 〈r〉 (Eq. 1), compared to that of 233

their equilibrium special case, 〈r〉eq (Eq. 2)? To reach the 234

qualitative essence of this question, we first investigate the 235

possible shapes of the output curve. Specifically, we monitor 236

the output’s changes in concavity with respect to the con- 237

trol parameter. We postpone comment on the characteristic 238

positions and scales of output curves—any shifts in their hori- 239

zontal position (viz. any characteristic concentration scales) or 240

vertical expanses (e.g. maximally-induced responses)—until 241

shortly. 242

Neglecting scales and shifts allows us to collapse the general, 243

six-parameter output curve of Eq. 1 to a normalized function 244

of just two emergent shape parameters, 245

〈r〉 − 〈r〉0
〈r〉∞ − 〈r〉0

= ax+ x2

1 + bx+ x2 , [3] 246

Here, the emergent shape parameters a and b are complicated 247

functions of the coefficients in Eq. 1 (and hence of underlying 248

rate constants), and x is the governing concentration [X] 249

measured in terms of a characteristic concentration scale (all 250

defined in the SI, §2F: Collapse of eight parameters into two 251

emergent fundamental shape parameters (a, b)). The values 252

〈r〉0 ≡ 〈r〉 ([X] = 0) and 〈r〉∞ ≡ lim
[X]→∞

are the leakiness 253

(uninduced) and saturation (maximally-induced) responses; 254

we return to these values in the following subsections. This 255

representation preserves the concavity of the response function, 256

allowing us to explore shapes and quantitative features in a 257

two-dimensional space more efficiently and comprehensively 258

than possible in the space of the eight rates.∗ 259

Harnessing this collapsed representation, we discover that 260

all output curves assume just three different universal shapes 261

(see Methods & SI, §2I: Any averaged observable 〈r〉 has zero, 262

one, two, or three inflection points, with varying monotonic- 263

ity).† First, the output can be sigmoidal and monotonic, with 264

a single inflection point, with respect to the control param- 265

eter (on a log scale), recalling the shape of the equilibrium 266

response (Fig. 1D). Uniquely out of equilibrium, however, two 267

additional multiply-inflected response shapes become possible. 268

Under energy expenditure, outputs can become nonmonotonic 269

and show two inflection points (Fig. 1E), or remain monotonic 270

with three inflection points (Fig. 1F), with respect to the log 271

of the control parameter. Responses with three inflections are 272

always shaped as depicted in Fig. 1F: maximally steep at the 273

first and third inflection points, but minimally steep at the 274

second inflection point. 275

Clearly, these nonequilibrium curves are marked departures 276

from simple equilibrium-like sigmoids, but betray a remark- 277

able parsimony and regularity, given that they describe all 278

∗The two-parameter simplicity of Eq. 3 is one possible nonequilibrium sophistication of the (usu-
ally one-parameter) data collapses used to unify simpler, equilibrium, two-state physiological re-
sponses (27) and regulation (6) in bacteria.

†Throughout our analysis and discussion in this paper, we monitor the shape, number of inflection
points, and sensitivity of transcriptional outputs with respect to the control parameter of the con-
centration of transcription factor, on a logarithmic scale. We use this logarithmic convention in
alignment with common practice in biochemical and transcriptional studies (6, 28, 29).
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departures from equilibrium for any rate parameter values.279

These three regulatory behaviors can pose different physiolog-280

ical implications for an organism; admit distinct quantitative281

constraints on sensitivity (as we will soon see); and require282

different conditions on underlying rate constants to be reached.283

In view of their categorical differences, we refer to these possi-284

ble shapes as regulatory (shape) phenotypes.‡285

Quantitative traits of response functions. Beyond their shape286

phenotypes, regulatory output curves affect the destiny of287

organisms through their quantitative traits. Further, engineer-288

ing responses with desirable properties—e.g. high gain, low289

background, tight affinity, and high sensitivity with respect290

to an inducer—is a critical and intensely-pursued design goal291

of synthetic biology (28, 30); such traits can also themselves292

reveal the presence of nonequilibrium, as with the presence of293

ultrasensitivity (31).294

These properties include the leakiness 〈r〉0 ≡ 〈r〉([X] = 0)295

and saturation 〈r〉∞ ≡ lim
[X]→∞

〈r〉 defined earlier; and the dy-296

namic range (difference between the leakiness and the satu-297

ration, |〈r〉∞ − 〈r〉0|). In addition, the response’s maximum298

sensitivity with respect to the input (often characterized by299

a suitable logarithmic sensitivity, sharpness, or effective Hill300

coefficient)—and the level(s) of input where this maximal301

sharpness occurs, namely the location(s) of the inflection302

point(s)—are crucial determinants of regulatory adaptability.303

For equilibrium-like binding curves, just one input level (the304

single inflection point, localizing maximal sensitivity) suffices305

to define the horizontal position of the curve. This inflection306

point is often linked with the input needed to induce a response307

about halfway between leakiness and saturation, denoted the308

EC50. However, the new complexity of nonequilibrium outputs309

introduces additional characteristic concentration scales (at310

each point of inflection) and their associated locally-extremal311

sensitivities.312

Does spending energy enable finer control over these quan-313

titative traits, beyond growing their number? In fact, as we314

now discuss, only some traits are given extra adjustability by315

spending energy.316

Leakiness, saturation, and EC50 are tunable at equilibrium.317

Without the transcription factor, the system cannot be found318

in any microstate that involves it, collapsing four states into319

just the two {S, P} states. This pair of states forms an acyclic320

graph, so these steady-state probabilities must show detailed321

balance (i.e. are set purely thermodynamically). Thus, leak-322

iness 〈r〉0, determined exclusively by S and P states, can323

be adjusted freely while maintaining detailed balance. Anal-324

ogously, when the transcription factor concentration is sat-325

urating ([X] → ∞), the system is never found in the two326

microstates without the transcription factor, again admitting327

an orthogonal description of a balance between two states, now328

{X,XP}. Hence, saturation 〈r〉∞ is also freely adjustable at329

equilibrium. These leakiness and saturation values are inde-330

pendently adjustable by two separate energy parameters—the331

binding energies of the polymerase to the genome when the332

transcription factor is absent or present, respectively. At equi-333

librium, once the leakiness and saturation are fixed by energy334

‡We use the phrase “regulatory (shape) phenotype,” referring to the overall shape of a response
curve, to distinguish our meaning from the usage of Reference (2), who instead referred to specific
quantitative traits within curves of a single mathematical shape (such as sensitivity or noise) as
“regulatory phenotypes.”

parameters, the response’s maximal sensitivity (slope at the 335

inflection point) is predetermined and no longer tunable, as re- 336

vealed by its algebraic dependencies (see SI §G.2). In contrast, 337

while the location of the governing inflection point depends on 338

these two energy parameters, it can also be tuned—remaining 339

at equilibrium—using another energy parameter (the binding 340

energy between the transcription factor and genome). (See SI, 341

§G.2:Leakiness, saturation, and EC50 are tunable at equilib- 342

rium for details.) 343

Nonequilibrium control of sensitivity obeys shape-dependent 344

global bounds. Out of equilibrium, the sensitivity of responses 345

enjoys greater adjustability. Specifically, the diversity of input- 346

output curves accessible under drive motivate us to assess 347

sensitivity by a suitably normalized slope s([X]), defined by 348

s([X]) ≡
∣∣∣∣ d〈r〉
d ln ([X]/[X]0)

1
〈r〉max − 〈r〉min

∣∣∣∣ , [4] 349

where 〈r〉min ≡ min
[X]
〈r〉 and 〈r〉max ≡ max

[X]
〈r〉 are the ex- 350

tremal values of the observable over all [X], and [X]0 is an 351

arbitrary characteristic concentration scale ensuring dimen- 352

sional consistency. For monotonic curves, the maximum 〈r〉max 353

and minimum 〈r〉min responses are necessarily the uninduced 354

leakiness 〈r〉0 and the maximally-induced saturation 〈r〉∞ (or 355

vice-versa), whereas for nonmonotonic responses with two in- 356

flections, the maximal and minimal responses can occur at 357

intermediate finite values of [X]. 358

This normalized sensitivity s([X]) is directly related to 359

familiar measures such as the logarithmic sensitivity and the 360

effective Hill coefficient, but more naturally describes sensitiv- 361

ities of nonmonotonic phenotypes using finite values (see SI, 362

§J: New bounds on nonequilibrium sensitivity). 363

½ ½

¼
¼¼
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riu

m min

max

~0.16

m
axm
ax

min slope
min

log ([X]/[X]0)

⅛

global bounds on maximum (normalized) sensitivity

one inflection point two inflection points three inflection points

Fig. 2. Global bounds, in or out of equilibrium, restrict maximal (normalized) response
sensitivity (with respect to input concentrations [X] on a log scale). Plotted are

normalized responses 〈r〉−〈r〉min
〈r〉max−〈r〉min

near points of inflection that maximize slope,
separated by shape phenotype. When the output has one inflection point (left),
the maximal sensitivity is bounded between a minimum of 0.158 (blue line) and a
maximum of 1/2 (red line) for any set of rate values or any dissipation; this subsumes
the equilibrium case, whose normalized sensitivity is fixed at 1/4 (black dotted line).
When the output has two inflections (middle), the maximal sensitivity is bounded
between 1/4 and 1/2. When the output has three inflections (right), the maximal
sensitivity is bounded between 1/8 and 1/4.

By combining wide numerical sampling, symbolic inequal- 364

ity solving, and analytical arguments (see SI, §J: New bounds 365

on nonequilibrium sensitivity), we investigated the maximal 366

normalized sensitivity s([X]) any response curve can exhibit 367
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for the four-state system across its three possible shape phe-368

notypes. We discovered that sensitivity is tightly bounded369

above and below by precise finite limits; these limits vary by370

phenotype. Figure 2 summarizes these bounds, visualized by371

how normalized and centered response curves 〈r〉−〈r〉min
〈r〉max−〈r〉min

372

behave around inflection points of maximal slope. Equilibrium373

response curves always show a normalized sensitivity of ex-374

actly one-fourth. Out of equilibrium, singly-inflected response375

curves can increase this maximal sensitivity up to one-half, or376

decrease maximal sensitivity below the equilibrium value to a377

numerical value of about 0.158. (We lack a coherent explana-378

tion for this curious numerical lower bound, but verified it by379

precise symbolic inequality solving; see SI, §J). Driven curves380

with two inflection points all have maximal sensitivity of at381

least the equilibrium level of one-fourth, but up to one-half.382

Driven curves with three inflection points all show maximal383

sensitivity of at most the equilibrium level of one-fourth, and384

at least a sensitivity of one-eighth.385

Cast in terms of the raw maximal sharpness386

d〈r〉/d ln ([X]/[X]0) of each response curve, these bounds report387

that raw maximal sharpness is always between one eighth and388

one half of the distance between the maximum and minimum389

responses per e ≈ 2.7-fold increase in the concentration390

[X]. We stress that these bounds on sensitivity, in terms391

of the observed 〈r〉min and 〈r〉max, are tighter quantitative392

constraints than bounds merely in terms of the maximal393

or minimal potency values max
i
{ri} or min

i
{ri} that any394

microstate of the system can show, as can be connected395

to recent, related upper bounds (29). This follows since in396

general the extrema of the average observable response curve397

over all [X] are usually more restricted than the most extreme398

potencies over microstates (namely, max
i
{ri} ≥ 〈r〉max and399

min
i
{ri} ≤ 〈r〉min). (See SI, §J.4: General upper bound on a400

related, differently-normalized slope.)401

These findings emphasize that network architecture and402

dissipation are not the only hard global constraints that bound403

sensitivity. The global shape of the response curve further404

categorically constrains the possible sensitivity. This rela-405

tionship is potentially biologically relevant: for instance, it406

is impossible for an organism regulated by the square-graph407

transcriptional motif to achieve both a triply-inflected output408

curve and a normalized sensitivity greater than that at equilib-409

rium. This represents a tradeoff between the shape complexity410

of a response and its maximal sensitivity.411

Breaking detailed balance along each edge. Our foregoing412

analysis has been mathematically general. That is, the con-413

strained shapes and bounds on sensitivity hold for any response414

following Eq. 1, over all rate constant values and energetic415

dissipations. These constraints also apply even—as previously416

noted—if the response is produced by a different underlying417

graph architecture than the particular transcriptional motif418

shown in Fig. 1A, as long as the graph still yields spanning419

trees that depend up to quadratically on the control variable.420

Just because multiply-inflected or adjustable response curves421

are mathematically possible, however, does not establish that422

they are biologically plausible. To assess whether these behav-423

iors can be accessed using physiologically-plausible amounts424

of energy expenditure or typical biological rates, we now spe-425

cialize to the plausible particulars of transcription as in Fig.426

1A. In the remainder of this paper, we quantify the extent of427

dissipation sustaining a nonequilibrium steady-state by focus- 428

ing on the free energy ∆µ coupled to the system, with units of 429

kBT or Joule; we refer to this quantity as the nonequilibrium 430

driving force or simply as the (net) drive (see SI, §1D: Discus- 431

sion of various ways of quantifying dissipation for discussion 432

of different quantitative aspects of dissipation). In addition, 433

we now adopt the transcriptional potencies rP = rXP = 1 434

and rS = rX = 0. This choice makes our response observ- 435

able 〈r〉mRNA the probability that polymerase is bound to the 436

genome. 437

Typical empirical binding energies, diffusion-limited rates, 438

and single-molecule kinetic measurements yield order-of- 439

magnitude estimates for the eight rates governing transcription 440

at equilibrium (see SI, §B:Order of magnitude estimated rate 441

constants for prokaryotic transcription and Fig. 1A). First, 442

we choose a set of default rates consistent with these orders- 443

of-magnitude (given in the lower right stem plot of Fig 3C). 444

Next, we investigate how breaking detailed balance by spend- 445

ing energy to increase or decrease a single rate constant at a 446

time—while keeping the seven other rates fixed at biological 447

default values—modulates the transcriptional response curve. 448

Hydrolyzing an ATP molecule makes available ≈ 20 kBT 449

of energy (BNID 101701, (32); (33)) that can be used as a 450

chemical potential gradient to drive transitions (for instance, 451

by powering an enzymatically-assisted pathway (34)). This 452

amount of free energy is also the scale observed to power ac- 453

tive processes like biomolecular motors (35). Accordingly, to 454

conservatively emulate a biological energy budget, we allot a 455

maximum of just two ATP hydrolyses’ worth of free energy, 456

|∆µ| ≤ 40 kBT , to break detailed balance. This budget for 457

drive allows a given individual rate to be scaled by up to a 458

factor exp[∆µ/kBT ] = exp[±40]. 459

Applied edge-by-edge, this procedure reveals that 460

biologically-feasible energy expenditures dramatically modify 461

the response curve and easily attain all three regulatory shape 462

phenotypes. Illustrating this regulatory plasticity, Fig. 3A 463

shows how breaking detailed balance by scaling a rate up (in- 464

creasingly red curves) or down (increasingly green-blue curves) 465

can shift response curves to the left or right on the horizontal 466

log[X] axis (effectively tuning what EC50 formerly represented 467

at equilibrium), and also smoothly change the number of inflec- 468

tion points. Yet even for the same net nonequilibrium driving 469

force, the consequences of breaking detailed balance depend 470

significantly on the edge it is broken along. Fig. 3B shows 471

another representative behavior by modifying a different edge, 472

where the major effect of departing equilibrium is to modulate 473

the leakiness, saturation, or intermediate scales of the response. 474

Despite the diversity of this regulation, quantitatively-regular 475

control behavior emerges as well: inset plots emphasize that 476

phenotypic properties such as the position, max{log[X]∗}, of 477

the final inflection point and the saturation, 〈r〉∞, scale as 478

power laws with the net drive over some regimes. 479

This broad regulatory flexibility is sustained over all eight 480

rate constants, whose comprehensive response behaviors under 481

drive are analyzed in the SI, §2K: Systematic census of effects 482

of pushing on one and two edges. Fig. 3C summarizes how driv- 483

ing each rate attains different shape phenotypes (number of in- 484

flections). Notably, any rate can be driven to access any of the 485

three response shape phenotypes at some small, biologically- 486

feasible dissipation. Yet the minimum nonequilibrium driv- 487

ing force values needed to unlock a given phenotype—and 488
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Fig. 3. Systematically breaking detailed balance edge-by-edge. (A) Example of how spending energy to modify a single rate (here, kXS )—while the seven other rates remain
fixed—changes the response curve away from default equilibrium behavior (pale yellow curve labeled "0" net drive and outlined in black). Responses from rate values larger
than (or smaller than) at equilibrium are shown in increasingly red (or blue) colors, respectively; curves are also labeled with the numerical values of the net drive that generated
them in kBT units (positive for an increase; negative for a decrease). Each curve’s resulting inflection points are marked by yellow, orange, or pink markers, denoting one to
three inflection points (respectively), and summarized in the associated one-dimensional (shape phenotypic) phase-diagram with the same colors on the right. Inset: the
position of the final inflection point max ln [X]∗/[X]0 versus net drive (power law exponent is ∼ 1); eccentric points near zero drive result from the shifts in shape phenotype in
that vicinity. (B) Another representative behavior is displayed when kX,XP is instead the rate varied. Inset: the saturation 〈r〉∞ versus net drive (power law exponent is ∼ 1).
(C) Summary of how all eight rates respond to energy expenditure to realize different regulatory shape phenotypes. Below, stem plots give precise values of each default rate
constant at equilibrium. (These rates acknowledge initial “broken symmetries” among the rates that violate the conditions Eq. 5 by default, facilitating more ready access to
nonmonotonicity. The SI Appendix, §2K, documents the impact of departing from different default starting rates that instead satisfy Eq.5.) (Here, the reference concentration
scale setting the horizontal offset of the concentration axis is [X]0 ≡ 1 nM.)

the fraction of rate space manifesting said phenotype—varies489

markedly across the rates. For instance, the two-inflection-490

point nonequilibrium response shape (orange) is only reached491

for a fairly narrow, fine-tuned region of drive for the rates492

kP S , kXP,X , kSP , and kX,XP , but is the most common shape493

phenotype over finite net drives for the rates kXS , kXP,P , kSX ,494

and kP,XP . Such variable consequences of injecting energy495

along different rate transitions reflect the privileged roles that496

states XP and P play in the graph, given that their probabil-497

ity is the transcriptionally-potent response we monitor. The498

contrasting impacts of modifying each edge are also sensitive499

to the default rates that define the system’s biological equi-500

librium starting point, a revealing dependence that we will501

return to shortly in the final Results section.502

Breaking detailed balance two edges at a time. Adjusting one503

edge at a time, as we have just investigated, is but one of many504

ways a network could invest energy to control its input-output505

function. Indeed, the classical scheme of kinetic proofreading506

recognized that many steps could each be driven independently507

(36), as has later been repeatedly observed in the multistep 508

ways that T-cell or MAPK activation implement kinetic proof- 509

reading (37–40) or in mechanochemical operation of myosin 510

motors (41). How do such distributed investments of energy 511

afford expanded control of response functions? To understand 512

this question, we now appraise how breaking detailed balance 513

along up to two edges at a time expands how different response 514

behaviors may be accessed. With two independent drives (one 515

for each edge’s departure from its default biological value), the 516

formerly-one-dimensional phase diagrams of Fig. 3 become 517

slices of two-dimensional phase diagrams that map where re- 518

sponse shapes are reached (see Fig. 4A-B; and also the census 519

of how all twenty-eight rate pairs behave found in the SI, §2K). 520

Geometrically more complex than their one-edge equiva- 521

lents in Fig. 3, these two-edge phase diagrams expose new 522

ways to transition between the shape phenotypes. One mea- 523

sure of this new facility is the energetic cost needed to reach 524

nonmonotonic (two inflection-point) response curves. Starting 525

from biological equilibrium, what is the minimum net drive 526

∆µ0 required for the response to become nonmonotonic, when 527
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starting values in rate space, D

(
ln kmn

kmneq
, ln

kij
kijeq

)
≡

√(
ln kmn

kmneq

)2
+
(

ln
kij

kijeq

)2
.

energy can be injected along just one edge at a time (Fig 3)528

or up to two edges at a time (Fig. 4A & 4B)? Regarding529

this question, we find that the
(8

2

)
= 28 possible pairs of530

edges can be divided into two types. A few—like the edge531

pair (kXS , kSX) illustrated in Fig. 4B—require the same finite532

total dissipation to reach nonmonotonicity as needed if only533

pushing on either individual edge. However, the majority of534

rate pairs—such as the edge pair (kSX , kP S)—offer a dissipa-535

tive bargain: by controlling both rates it is possible to find536

a point in rate space where only an infinitesimal departure537

from detailed balance activates nonmonotonicity (as circled538

in 4A). These inifinitesimal minimal drives contrast the finite539

drives always required while modifying single edges (Fig. 3C).540

This new economy is enjoyed by the 22 rate pairs that include541

at least one of the four special rates kX,XP , kSP , kXP,X , or542

kP S ; their membership will be a clue for identifying critical543

conditions on nonmotonicity we deduce in the next (and final)544

Results section. 545

The richer behaviors achievable by breaking detailed bal- 546

ance along two rates (instead of just one) become even more 547

pronounced from the lens of sensitivity. The heatmap of Fig. 548

4C depicts the maximal unnormalized sharpness d〈r〉/d ln[X] 549

reached by modifying the rate pair (kSX , kP S) (the same rates 550

mapped phenotypically in the phase space of Fig. 4A). If 551

only one rate constant at a time were allowed to be driven, 552

only the slices of sharpness along the white dotted x = 0 and 553

y = 0 vertical and horizontal lines would be accessible, at 554

most realizing a maximal unnormalized sharpness of . 0.15 555

with respect to the concentration [X] on a log scale. However, 556

once both edges can be modified, it becomes possible to ac- 557

cess the maximal slope region on the lower right, yielding a 558

greater maximum sensitivity of about 0.35. Repeating this 559

procedure for all 28 rate pairs, as shown in Fig. 4D, we find 560

that the points in rate space that maximize slope all require 561
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both rate constants in each pair to be modified from their562

default equilibrium values (lying away from the x = 0 and563

y = 0 vertical and horizontal lines). To maximize sensitivity,564

all rate pairs show one (but usually not both) rate constant565

that has been driven to the maximal extent allowed by the566

nonequilibrium driving force budget (localizing optimal points567

to the borders—but not necessarily corners—in Fig. 4D). The568

net drive ∆µ ensuing from both rate’s departure from their569

equilibrium values is often distinct from those independent570

departures. Fig. 4E recasts the same slope-maximizing points571

in Fig. 4D in terms of these two separate properties (the net572

drive ∆µ, and the average geometric distance, D, each edge573

moved from its biological starting point.) Different rate pairs574

show dramatically different optimal maximum sensitivities at575

varying cost: choosing to break detailed balance along the576

(kSX , kP S) can achieve a maximal slope of about 0.35 (prob-577

ability units per e-fold change in [X]) at a net drive of only578

∆µ ≈ 10 kBT (dark grey marker), but choosing less wisely579

the rate pair (kSX , kP XP ) at best attains a slope of about580

0.054 (probability units per e-fold change in [X]), even while581

spending a net energy ∆µ & 35 kBT almost four times as582

large. Collectively, these findings highlight how prudently583

distributing dissipation over the transitions in a network can584

achieve more precise and dramatic responses.585

Generic rate conditions forbid access to nonmonotonic re-586

sponses. Why, as we have seen, are nonmonotonic responses587

accessed with different ease while driving some rates—or still588

more economically, rate pairs—rather than others? How do589

the default equilibrium rates from which biology departs affect590

the tunability of responses? Confronting these questions leads591

us to glean general kinetic conditions that enable or forbid592

nonmonotonicity. We reformulate the criterion for nonmono-593

tonicity to explicitly invoke net drive and rate constants (see594

SI, §2L:Crucial imbalances in rate-constants are required for595

nonmonotonic responses). Using these analytical arguments,596

we determine that nonmonotonicity is forbidden for any net597

drive when transition rates satisfy the following, surprisingly598

loose, conditions:599

〈r〉
is always

monotonic
in [X]

≡
{
kX,XP ≥ kSP and kXP,X ≤ kP S , or
kX,XP ≤ kSP and kXP,X ≥ kP S .

[5]600

That is, if the presence of the transcription factor on the601

genome increases or decreases the polymerase’s binding rate in602

a sense opposite to its effect on the unbinding rate (or leaves603

either unchanged), the response must depend on the transcrip-604

tion factor monotonically. Only when the transcription factor605

plays a functionally “ambiguous,” dualistic role—coherently606

changing both the polymerase’s binding and unbinding rates607

(that themselves have opposite effects on the response)—may608

the response become nonmonotonic under a sufficient net drive.609

Since access to nonmonotonicity is governed by kinetic con-610

ditions in Eq. (5)—but thermodynamic parameters instead611

set whether a response is globally activating or repressing (SI612

§)—the qualitative origin of nonmonotonicity stems from when613

kinetic and thermodynamic aspects in the system oppose each614

other.615

This condition of Eq. 5 helps explain why some rates and616

rate pairs reach regulatory shape phenotypes so differently617

under drive, and how default starting rate constants matter.618

A comprehensive census of responses while driving one edge619

at a time when default rates satisfy Eq. 5 is provided in the 620

SI Appendix. 621

Instructively, Eq. 5 demands that when the transcription 622

factor does not change the polymerase’s (un)binding rates— 623

namely, either kX,XP = kSP or kXP,X = kP S—the response 624

must be monotonic. By default, under the often reasonable 625

classical assumption that the binding rate of polymerase is 626

purely diffusion-limited (1), the transcription factor indeed 627

may not affect the polymerase’s binding rate, thus forcing the 628

response to be monotonic.§ This type of biophysical constraint 629

may contribute to why monotonic transcriptional responses 630

are most canonically pictured as monotonic. However, while 631

plausible, this biophysical scenario is hardly inescapable or 632

universal. In fact, even for architectures as “simple” as lac 633

repression, there is gathering empirical evidence that proteins 634

associate with DNA binding sites under more intricate regu- 635

lation than merely diffusion (42). Transcription factors that 636

mediate steric access to the genome (dissipatively or not), 637

such as via DNA looping (43), may also be especially prone 638

to contravene this condition. 639

Discussion 640

In this work, we dissected how spending energy transforms 641

the control of gene expression in a minimal and common 642

transcriptional motif. Harnessing a kinetic description and 643

diagrammatic procedure from graph theory, we found that any 644

transcriptional outputs follow a universal form with respect to 645

a control parameter like a transcription factor’s concentration. 646

We discovered these responses may only adopt three shapes, 647

including an equilibrium-like (monotonic, sigmoidal) response. 648

Uniquely out of equilibrium, however, two unexpected and 649

noncanonical output behaviors become possible: a doubly- 650

inflected, nonmonotonic response; and a triply-inflected, mono- 651

tonic response. Underneath wide parametric complexity, we 652

established tight global bounds on transcriptional response’s 653

maximal sensitivity and learned these can vary and tradeoff 654

with response shape. Next, we systematically mapped how 655

biologically-feasible amounts of energy along single rates or 656

rate pairs control responses. These findings established that 657

the noncanonical responses are easily accessed around rates 658

plausible for transcription, especially when dissipation can 659

be distributed more widely over a network. Last, we uncov- 660

ered global and transparent kinetic conditions that forbid (or 661

enable) novel nonmonotonic responses. 662

The flexible regulation unlocked by nonequilibrium could 663

be widely biological salient. Responses that can show three 664

inflection points—instead of just one at equilibrium—could 665

effectively accomplish the role of two classical (singly-inflected) 666

input-output functions. Since an inflection can mark a local 667

region of enhanced output sensitivity, and effectively imple- 668

ment a threshold, this functionality could allow cells to achieve 669

distinct cellular fates, such as in Wolpert’s classical French 670

Flag model (44). By contrast to our small architecture, canon- 671

ical pictures of multiple thresholded responses usually require 672

multiple genes—often at least one specific gene per threshold 673

(45). One imporant example is the celebrated Dorsal protein in 674

Drosophila, where two critical thresholds have been proposed 675

§By contrast, by the assumption that the transcription factor has the typical biophysical effect of
changing the affinity between the polymerase and genome, the polymerase’s off-rate from the
genome is affected by the transcripton factor’s presence, and kXP,X 6= kP S . So usually it is
not an equality between polymerase’s off-rates that prevents a response from being nonmonotonic.
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to accomplish twist gene activation and decapentaplegic gene676

repression to help establish distinct parts of dorsal patterns677

in embryonic development (46, Fig. 2.26, p. 64). We pro-678

pose that triply-inflected responses from a single gene could679

accomplish some of this same functionality with a smaller680

architecture.681

Nonmonotonic response functions with two inflection points682

could empower cells to accomplish more sophisticated signal683

processing, such as band-pass or band-gap filtering of chemi-684

cal inputs, and/or generate temporal pulses of chemical out-685

puts. Similar implications have been been explored by Alon686

& coworkers, inter alios, who established how nonmonotonic687

outputs can be produced by chaining together incoherent feed-688

forward loops (47–50). To achieve more complex outputs,689

these networks use transcriptional interactions among mul-690

tiple genes at equilibrium—e.g. from two to six (or more)691

genes in such examples. Hence these networks operate with692

comparatively larger sizes and timescales than mere binding-693

unbinding reactions on a single gene’s regulatory network like694

the square graph we study in this report. We suggest these695

comparisons contribute new material to a maturing discourse696

about when and how biology uses thermodynamic or kinetic697

control mechanisms (34, 41).698

Even responses that remain “equilibrium-like” with a single699

inflection benefit from energy expenditure, since our bounds700

establish they may be up to two times more sensitive than701

at equilibrium, and enjoy new kinetic (instead of merely ther-702

modynamic) ways of controlling the location of the governing703

inflection point (EC50).704

While only mild net drives transpire to unlock useful regu-705

latory shapes and traits, our analysis emphasizes other mech-706

anistic factors that govern how easily these behaviors can707

be accessed, or measured as signatures of nonequilibrium in708

natural or synthetic settings.709

First, the biological network’s architecture determines710

whether these new macroscopic behaviors can be attained711

at all. Although prokaryotic gene regulation has regularly712

shown a compelling coherence between quantitative measure-713

ments and equilibrium statistical mechanical models (including714

demanding studies from our own laboratories over the past715

two decades (6, 19, 24, 51, 52) and beyond (43)), many of716

the most fiercely interrogated systems (e.g. the lac repres-717

sor) are indeed exactly those with acyclic network topologies718

that make nonequilibrium steady-states impossible (without719

open fluxes) and guarantee detailed balance. This reflects720

a possible overrepresentation of biological settings where de-721

tailed balance may be expected a priori to apply on mere722

structural grounds. On the other hand, the means to spend723

energy biochemically clearly exist, even in bacteria through724

two-component regulatory systems (53) and other active set-725

tings like nucleosome remodeling in eukaryotes (5). Hence our726

findings invite a renewed and vigorous reappraisal of whether727

signatures of nonequilibrium are in fact lurking in architec-728

tures that are more prone to accommodate it, such as the729

four-state “simple activation” motif we discussed here. More-730

over, the measurements (or synthetic biological perturbations)731

needed to map the nonequilibrium landscape of transcriptional732

responses must differ from the convenient binding site modifi-733

cations (e.g. parallel promoter libraries (19, 54)) previously734

used to test equilibrium models, since manipulating binding735

energies inherently preserves detailed balance. Developing736

fresh experimental approaches to augment or attenuate a sin- 737

gle transition between microstates (or set of transitions) in 738

situ to break detailed balance is a crucial direction of future 739

empirical work, whose value is advocated for by our results. 740

To manipulate and probe tractable models of transcription, 741

these methods might include optogenetic control (55, 56), or 742

suitable adjustments of governing enzyme concentrations or 743

activities. 744

Second, where energy is invested crucially dictates which 745

regulatory behaviors are available. We found that investing 746

energy along more than one rate at once was capable of achiev- 747

ing more dramatic response curves more economically. This 748

finding may help explain the many observations in biological 749

systems where energy is independently injected along multiple 750

steps (36–41). However, since each independently-regulated 751

injection of energy may also be accompanied by architectural 752

costs, not all examples of biological regulation may contain 753

the distributed dissipation machinery required to make novel 754

nonequilibrium response signatures conspicuous. 755

Third, the structures of responses while breaking detailed 756

balance edge-by-edge, and our general kinetic criteria that 757

forbid nonmonotonicity, highlight that certain critical imbal- 758

ances between rate constants are needed to produce the most 759

conspicuously non-sigmoidal shape phenotypes available out 760

of equilibrium. On basic biophysical grounds, some natural 761

systems may—or may not—exhibit the required rate imbal- 762

ances to make novel responses as easy to activate (see SI, §L.2: 763

Conditions that suffice to forbid nonmonotonicity). 764

Indeed, the rate imbalances required to produce nonmono- 765

tonicity we found are non-obvious. These kinetic criteria have 766

significant implications for organizing parameter explorations. 767

For instance, we show in the SI, §2M: Implications of critical 768

symmetry conditions for widespread numerical screens that an 769

exciting study just published (13) exploring the informational 770

consequences of nonequilibrium in a four-state model (that 771

is mappable to our setting) imposes simplifying assumptions 772

on rate constants that in fact preclude the possibility of non- 773

monotonic responses, according to our monotonicity criterion. 774

We expect that our approach and kinetic criteria will help 775

future works include and capture the regulatory consequences 776

of these rich behaviors. We anticipate this flexibility may be 777

especially germane for environments that present nonuniform 778

input statistics. 779

The contrast between the nonequilibrium steady-states pos- 780

sible to support using this “simple activation” architecture, 781

and the difficulty of sustaining nonequilibrium steady-states in 782

a simple repression architecture that lacks a cycle, also possi- 783

bly provides a new design principle to understand the timeless 784

question of why both activators and repressors are employed as 785

distinct architectures when they can produce the same mean 786

gene expression. Intriguing rationalizations based on ecolog- 787

ical demand have been offered for why these architectures 788

are used differently in E. coli, such as the classical proposal 789

by Savageau (57–59). We speculate that another, quite dis- 790

tinct, feature—the very possibility of using nonequilibrium 791

to steer input-output response curves so flexibly—may also 792

contribute to why organisms might use a simple-activation (or 793

other cycle-containing) architecture over acyclic architectures, 794

all other features being equal. Whether this nonequilibrium 795

controllability significantly shapes the natural incidence of 796

regulatory architectures can only be assessed using quanti- 797
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tative measurements of input-output behaviors from a much798

broader set of architectures than the relatively narrow (e.g.799

Lac repressor, Bicoid, CI in bacteriophage-λ switch) subjects800

of existing analyses.801

Our work provides explicit maps of parameter spaces that802

can guide the naturalist looking for whether this expanded803

regulation occurs naturally in some manifestations of transcrip-804

tion. This information is also a guide to the synthetic biologist805

who endeavors to engineer such responses in genetic circuits806

and exploit the advantages of producing complex regulation807

using a small driven network, instead of a comparatively larger,808

more slowly tuned network of multiple genes at equilibrium.809

Beyond advocating for experimental progress, our findings810

invite many theoretical extensions. How dissipation affects811

the intricate tradeoffs between sensitivity, specificity, speed,812

and stochasticity in (steady-state or transient) gene regulation813

is a large, open, physiologically-relevant question amenable to814

further graph-theoretic dissection. In addition, we hope for815

deeper analytical rationalization of our bounds on sensitivity;816

our upper bounds surely share similar foundations with looser,817

more architecturally general, bounds recently and insightfully818

established by Owen & Horowitz (29), though our additional819

lower bounds and different mathematical quantities suggest820

separate theoretical ingredients.821

Overall, we foresee that graph-theoretic treatments like822

we have deployed here—and as have been first so powerfully823

established and refined by other foundational investigators824

(16)—will produce further dividends when addressing still more825

sophisticated networks. Logically (but not psychologically)826

equivalent to tedious, purely algebraic analysis of steady-state827

probabilities, these perspectives promise to be engines of dis-828

covery amid the complexity of nonequilibrium biology, just as829

diagrammatic analyses such as Feynman diagrams continue to830

catalyze progress in field theory and particle physics (60, 61).831

Materials and Methods832

833

Nonequilibrium steady-state probabilities via the Matrix Tree The-
orem. Consider a continuous-time Markov chain with N states,
whose transition rates kij between states i and j are stored in the
j, ith element of the transition matrix L, and so the probabilities
p(t) = [p1, . . . , pN ]> of finding the system in these states evolve
according to

dp
dt

= Lp.

(With this convention of p as a column vector, the columns of the834

matrix L sum to zero and the diagonal entries are accordingly Lii =835

−
∑
j 6=i

Lji = −
∑
j 6=i

kij .) Note that (Lp)i is the net probability flux836

entering the node i. Identifying our Markov system as a weighted837

graph, a spanning tree over the states is a set of N − 1 edges that838

visits every state exactly once. A spanning tree +i rooted in a state839

i contains no outgoing edges from state i (and exactly one outgoing840

edge for every other state j 6= i). (These notions are summarized841

in the example of Fig. 1B.) The Matrix Tree Theorem (MTT)842

(also known as the Markov Chain Tree Theorem) states that at843

steady state
(

dp
dt

= Lp = 0
)
, the statistical weight of the ith state844

is the sum of products of rate constants over spanning trees rooted845

in node i846

ρi =

NTi∑
span. +i

 N−1∏
krs∈+i

krs

 , [6]847

where NT i is the number of spanning trees rooted in i (16, 21). 848

This weight ρi is the relative odds of finding the system in state 849

i as a fraction of all the statistical weights ρtot =
∑

j

ρj , namely 850

pi = ρi/ρtot. Applying the MTT to the regulatory motif of Fig. 1A 851

indicates that any steady-state probabilistic observable depends on 852

the transcription factor control parameter [X] according to Eq. 1 853

(see SI). 854

Emergent shape parameters & shape phenotypes. The collapsed 855

shape representation of Eq. 3 allows us to solve for the number 856

of positive solutions to d〈r〉/d ln ([X]/[X]0), yields the numbers of 857

possible inflection points (via, for instance, Descartes’ rule of signs 858

or explicit inequality solving) and hence shapes (see SI). Numerical 859

and symbolic analysis of the space formed by these two emergent 860

shape parameters (a, b) (Eq. 3 and SI appendix) helps establish 861

our global bounds on sensitivity. Ultimately, this collapsed repre- 862

sentation is also a crucial theoretical stepladder to find the generic 863

conditions forbidding nonmonotonicity given in Eqs. 5 (see SI). 864

Single edge and edge pair perturbations. We estimated default bi- 865

ological rates for transcription at equilibrium by synthesizing re- 866

ported binding affinities, association rates, and diffusion constants. 867

We solved the condition for an inflection point symbolically and 868

numerically (see SI). 869

Data & Availability 870

All symbolic and numerical code used for this study’s analyses 871

and presented figures will be available open-source. See https: 872

//github.com/glsalmon1/graphnoneq. 873
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1. Linear Markovian dynamics, dp
dt = Lp, and cycles, are common55

A. Mathematically, to first order, many dynamics are continuous time Markov chains. Also referred to as kinetic schemes (1)
or viewed as representations of chemical master equations (2), continuous time Markov chains capture (approximately or
exactly) how many systems change in time. When a single (possibly effective) typical timescale τij (or rate kij = 1/τij) is used
to describe a transition between every pair of states i and j, the description amounts to a continuous time Markov chain. Or, if
the ith component pi(t) of the system’s state probability evolves in time according to some function f(p(t)) that depends on
only the current state, we propose that a Taylor expansion to first order in p around a (hypothetical) empty system’s state 0
also yields such a description,

dpi
dt

= fi(p(t)) [1]

= ∇f>i (p(t)− 0) + (p(t)− 0)>
(
∂2fi
∂p2

)
(p(t)− 0) + · · · [2]

≈ ∇f>i p(t) =
∑
j

∂fi
∂pj

pj(t) =
∑
j

∂ dpi
dt

∂pj
pj(t); [3]
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we can store these equations in a matrix form, defining Lij ≡
∂
dpi
dt
∂pj

to give

dp
dt

= Lp. [4]

Armed with the fact that total probability is conserved,
∑
i

pi = 1, one can further immediately conclude that

d

dt

(∑
i

pi

)
=
∑
i

dpi
dt

= 0 [5]

= ~1> (Lp) = 0, [6]

and since this must hold for arbitrary p, we see that ~1>L = ~0>, namely the rows of L sum to zero.∗ So the diagonal entries of56

L can be expressed as Lii = −
∑
j 6=i

Lji.57

B. Closed steady-state systems are either equilibrium or cyclic. Why can we conclude that a graph without cycles cannot58

show nonequilibrium steady-states (and so must be in detailed balance at steady-state)? Since this question is about graph59

structures and generic steady-states, we turn to the Matrix Tree Theorem, discussed more fully in the main text and illustrated60

in this supplement’s §D, which emphasizes insights come from the nature of spanning trees.61

First, recall that detailed balance occurs when for any pair of states (i, j), the steady-state probabilities satisfy,
pikij = pjkji [7]

→ ρikij = ρjkji, [8]
where we have divided by the common normalizing factor ρtot in the second expression such that ρi = pi/ρtot.62

Next, consider how spanning trees in a graph are structured and their algebraic consequences. For any steady state, whether
in or out of equilibrium, the statistical weight of a state i is the sum of spanning trees rooted in i,

ρi =
∑

span. trees m

∏
krs∈ tree m

krs︸ ︷︷ ︸, [9]

=
∑

span. trees m

T
(m)
i , [10]

where we have included the algebraic reminder that some mth spanning tree T (m)
i rooted in node i is a product of suitable rate63

constants krs such that every node is visited exactly once and there is no outgoing edge from the root i.64

How are the spanning trees rooted in a node i related to those rooted in a connected node j? By structural requirement
these trees are quite similar. Indeed, if a tree Ti rooted in i contains the edge kji, then we can always convert it to a valid
spanning tree rooted in j instead by “flipping” that edge to contain kij instead, building the newly rooted tree Tj = kij

kji
Ti.

(This re-rooting works because the rest of the edges in the original i-rooted tree Ti have not been altered so still have out-degree
exactly one; all the nodes in the graph are still visited by the tree; and now j has out-degree zero, as required of a valid
spanning tree rooted in j.) If all the spanning trees rooted in i contain the edge kji, then this re-rooting operation works to
build all the trees rooted in j, giving

ρj =
∑
m

T
(m)
j =

∑
m

kij
kji

T
(m)
i [11]

= kij
kji

∑
m

T
(m)
i [12]

= kij
kji

ρi, [13]

which is exactly the requirement of detailed balance between i and j.65

However, while every spanning tree of an acyclic graph (where i and j are connected) will contain the edge kij or kji (since66

there is one path in the graph allowing them to be connected), this is no longer true for graphs containing a cycle: other paths67

can connect i and j that do not directly contain the (i, j) edges and thus build valid spanning trees. In that case, we cannot68

always write Tj = kij
kji
Ti and so cannot factor out kij

kji
from the weights ρi and ρj . This means that only such cyclic graphs can69

violate detailed balance at steady-state.70

∗ In more (indicial) words,
∑
i

dpi

dt
=
∑
i

(∑
j

Ljipj

)
=
∑
j

pj

(∑
i

Lji

)
=
∑
j

pj

(
Ljj +

∑
i6=j

Lji

)
. Since this must hold true for any value of pj , we see that

Ljj +
∑
i6=j

Lji = 0 for all states j, confirming the form of the diagonal entries of the matrix.
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B.1. Example of an acyclic system: the simple repression motif. This connection between structure and the impossibility of violating71

detailed balance is illustrated in the simple repression motif. Here, repressors are assumed to sterically exclude the polymerase’s72

binding (3, 4); this condition permits just three states in a linear graph that lacks a cycle. Specifically, call “S” the empty73

genome substrate state; R the repressor-bound genome state; and P the polymerase-bound genome state. These states form74

the linear graph,75

R
kRS−−−−−⇀↽−−−−−
kSR[R]

S
kSP [P ]−−−−−⇀↽−−−−−
kPS

P. [14]76

Since there is only one rooted spanning tree per root state, the Matrix Tree Theorem says that the steady-state statistical77

weights of the states are78 (
ρR
ρS
ρP

)
=

(
kSR[R]kPS
kRSkPS

kRSkSP [P ]

)
. [15]79

Thus, the ratios between these statistical weights must be ρR
ρS

= kSR[R]kPS
kRSkPS

= kSR[R]
kRS

, and ρP
ρS

= kRSkSP [P ]
kRSkPS

= kSP [P ]
kPS

.80

Now we explicitly verify that given this special case of an acyclic architecture, these statistical weights are unchanged by81

imposing the further requirement of detailed balance. The condition of detailed balance is equivalent to stating that the input82

and output fluxes between any pair of nodes must equal,83 {
ρSkSR[R] = ρRkRS

ρSkSP [P ] = ρP kPS .
[16]84

We see at once that indeed, this statement of detailed balance is fully equivalent to the relative statistical weights we found by85

the Matrix Tree Theorem. (We need only consider N − 1 = 2 ratios in this case, by the normalization of total probability.) So86

as expected, the stationary probabilities found by the Matrix Tree Theorem further satisfy detailed balance, for this linear87

(acyclic) simple repression motif.88

C. The cycle condition relates a ratio of rate constants to (non)equilibrium. In a graph composed of a single cycle of states,89

the net drive maintaining a nonequilibrium steady-state is related to the ratio of products of rate constants taken in opposing90

directions around the cycle (5). Here we pedagogically discuss this connection by showing that when this ratio is one, and the91

system is at steady-state, then the system must be at detailed balance, and vice versa.92

Consider such a cyclic weighted graph composed of N nodes and 2N edges (encoding the bidirectional transitions); enumerate
the states from 1 to N , and the corresponding edge weights as the rates ki,i+1 and ki+1,i between neighboring nodes (i, i+ 1).
(In what follows, given the cyclic structure of the graph, we adopt the notational convention that indices are to be taken modulo
N .) For notational convenience, define the product of rate constants in the clockwise (+; increasing index i direction) as

γ+ ≡
N∏
i=1

ki,i+1,

and the analogous product in the counter-clockwise direction as

γ− ≡
N∏
i=1

ki+1,i.

Our goal is to show that when both their ratio γ is unity,93

γ ≡ γ+

γ−
=

N∏
i=1

ki,i+1

N∏
i=1

ki+1,i

= 1 [17]94

and the system is at steady-state—namely that the net influxes and outfluxes balance for each node in graph,95

0 = Ji,i+1 − Ji+1,i + Ji−1,i − Ji,i−1, ∀i ∈ J1 ; NK, [18]96

detailed balance is automatically satisfied, and vice versa. The detailed balance condition is that97

Ji,i+1 = ki,i+1ρi = ki+1,iρi+1 = Ji+1,i,∀i ∈ J1 ; NK. [19]98

First, we verify the logical direction Detailed Balance, Eq. [19] ⇒ (Steady State, Eq. [18] AND γ = 1, Eq. [17]). Rewriting
the detailed balance condition Eq. [19] readily confirms this desired logical direction; specifically, we see,

γ =
∏N

i=1 ki,i+1∏N

i=1 ki+1,i
= ΠN

i=1Ji,i+1

ΠN
i=1Ji+1,i

= 1.
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Next we verify the opposite logical direction, that Eq. [19] ⇐ (Steady State, Eq. [18] AND γ = 1, Eq. [17]). Starting from99

the cycle condition of γ = 1 allows us to rewrite the influx through a given node m as Jm+1,m =

N∏
j=1

Jj,j+1

N∏
j=1,j 6=m

Jj+1,j

. The outflux100

through a node p is analogously Jp,p+1 =

N∏
j=1,j 6=p

Jj,j+1

N∏
j=1

Jj+1,j

. Using these expressions to replace each of the four flux terms that101

appear in the steady-state condition Eq. [18], for all nodes m ∈ {i, i− 1} and p ∈ {i, i− 1}, gives102

0 = J12...Ji−1,iJi+2,i+3...JN1

J21...Ji,i−1Ji+1,i+2...J1N

[(
Ji+1,i+2

Ji+2,i+1
− Ji,i+1

Ji,i+1

)
Ji−1,i

Ji,i−1
− Ji+1,i+2

Ji+2,i+1

(
Ji,i+1

Ji+1,i
− Ji−1,i

Ji,i−1

)]
. [20]103

This expression simplifies to imply that the ratio of influxes to outfluxes must be the same across all pairs of edges,104
Ji−1,i
Ji,i−1

= Ji+1,i+2
Ji+2,i+1

= H, ∀i ∈ J2 ; NK, for some value H. Last, substituting the condition Eq. [17] implies that H = 1, and105

therefore implies Eq. [19], completing the desired correspondence.106

D. Discussion of various ways of quantifying dissipation. The field of nonequilibrium thermodynamics quantifies nonequilib-107

rium using different mathematical quantities. The nonequilibrium driving force, also referred to as the net (chemical) drive, is108

one key quantity. For a single cycle, the net drive ∆µ is the net difference in chemical potential, namely free energy, imposed109

by one progression around the cycle along the nonequilibrium steady-state flux (5), (6, Ch. 13). For a single cycle, this net110

drive is related to the cycle parameter γ we have just discussed in the previous subsection via111

∆µ = kBT ln γ. [21]112

The units of this nonequilibrium driving force are energy (kBT ); in view of its centrality in describing nonequilibrium113

steady-states, this net drive is the quantity we use to analyze nonequilibrium in this paper.114

Another related, central quantity that governs nonequilibrium behavior is the dissipation rate, or entropy production rate,115

which for a single cycle (at steady-state) is116

Ẇ ≡ ∆J∆µ = (Ji,i+1 − Ji+1,i) kBT ln γ, [22]117

where ∆J is the nonequilibrium steady-state’s net flux difference along any of the cycle graph’s edges. This entropy production118

rate has units of work (energy per time).119

Interestingly, note that Eq. [22] makes clear that even if a cycle requires a finite net drive ∆µ 6= 0 to maintain a120

nonequilibrium probability distribution over states, if the system is made to operate slowly enough—by reducing the magnitudes121

of all rates (hence fluxes J) simultaneously (while retaining their relative imbalances, e.g. in the same γ and hence the same122

∆µ)—the entropy production rate can be made arbitrarily small, Ẇ → 0. (Since our chief focus is on the statically controlled,123

steady-state behavior of regulatory systems, we do not analyze the entropy production rate in this paper, in favor of the net124

drive ∆µ.)125
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2. Insights into the square graph126
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Fig. S1. An experimental histogram of empirically-observed gene regulatory motifs in E. coli (7) reveals that many promoter sites are regulated by a single repressor or
activator. A single repressor can often implement the simple repression motif, where the repressor excludes the polymerase from binding, allowing just three states in a linear
graph. (Raw histogram data are courtesy of Reference (7).) The reason that the “simple activation motif” is schematized as linked to both the (0 activator, 1 repressor) and (1
repressor, 0 activator) histogram bar is that while steric exclusion commonly occurs for repressors, often making single repressors well described by a linear graph of three
states, some repressors do not completely exclude the polymerase, permitting a cycle motif too.

A. The simple four-state cycle motif pervades prokaryotic and eukaryotic gene regulation. Reference (7) is among the widest127

experimental censuses discovering regulatory interactions in E. coli in the recent literature. This study found that transcriptional128

architectures with one activator or repressor are the most commonly observed regulated transcriptional architectures. This129

pervasiveness of operons regulated by individual transcription factors is a finding confirmed by wider censuses based on130

aggregated studies in RegulonDB (8).131

Thanks to common steric overlaps between the repressor binding site and polymerase binding site (8), a repressor is132

often—though not necessarily—mutually exclusive with the polymerase (see Fig. S1). In this case, the repressor implements a133

simple repression motif, a graph which lacks a cycle (3). However, when the repressor does not sterically exclude the polymerase,134

a cycle of four states emerges. The same cycle of four states emerges with activators, whose binding sites rarely directly overlap135

with the polymerase binding site (8); this produces a “simple activation motif.” These observations affirm that a single cycle of136

four states is a common motif in prokaryotic gene regulation. Equivalents of such a cycle also occur regularly across eukaryotic137

gene regulation (9).138

B. Order of magnitude estimated rate constants for prokaryotic transcription. Here, to allow us to assess how accessible139

interesting regulatory shape phenotypes are in the vicinity of biological rate parameters, we estimate default equilibrium rates140

typical of transcriptional systems in prokaryotes.141

First, we remark that the correspondences between thermodynamic and kinetic viewpoints discussed in §G.3—specifically,142
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Eq. [60]—provides the following parameter correspondences useful for our estimates:143 
K1 = kPS

kSP
= [P ]N

P
eβ∆εpd

K2 = kXP,P
kPX,P

= [X]N
X
eβ(∆εxd+εxp)

K3 = kXP,X
kX,XP

= [P ]N
P
eβ(∆εpd+εxp)

K4 = kXS
kSX

= [X]N
X
eβ∆εxd

, [23]144

where we have defined four equilibrium constants K1, . . . ,K4 (with units of concentration); [X] is the concentration of145

transcription factor (say, in nanomolar) but X is the absolute copy number (and analogously for the polymerase with [P ] and146

P ); N is the number of nonspecific binding sites on the genome; ∆εyd energy difference between a state where molecule Y is147

bound specifically to the genome versus nonspecifically; and εxp is the interaction energy between the transcription factor148

X and the polymerase P . We note that [X] = X
NAVcell

and [P ] = P
NAVcell

, where NA is Avogadro’s number and Vcell is the149

volume of the cell, usually taken here to be that characteristic of E. coli, Vcell ≈ 1 µm3. Noting that since one nanomolar is150

conveniently 1 nM ≈ 1
NAVcell

, a natural unit for the rate constants depending on the concentration of transcription factor or151

polymerase is s−1nM−1.152

Armed with these conventions, we now estimate the order of magnitude of governing rate constants from available153

measurements and empirical data.154

• First, we consider plausible binding e.g. on-rates of polymerase or transcription factors to the genome.155

– Taking the Lac repressor as evocative of transcription factors, three empirical measurements give plausible on-rate156

values, and illustrate some empirical variation:157

∗ Ref. (10) (BNID 106392; (11)) reports a kon ≈ 2.8 × 107 s−1 M−1 = 2.8× 10−2 s−1 nM−1 for the Lac158

repressor.159

∗ Ref. (12) (BNID 104607; (11)) reports an appreciably larger association rate of kon ≈ 7 × 109 s−1 M−1 =160

7 s−1 nM−1 .161

∗ In their SI, reference (13) report that they took measurements from a paper by Hammar et al. (14), who in162

their Fig. 2 report (from single molecule, in vivo measurements) that in E. coli, it takes the Lac repressor an163

average time of about τon ≈ 30 s to bind to O1 or Osym operator sites. The later reference (13) report without164

citation that the copy number of Lac repressors in this older paper’s setting was in fact about 4 copies per cell165

(≈ 4 nM). This implies an association rate of about kon ≈ 1
τon c

≈ 1
30 s ×4 nM

∼ 10−2 s−1 nM−1 .166

An intermediate average of these various empirical data suggest a few tenths of a nanomolar per second is a167

reasonable scale for the basal association rate.168

– We compare the empirical measurements above with an order-of-magnitude theoretical estimate presuming diffusion-
limited binding. RNAP’s binding site is approximately 20− 34 bp long; each base-pair is separated by 3.4Å (15);
so the characteristic scale a we could expect of this binding site is about a ≈ 9 nm. The diffusion constant of
polymerase is Dpoly ≈ 0.4µm2/s (16), while the (effective, in vivo) diffusion coefficient for LacI is DLacI ∼ 0.4µm2

(BNID 102038; (11); this effective diffusion constant for LacI plausibly reflects both 3D diffusion between nonspecific
binding events and 1D genome-associated diffusion (17)). Reference (18) reports that the apparent (3D) diffusion
coefficient of RNA polymerase II in the nucleus is (1-5) µm2/s, similar to other transcription factors. (Altogether,
these values indicate taking a diffusion constant of about D ∼ 1 µm2/s is reasonable.) A diffusion limited on-rate
calculation then predicts that

kon = 4πDa ∼ 12(1µm2/s)(9× 10−3 µm) ∼ 0.11 /s µm3︸︷︷︸
(1/0.602)nM−1

= 0.17/s/nM ∼ 10−1/s/nM .

• Next we appraise characteristic energy scales among transcription factors, polymerase, and the specific sites on the169

genome:170

– According to Ref. (19) (BNID 103594; (11)), the polymerase binds more favorably to the Lac specific binding site171

than nonspecific sites on the genome by an energy difference of about ∆εpd ≈ −2.9 kBT so β∆εpd ∼ −3 .172

– Ref. (20) reports that the Lac repressor preferentially binds to the specific operator binding sites with energies of173

ranging from ∆εxd ≈ −15.3 kBT (for the O1 site) to ∆εxd ≈ −9.7 kBT (for the O3 site). So we take as representative174

β∆εxd ∼ −13 .175

– Ref. (19, Fig. 2) (BNID 103591; (11)) reports that the CRP activator interacts with RNAP with an interaction176

energy of approximately βεxp ∼ −4 .177
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Since transcription factors plausibly stick to the genome by a factor K1/K4 ≈ exp (−β∆εxd + β∆εpd) ∼ exp(13− 3) =
exp(10) ∼ 2 ∗ 104 stronger compared to the polymerase’s interaction with the genome (19), we remark that any few-fold
difference in the on-rate of polymerase to the genome (compared to the on-rate of the transcription factor to the genome)
is not likely to be hugely significant in estimating koff = KDkon. Therefore we will take the on-rates of polymerase and
transcription factor to be essentially the same (diffusion-limited) value:

kon ∼ 0.1/s/nM .

• Considering E. coli, the number of nonspecific binding sites is about N ≈ 5 × 106 (19, 20) and the polymerase copy178

number is about P ≈ 103 copies per cell (20). This suggests [P ] ≈ 103 nM and we estimate kSP [P ] ≡ kX,XP [P ] ≈179 (
0.1 s−1 nM−1) (103 nM) ≈ 102 s−1 .180

• While it is precisely how variation in the concentration [X] tunes transcription that we are interested in, it is still181

instructive to report typical ranges for these transcription factor concentrations. As summarized in (15) (namely http://book.182

bionumbers.org/what-are-the-copy-numbers-of-transcription-factors/), cellular censuses show that repressing transcription183

factors typically have between 10− 103 copies per cell and activating transcription factors typically have between 1− 102
184

copies. This implies [X] ∼ few× 102 nM. So ignoring the very variation in [X] we’re interested in, point estimates for185

kSX [X] ≡ kP,XP [X] are ≈ (0.1 s−1 nM−1)(few× 102 nM) ≈ few× 10 s−1 .186

Altogether, these estimates enter to simplify Eq. 60 and imply an approximate, default set of all rates. We summarize187

these order of magnitude values in Figure 1A of the main text and the table S1 below. (In the later analyses examining the188

consequences of drive along individual edges or pairs of edges, we choose and analyze more precise sets of default rate values189

consistent with these orders of magnitude; see Figures S10 and K.1.)190

rate meaning calculation order of magnitude estimate
kXS unbinding of TF from empty genome kSXeβ∆εxd 0.8 s−1

kXPP unbinding of TF from RNAP-bound genome kPXPN(1 nM)eβ(∆εxd+εxp) 2 × 10−2 s−1

kSX binding of TF to empty genome := kon 0.1 s−1 nM−1

kPXP binding of TF to RNAP-bound genome := kon 0.1 s−1 nM−1

kPS unbinding of RNAP from empty genome kSPN(1 nM)eβ∆εpd 2 × 104 s−1

kXPX unbinding of RNAP from TF-bound genome kXXPN(1 nM)eβ(∆εpd+εxp) 5 × 102 s−1

kSP binding of RNAP to empty genome := kon 0.1 s−1 nM−1

kXXP binding of RNAP to TF-bound genome := kon 0.1 s−1 nM−1

Table S1. Summary of orders-of-magnitude estimates of rates at equilibrium that govern transcription.

C. Biologically, timescales are plausibly separated enough that transcription is well represented by small Markov chain191

graphs.192
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Assuming that the abundance of the polymerase is about [X] ~ 200 copies/cell = 200 nM; and the polymerase concentration
is [P] ~ 103 copies/cell = 103 nM, the Laplacian is

and computing the eigenvalues, we find that the smallest decay rate  λmin≈ -20 s-1 is fast relative to transcription or degradation.

The magnitudes of eigenvalues λ<0 of the Laplacian L are decay rates that set how slowly p(t) transiently approaches 
steady state; this decay is dominated by the slowest rate λmin.

X
s o u r c e  s t a t e

XP PS

X
d

e
s

ti
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ti
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 s
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tat
es

typical time between initiation & termination: ≈ 16 s
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typical transcription initation timescale: ≈ 3 s

typical mRNA degradation timescale: 
~300 s

genome

Fig. S2. A separation of timescales between transcription and binding or unbinding is well justified, for the order-of-magnitude rate constant estimates we adopt to model
transcription.

Technically, gene expression is governed by a fuller chemical master equation than that defined by merely the states of the193

genome. In principle, the current number of mRNA transcripts could affect the allowed transitions, and a priori one might194

worry that an additional mechanism to transition from a state where the polymerase is bound to the genome (P or XP ) to a195

state where it is unbound (S or X) is when the polymerase has transcribed a transcript successfully enough to vacate the196

polymerase binding site. These technicalities would in fact imply a larger, fuller ladder of states that define the discrete state197

Markov chain, as visualized in Figure S2. However, here we argue that the time to transcribe is typically much longer than the198

equilibration timescale of the four states of the genome alone. This separation of timescales formally justifies the assumption199

that the net accumulation of mRNA transcripts is proportional to the probability of being in the polymerase-bound states.200

First, we estimate the rate at which the count of mRNA transcripts accumulate once the polymerase is bound. RNAP201

elongates nascent transcripts at a rate of about 3.72 kb/min in E. coli (BNID 103021; (11)); this is v = 62 nucleotides/second.202

The average protein is Lp ≈ 340 peptides long (BNID 10895; (11)), implying that protein-coding mRNAs are about 3LP ≈ 103
203

nucleotides long, consistent with reports elsewhere of mean mRNA lengths of 924 nt across prokaryoates (21). Hence, once204

transcribing, it takes approximately τtranscribe ≈ 3Lp
v
≈ 1000/62 ≈ 16 seconds to serially transcribe a typical gene. This is a205

lower bound on the accumulation rate, however, since the RNAP can leave the promoter faster than a transcript is complete,206

permitting a larger transcription initiation rate. In E. coli, transcription iniatation has been reported to occur at a typical rate207

of 20 initiations/min/gene, or at a rate of ∼ 0.3initiations per second (BNID 111997; (11)). Therefore, in the fuller lattice208

of states of a Markov chain explicitly tracking mRNA counts (Fig. S2), the rates of transitions from states with count m to209

states with count m+ 1 are plausibly between the lower bound of rtranscribe = 1/τtranscribe ≈ 1/16s ≈ 0.06 s−1 and an upper210

bound of rinitiate ≈ 0.3 s−1, or in summary, we take r ∼ few× 10−1 s−1 . In addition, degradation is even slower: the typical211

half-life of an mRNA in E. coli is reported to be on the order of a few minutes (BNID 108598; (11)), implying the degradation212

rate (governing how quickly m mRNAs could decrement to m− 1 mRNAs) is on the order of γd ∼ few× 10−3 s−1.213

In contrast, the slowest timescale within which the four genome states converge towards their steady-state distribution—set214
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by the smallest magnitude eigenvalue of the four state Laplacian matrix of transition rates for the genome—is approximately215

1/20 ≈ 0.05 seconds (see Fig. S2 for the calculation). This is much faster than the transcriptional transition timescales.216

Therefore, the condensation of the larger ladder graph into the smaller graph of just four binding and unbinding reactions on217

the genome is justified, for this particular set of plausible rate constants.218

D. Deriving the universal form: The Matrix Tree Theorem on the square graph yields a ratio of quadratic polynomials. Applying219

the Matrix Tree Theorem to derive steady-state probabilities pi of each state i, and hence any response observable 〈r〉 ≡220 ∑
states i

ripi, reveals that these responses follow the following universal form,221

〈r〉 = A+B[X] + C[X]2
D + E[X] + F [X]2 , [24]222

where the coefficients are given by weighted sums of spanning trees with different possible [X]-dependencies, namely,223 

A = rPT
0
P + rST

0
S

B = rPT
1
P + rST

1
S + rXPT

1
XP + rXT

1
X

C = rXPT
2
XP + rXT

2
X

D = T 0
P + T 0

S

E = T 1
P + T 1

S + T 1
XP + T 1

X

F = T 2
XP + T 2

X ,

. [25]224

Here, TnY [X]n is the sum of spanning trees rooted in Y where n edges depend on [X] participate. For example, T 1
XP =225

kSP [P ]kPXP kXXP [P ] + kPSkSXkXXP [P ] + kXSkSP [P ]kPXP is the sum of all spanning trees rooted in state XP that carry a226

linear [X]-dependence. The other explicit expressions of the coefficients TnY are visualized in Figure S3.227
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Fig. S3. All 16 rooted spanning trees of the four-state cycle can be classified by which node serves as the root (in columns) and the participating number of edges that
contribute a power n of the transcription factor concentration [X] (in row n). The weighted spanning trees completely determine the universal form of the fold-change output,
as specified by Eqs.24 and 25.

E. Discussion on observable conventions: the logarithmic control variable. Throughout our analysis and discussion in this228

paper, we monitor the shape, number of inflection points, and sensitivity of transcriptional outputs with respect to the control229

parameter of the concentration of transcription factor, on a logarithmic scale. We use this logarithmic convention in alignment230

with common practice in biochemical and transcriptional studies (1, 20, 22). Using log concentration is convenient in the231

common setting where environmental inputs or governing transcription factor concentrations can vary over orders of magnitude,232

or where biochemical control systems are conceptually implementing a sort of fold-change detection (23).233

This logarithmic convention is largely benign, since it is grounded in a monotonic one-to-one transformation of the control234

variable measured on a linear scale; however, it has two small mathematical consequences we briefly appraise. First, counting235

the number of inflection points with respect to the logarithmic control variable can introduce an additional point of inflection236

compared to the linear control variable. This occurs for the discussions of the shape of detailed balance responses,237

〈r〉eq = A′ +B′[X]
C′ +D′[X] . [26]238

This is famously just a Langmuir binding curve or Hill function of order one, which on a linear scale is a hyperbola (nonsigmoidal239

and without any inflection points). However, it is quite common to depict such curves on a logarithmic scale, where the curve240

gains sigmoidal character and a point of inflection; the inflection point’s local slope defines an effective Hill coefficient. This241
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canonical view, with respect to a logarithmic control variable, is the picture we invoke while counting inflection points or242

describing shapes.243

Second, taking a logarithm invites a mathematical comment on units. Any logarithm of a concentration control variable must244

be understood as a logarithm of that concentration relative to some standard concentration scale, for instance 1 nanomolar.245

In plots where log[X] appears, the reference concentration merely denotes the horizontal offset/position of the curve. The246

particular choice of such a standard reference concentration scale [X]0 has no effect on logarithmic derivatives, because of the247

simple fact that248

df(x)
d log([X]/[X]0) = df(x)

d(log[X]− log[X]0) = df(x)
d log[X] . [27]249

F. Collapse of eight parameters into two emergent fundamental shape parameters (a, b). Now, by neglecting scales and shifts,250

we show how we can reduce the ratio of quadratic polynomials Eq. [25]—possessing six coefficients that are functions of eight251

rate constants—to an emergent form of just two shape parameters, namely:252

〈r〉 − 〈r〉0
〈r〉∞ − 〈r〉0

= ax+ x2

1 + bx+ x2 , [28]253

where 〈r〉0 and 〈r〉∞ are the leakiness and saturation of the function, expressible in terms of ratios of coefficients:254

lim
[X]→0

〈r〉 = 〈r〉0 = A

D
and lim

[X]→∞
〈r〉 ≡ 〈r〉∞ = C

F
.255

To show this two-parameter form of Eq. 28, we preview our procedure as follows. We divide by one of the six original256

coefficients of Eq. 24 (here, the coefficient D); extract an additive factor of the leakiness 〈r〉0; nondimensionalize the257

concentration [X] by a convenient concentration scale that emerges; perceive that a multiplicative factor of the dynamic258

range 〈r〉∞ − 〈r〉0 can be demanded to appear; and summarize the resulting expression by defining just two emergent shape259

parameters. To wit,260

〈r〉 = A+B[X] + C[X]2
D + E[X] + F [X]2 [29]

=
A
D

+ B
D

[X] + C
D

[X]2

1 + E
D

[X] + F
D

[X]2
[30]

= 〈r〉0 +
A
D

+ B
D

[X] + C
D

[X]2 − 〈r〉0(1 + E
D

[X] + F
D

[X]2)
1 + E

D
[X] + F

D
[X]2

[31]

= 〈r〉0 +
(B
D
− 〈r〉0 ED )[X] + (C

D
− 〈r〉0 FD )[X]2

1 + E
D

[X] + F
D

[X]2
[32]

Now we nondimensionalize the control parameter by a convenient concentration scale, [X]0 =
√

D
F
, thus expressing the261

observable with respect to the rescaled concentration variable, x ≡ [X]
[X]0

:262

〈r〉 = 〈r〉0 +
E√
DF

(B
E
− 〈r〉0)x+ (C

F
− 〈r〉0)x2

1 + E√
DF

x+ x2
[33]263

As long as 〈r〉∞ 6= 〈r〉0, a condition we will consider shortly, we can rewrite this form of the observable as264

〈r〉 = 〈r〉0 + (〈r〉∞ − 〈r〉0)
E√
DF

B
E
−〈r〉0

〈r〉∞−〈r〉0
x+ x2

1 + E√
DF

x+ x2
. [34]265

Finally, this form invites us to define shape parameters a, b as266 {
b = E√

DF

a = b
B
E
−〈r〉0

〈r〉∞−〈r〉0
,

[35]267

and allows us to write268

〈r〉 = 〈r〉0 + (〈r〉∞ − 〈r〉0) ax+ x2

1 + bx+ x2 , [36]269

recovering the simplified expression Eq. [28].270

Now we return to address the assumption that 〈r〉0 6= 〈r〉∞, i.e. that the uninduced response (leakiness) is different from the271

maximally induced response (saturation). If instead we are in the unusual special case that the response does not change with272

[X] at all, we extend a by continuity to a = b. In this constant case, B
E
− 〈r〉0 = 〈r〉∞ − 〈r〉0. In fact the function is constant273
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when B
E

= A
D

= C
F

and the whole polynomial of order two factors out. Is this limit, a
b
→ 1, and the form of equation Eq. [28]274

still holds.275

Otherwise, if 〈r〉0 = 〈r〉0 but the function is not constant everywhere, a is infinite and the proper simplified parameterization276

of the observable instead becomes 〈r〉 = 〈r〉0 + cx
1+bx+x2 , with c = b(B

E
− 〈r〉0). In this case, the function is non-monotonic.277

Indeed, the function has to both increase and decrease to have the same limit at zero and infinity without being constant.278

We do not make an elaborate quantitative study of this class of function, because we propose that in biological systems that279

succeed at accomplishing regulation, it is usually the case that the uninduced and maximally induced responses are at least280

infinitesimally different, namely |〈r〉∞ − 〈r〉0| = ε with ε finite. However, philosophically, this type of eccentric response is still281

accommodated by the parameterization of Eq. [28] in the limit that a→∞.282

G. Equilibrium responses of the square graph.283

G.1. Demotion of responses to a (monotonic) ratio of linear polynomials at equilibrium. Here, we derive Eq. 3 of the main text (also284

reproduced here as Eq. [26]), that any observable produced by the square graph is demoted to a ratio of linear polynomials in285

[X] at detailed balance. Informally, our strategy will be to factor out a statistical weight of a particular reference state from286

every statistical weight that participates in defining the observable 〈r〉; this forces ratios of statistical weights to appear, which287

the detailed balance condition relates to ratios of rate constants. In the square graph, the ratios of rate constants can carry288

only a single power of [X], motivating the appearance of linear terms only. (Along the quick mathematical journey, we will289

resolve the minor mathematical wrinkle that the detailed balance condition only comments immediately on the ratio of two290

statistical weights when those states are connected in the graph.)291

We proceed. Choose the reference state to be state P , for concreteness though arbitrarily (as long as this reference state has
nonzero steady-state probability). We can write,

〈r〉 =
∑
i

ripi [37]

=

∑
i

riρi∑
i

ρi
[38]

=

ρP
∑
i

ri
ρi
ρP

ρP
∑
i

ρi
ρP

[39]

=

rP +
∑

connected
i6=P

ri
kPi
kiP

+
∑

disconnected
j 6=P

rj
ρj
ρP

1 +
∑

connected
i 6=P

kPi
kiP

+
∑

disconnected
j 6=P

ρj
ρP

[40]

Why does the last line have separated sums? This is the mathematical wrinkle we alluded to. Detailed balance guarantees that292

ρikiP = ρP kPi for any state i. Normally, if the rates are nonzero, this suggests we can replace a ratio of statistical weights by a293

ratio of rate constants (the first sum). However, if a state j is not connected to P (namely kjP = kPj = 0), then we can no294

longer necessarily write ρj
ρP

as a pure ratio of just two rate constants.295

To make further progress, we consider the second sum in the numerator, whose summands are those ratios ρj/ρP for states
j that are not connected to P . By the strongly-connected structural assumption that empowers us to apply the Matrix Tree
Theorem, there must be at least one path (built from some number q of edges in the graph) that connects state j to state P .
Hence, the ratio of statistical weights can be written as a product of rate ratios along that path, giving

ρj
ρP

= ρj
ρa

ρa
ρb

ρb
ρc
. . .

ρr
ρq

ρq
ρP

[41]

= kaj
kja

kba
kab

kcb
kbc
· · · kqr

krq

kPq
kqP︸ ︷︷ ︸

q ratios

. [42]

Since here, each directed edge carries at most a linear factor of [X], any ratio of rate constants is either constant; proportional296

to 1/[X]; or proportional to [X].297

Returning to the specifics of the four-state graph and our reference state P , we see that states S and XP are both connected298

to P , giving the first, connected-state sum as
∑

connected
i 6=P

ri
kPi
kiP

= rS
kPS

kSP [P ] + rXP
kPXP [X]
kXPP

.299
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The only state that is disconnected from state P , giving the disconnected sum, is state X. Without loss of generality, we
now rewrite ρX

ρP
using the path of edges that goes through S. (We recover the same ultimate [X]-dependency if we had chosen

the path through XP instead.) This gives,
ρX
ρP

= ρX
ρS

ρS
ρP

[43]

= kSX [X]
kXS

kPS
kSP [P ] . [44]

So the disconnected sum is just
∑

disconnected
j 6=P

rj
ρj
ρP

= rX
kSX [X]
kXS

kPS
kSP [P ] . Altogether, we recover

〈r〉eq. =
rP +

(
rS

kPS
kSP [P ] + rXP

kPXP [X]
kXPP

)
+
(
rX

kSX [X]
kXS

kPS
kSP [P ]

)
1 +

(
kPS

kSP [P ] + kPXP [X]
kXPP

)
+
(
kSX [X]
kXS

kPS
kSP [P ]

) [45]

:= A′ +B′[X]
C′ +D′[X] , [46]

where we have highlighted how both the numerator and denominator admit only up to a linear dependence on [X], and300

A′, B′, C′, D′ are coefficients that depend only on weighted ratios of opposing rate constants (and are hence set fully thermody-301

namically by energy parameters).302

The reasoning above suggests that the fact that every path connecting two states contains at most one power of [X] was a303

crucial architectural ingredient for the collapse of the ratio of quadratic polynomials to a ratio of linear polynomials in the304

square graph. One interesting transparent consequence this reasoning highlights is that the same collapse (to a ratio of linear305

polynomials at detailed balance) must occur for the completely-connected graph.306

G.2. Leakiness, saturation, and EC50 are tunable at equilibrium. As mentioned in the main text, the response’s leakiness (value when307

[X] is completely absent) and saturation (value when [X]→∞) are set by the fact that the four state graph collapses into a308

different two-state linear graph for each limit. Specifically, the kinetics reduce to,309 
[X]→ 0 : S

kSP [P ]−−−−−⇀↽−−−−−
kPS

P

[X]→∞ : X
kX,XP [P ]
−−−−−−−⇀↽−−−−−−−

kXP,X

XP
. [47]310

Since these two-state truncated graphs are linear, and so must be at equilibrium, we observe that the values of the leakiness311

and saturation must be thermodynamic statistical averages of the ri. We conclude that312 {
〈r〉0 = rP pP + rS (1− pP )
〈r〉∞ = rXP pXP + rX (1− pXP ) ,

[48]313

where pP = kSP [P ]
kSP [P ]+kPS

≡ 1
1+e−β∆εSP

and pXP = kX,XP [P ]
kX,XP [P ]+kXP,X

≡ 1
1+e−β∆εXXP

are the simple stationary-solutions of each314

two-state system, and where we have defined the appropriate Boltzmann energy parameters via each ratio of rates. Hence315

leakiness and saturation are controllable by thermodynamic means.316

Further assessing the form of the inflection point when the observable is at detailed balance reveals that it can be set by
another ratio of rates, hence energy parameter. However, the raw sharpness at the inflection point remains equal to one fourth
of the dynamic range. We demonstrate this obligatory proportionality between the maximum raw sharpness and dynamic
range as follows. At equilibrium, taking one derivative of the detailed balance response described by Eq. [46] gives the raw
sharpness as,

d〈r〉eq.

d(ln[X]/[X]0) = (B′C′ −A′D′)[X]
(C′ +D′[X])2 . [49]

Taking an additional derivative to solve for the inflection point where d2〈r〉eq.

d(ln[X]/[X]0)2 = 0 gives,

d2〈r〉eq.

d(ln[X]/[X]0)2 = (B′C′ −A′D′)(C′ −D′[X])[X]
C′ +D′[X] . [50]

The inflection point, where this second derivative vanishes and the raw sharpness is maximized, occurs at [X]∗ = C/D.317

Substituting this into the maximal sharpness expression, we find the maximum sharpness at equilibrium is merely318

max d〈r〉eq.

d(ln[X]/[X]0) = 1
4

(
B′

D′
− A′

C′

)
. [51]319
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Now, note that the equilibrium leakiness is given by320

〈r〉eq0 ≡ lim
[X]→0

〈r〉eq = A′

C′
, [52]321

and the saturation is given by322

〈r〉eq∞ ≡ lim
[X]→∞

〈r〉eq = B′

D′
, [53]323

so the maximum sharpness is indeed one fourth the dynamic range,324

max d〈r〉eq.

d(ln[X]/[X]0) = 1
4 (〈r〉eq∞ − 〈r〉eq0 ) . [54]325

These constrained behaviors of the equilibrium response are summarized in Figure S4.326

A transcription factor is a global, overall repressor when the saturation is smaller than the leakiness, 〈r〉∞ < 〈r〉0. Conversely,327

a transcription factor is overall an activator when the saturation is larger than the leakiness, 〈r〉∞ > 〈r〉0. As we have just328

seen, since the leakiness and saturation are set thermodynamically, so too is the global nature of the transcription factor as an329

overall repressor or activator.330

leak

slope

in�ection (note log scale)x*

saturation

x

example observable response curve at equilibrium

equilibrium phenotypic properties are constrained to restrictedly covary

A

B

Fig. S4. At equilibrium, response curves (A) are always monotonic in the control variable x, with (at most) one inflection point in ln x. The leak (observable at zero x, 〈r〉0, in
orange); location x∗ of the inflection point (in green); slope at the inflection (in purple); and saturation limit (in pale blue) capture the properties of the curve. Equilibrium
imposes the constraint that these phenotypic properties vary in fixed relationships, as illustrated in (B).

G.3. Validating consilience between kinetic and thermodynamic viewpoints. To be helpful to the reader interested in reconciling331

thermodynamic models; experimental parameters such as equilibrium dissociation constants that may parameterize them;332

and the more elaborate kinetic parameterization of continuous-time Markov chains and the Matrix Tree Theorem, below we333
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endeavor a parameter-by-parameter correspondence between these viewpoints. This correspondence is valid when energy334

dissipation vanishes.335

From a kinetic viewpoint, detailed balance implies that the ratio of two states is expressible as a ratio of rate constants. From336

a thermodynamic viewpoint, the same ratio of two states is expressible as a ratio of Boltzmann weights set by thermodynamic337

energy parameters. To link these perspectives, we define an effective equilibrium dissociation constant between a molecule Y338

and a site H, where the site can either be completely empty or also occupied by another molecule in its vicinity. We denote339

these equilibrium constants KHY,H and largely following the conventions discussed in Ref. (19), define them as340

KHY,H = [Y ]
yH

, [55]341

where yH = ρHY
ρH

is a ratio of statistical weights; specifically, ρHY is statistical weight of the molecule Y bound to the site H,342

and ρH is the statistical weight of the state where the molecule Y is not bound to the site H. With this definition, the ratio of343

probabilities of two states is constant and the dissociation constant has units of a concentration.344

For the square graph of four states—namely when the site is empty, S; when the transcription factor is bound to the DNA,345

X; when the polymerase is bound to the DNA, P ; and when both the transcription factor and the polymerase are both bound346

to the DNA, XP—we can define the effective equilibrium dissociation constants explicitly, seeing,347 
KSP,S = [P ]

pS
= [P ]ρS

ρP

KXP,P = [X]
xP

= [X]ρP
ρXP

KXP,X = [P ]
pX

= [P ]ρX
ρXP

KSX,S = [X]
xS

= [X]ρS
ρX

.

[56]348

In the 4-state-graph, detailed balance implies that,349 
ρX
ρS

= [X]kSX
kXS

ρP
ρS

= [P ]kSP
kPS

ρX
ρXP

= kXP,X
[P ]kXP,X

ρP
ρXP

= kXP,P
[X]kXP,P

.

[57]350

So we can express the effective equilibrium dissociation constants as functions of rate constants, recovering,351 
KSP,S = kPS

kSP

KXP,P = kXP,P
kXP,P

KXP,X = kXP,X
kXP,X

KSX,S = kXS
kSX

.

[58]352

Similarly, we can derive their expression with the thermodynamic formalism. Referring to Reference (19), we can define the353

partition function of the 4 states characterising the simple activation as follows: Z(P,X) = N !
P !X!(N−P−X)!e

−Pβεns
pd
/kbT−Xβεnsxd ,354

where β = 1/kBT , kB is the Boltzmann constant, and T the temperature. For the transcription case we can define355

∆εyd = εsyd − εnsyd , where εsyd is the energy of the molecule Y being on a specific site and εnsyd the energy of the molecule being on356

a non specific site and εxp the interaction energy between the transcription factor and the polymerase. X and P are respectively357

the number of sites free on the DNA for the transcription factor and the polymerase to bind. N is the number of nonspecific358

binding sites. We can define the weights of the different nodes at thermodynamic equilibrium (19):359 
ρS = Z(P,X)
ρP = Z(P − 1, X)e−βε

s
pd

ρXP = Z(P − 1, X − 1)e−β(εs
pd

+εs
xd

+εpx)

ρX = Z(P,X − 1)e−βεsxd

[59]360

Using the statistical mechanics approximation (N � P,X), we compute the effective equilibrium dissociation constants:361 
KSP,S = [P ]N

P
eβ∆εpd

KXP,P = [X]N
X
eβ(∆εxd+εxp)

KXP,X = [P ]N
P
eβ(∆εpd+εxp)

KSX,S = [X]N
X
eβ∆εxd

[60]362

We can note that [X] = X
NAVcell

and [P ] = P
NAVcell

. This then simplifies to equation Eq. [61], which give the expression of363

this dissociation constants in both the kinetic and thermodynamic viewpoints as,364
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KSP,S = kPS

kSP
= CNe

β∆εpd

KXP,P = kXP,P
kXP,P

= CNe
β(∆εxd+εxp)

KXP,X = kXP,X
kXP,X

= CNe
β(∆εpd+εxp)

KSX,S = kXS
kSX

= CNe
β∆εxd ,

[61]365

366

where CN = N
NAVcell

is the molar concentration of empty sites in the cell.367

Let us express the probability of the polymerase being bound to the DNA. First, we may write pP = ρP
ρP+ρX+ρXP+ρX

and
pXP = ρXP

ρP+ρX+ρXP+ρX
. Then, we may write,

pbound = pP + pXP =
1 + ρXP

ρP

1 + ρXP
ρP

+ ρX
ρP

+ ρS
ρP

=
1 + [X]

KXP,P

1 + [X]
KXP,P

+ [X]KSP,S
[P ]KSX,S

+ KSP,S
[P ]

, and,

pbound =
1 + [X]

KXP,P

1 + KSP,S
[P ] + [X]( 1

KXP,P
+ KSP,S

[P ]KSX,S
)
. [62]368

We can express this probability in terms of kinetic rate constants and concentrations as,369

pbound =
1 + [X]kXP,P

kXP,P

1 + kPS
kSP [P ] + [X]( kXP,P

kXP,P
+ kPSkXS

[P ]kSP kSX
)
. [63]370

Alternatively, we can also write this probability in term of energies and number of sites as:371

pbound = 1 +Xe−β(∆εxd+εxp)

1 + e
β∆εpd
P

+Xe−β∆εxd(eβεxp + e
β∆εpd
P

)
. [64]372

We note that X = [X]
CN

and P = [P ]
CN

. These two expressions are equivalent.373

G.4. Detailed balance is implied by γ = 1 and steady-state. To give concreteness to the general cycle condition we discussed in §C,374

we return to illustrate this result using the specific parameters of the square graph and a different, perhaps more transparent,375

algebraic tact.376

Why is detailed balance—as expressed in Equation Eq. [57]—equivalent to having a graph at steady state (where the Matrix377

Tree Theorem applies) and enforcing the cycle condition that the ratio of products of rate constants γ is unity? In the square378

graph, this cycle condition of unity is379

γ ≡ γ+

γ−
= kSXkX,XP kXP,P kPS [X][P ]
kXSkXP,XkP,XP kSP [X][P ] = kSXkX,XP kXP,P kPS

kXSkXP,XkP,XP kSP
:= 1. [65]380

First, define γ+ ≡ kSXkX,XP kXP,P kPS [X][P ] and γ− ≡ kXSkXP,XkP,XP kSP [X][P ], respectively, as the products of rate381

constant in the + (clockwise) and - (counterclockwise) directions.382

We will now prove that at steady state, we can write:383 
ρSkSX [X]− γ+ = ρXkXS − γ−
ρXkX,XP [P ]− γ+ = ρXP kXP,P − γ−
ρXP kXP,P − γ+ = ρP kP,XP [X]− γ−
ρP kPS − γ+ = ρSkSP [P ]− γ−.

[66]384

This Eq. 66 suffices to show that when γ+ = γ−—which guarantees γ = 1, the cycle condition that ensures equilibrium—the385

gamma terms cancel, and we recover the equations Eq. [57] that define detailed balance.386

To demonstrate the system of equations Eq. [66], we invoke the Matrix Tree Theorem. To illustrate the proof, we discuss387

just the first equation; the rest follow analogously. Specifically, we can write the statistical weights for the states X and S by388

applying the Matrix Tree Theorem, seeing that389 {
ρS = [X]kXSkXP,XkP,XP + kXSkXP,XkPS + kXSkXP,P kPS + kX,XP kXP,P kPS [P ]
ρX = [X]2kXP,XkSXkP,XP + [X]kXP,XkSXkPS + [X]kXP,P kSXkPS + [X]kXP,XkSP kP,XP [P ] [67]390

Then, we multiply by the appropriate rate constants:391 {
ρSkSX [X] = kXSkXP,X [X]kP,XP kSX [X] + kXSkXP,XkPSkSX [X] + kXSkXP,P kPSkSX [X] + kX,XP kXP,P kPS [P ]kSX [X]
ρXkXS = kXSkXP,X [X]kP,XP kSX [X] + kXSkXP,XkPSkSX [X] + kXSkXP,P kPSkSX [X] + [X]kXP,XkSP kP,XP [P ]kXS .

[68]392

393

In red, we recognize γ+ and in orange γ−; the rest of the expressions in blue are equal; and we recover the first equation of Eq.394

[66], as desired.395
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G.5. The cycle condition implies that changing transcription factor or polymerase concentrations does not affect the extent of disequilibrium396

in the square graph. Note that Eq. [65] demonstrates that because [X] and [P ] appear in both the products of rates in the397

clockwise and counterclockwise directions, their influence on the value of γ cancels out. This means that adjusting the398

concentration of transcription factor or polymerase maintains the extent of disequilibrium or equilibrium exhibited by the399

system.400

H. Driving different arrows in the square graph can still yield a ratio of quadratic polynomials. Throughout this article, we401

study the response observable relative to the concentration of transcription factor [X], tuning the edges in green in our square402

graph as visualized in Figure 1 of the main text. However, depending on the observable and the graph’s architecture, the403

parameter controlling the observable could be different than this transcription factor. For instance, in different biological404

settings, two rate constants could be adjusted simultaneously by the same scalar control parameter if they are driven by the405

concentration of a different external (like ATP ) or internal (like the polymerase P ) molecule governing the system. Therefore,406

we can ask: for what classes of control parameter will the observable 〈r〉 exhibit the same functional form of a ratio of quadratic407

polynomials?408

The Matrix Tree Theorem gives a precise structural answer to this question: when the graph has at least one rooted409

spanning tree with each of zero, one, and two edges that depend on the control parameter, the observable will inherit such a410

familiar quadratic dependence. This is a broad class of graphs. We now show some of the diversity of these graphs, whose411

response shapes and sensitivity bounds are necessarily mathematically identical to those we establish in the first half of the412

paper, by giving a few concrete examples of related graphs.413

Figure S5A illustrates various graphs whose responses are mappable to that of our original square graph (itself illustrated in414

S5A(i)). The response’s form is unchanged when we create a new graph by vertically reflecting the original graph (as in Fig.415

S5A(ii)), or merely rotating it (not displayed).416

Another structurally-distinct but mathematically-equivalent type of graph is shown in Fig. S5A(iii) (also representing417

any other graph with two controlled edges that may be mapped by reflection or rotation onto the indicated red edges in Fig.418

S5A(iii)). To understand why this graph has the same quadratic dependence, we can refer to the spanning trees of the square419

graph using our original rate labels; these spanning trees include kSX [X]kXP,P kX,XP and kSX [X]kXP,P kPS , which are both420

proportional to kSXkXP,P , namely both transitions in red imagined to be controlled by the common control variable in Fig.421

S5A(iii).422

Figure S5A(iv) gives another graph where the red indicated arrows both participate in a common spanning tree, assuring423

the same quadratic dependence of interest. To see this fact, take the two indicated edges and add either the edge kXP,P or424

the edge kXP,X ; the results are both valid spanning trees rooted in S. Rotating this set of edges also generates three other425

equivalent graphs with the same behavior (not shown). (One minor difference between the observable produced by this type of426

graph is that when [X]→∞, the limit of this graph’s observable is now constrained to 1, since the leading order spanning427

trees in the control parameter are rooted in the same node.)428

Last, Fig. S5A(v) acknowledges that many other graphs with a larger set of nodes than four can exhibit the same quadratic429

form. As just one example, when there are only two controlled (red) transitions localized among some states in a suitable430

subgraph, all spanning trees of the larger graph can inherit the structural requirements imposed by the subgraph.431

Of course, many graphs will not necessarily exhibit this quadratic dependence. Fig. S5B depicts examples of graphs whose432

outputs will instead display a response behavior mathematically evocative of detailed balance, a ratio of linear polynomials.433

We can see this contrasting behavior by recalling that a valid spanning tree cannot have more than one outgoing edge per node,434

nor can it form a complete cycle, meaning that the illustrated graphs will give spanning trees with at most one edge dependent435

on the control parameter.436
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Fig. S5. Examples of alternative graph architectures that display (A) the same ratio-of-quadratic-polynomial dependence of the observable (and hence simplified two-parameter
emergent shape behavior) in the control parameter, or (B) an observable behavior that evokes a detailed-balance response instead. The red arrows represent transitions whose
rates are simultaneously scaled by the control parameter (such as a given transcription factor’s concentration).

I. Any averaged observable 〈r〉 has zero, one, two, or three inflection points, with varying monotonicity.437

I.1. Descartes’ rule of signs on second-derivative-polynomial with (a, b) reveals precise restrictions on numbers of inflections. Descartes’438

rule of signs states that a polynomial a0 + a1x+ a2x
2 + · · ·+ anx

n with real coefficients {ai} has at most as many positive439

roots P as the number of changes in sign S in the sequence a0, a1, . . . , an (ignoring coefficients that are zero). Further, this440

count of the coefficients’ sign changes S and the number of positive roots P differ by an even number (24).441

Combined with the convenience of the reduced (a, b) shape parameterization, this rule gives transparent and straightforward442

information about how many inflection points the observable 〈r〉 may exhibit with respect to the (log) control variable. These443

inflection points satisfy d2〈r〉
d(ln x)2 = 0. Since the (changes in) concavity are unchanged by scaling or shifting the function, we can444

evaluate this equation with respect to the normalized response in terms of the two (a, b) parameters—as in Eq. [28]—instead of445

the six parameters of the raw quadratic response. Computing the derivative gives446

d2 ˜〈r〉
d2 ln x =

x
(
a
(
−b
(
x3 + x

)
) + x4 − 6x2 + 1

)
+ x(x(b(x(b− x) + 3)− 4x) + 4)

)
(x(b+ x) + 1)3 , [69]447

where ˜〈r〉 ≡ 〈r〉−〈r〉0
〈r〉∞−〈r〉0

.448

This vanishes when the polynomial in the numerator vanishes; so we focus on449

q(x) ≡ (a− b)x4 +
(
−ab+ b2 − 4

)
x3 + (3b− 6a)x2 + (4− ab)x+ a. [70]450

Recalling that b is strictly positive, consider the possible changes in sign in this sequence of coefficients, rewritten suggestively
as

{a, 4− ab, 3(−(a− b)− a),−b(a− b)− 4, a− b}.
These coefficients’ signs are constrained differently depending on when a is respectively positive, negative, or zero:451

• a < 0: When all coefficients are nonzero, the signs are {�,⊕,⊕,� OR ⊕,�}. This means the sign sequence is either452

{�,⊕,⊕,�,�} (giving S = 2 sign changes) or {�,⊕,⊕,⊕,�} (still giving S = 2 sign changes). (While some of these453

coefficients can go to zero at certain (a, b), shortening the sign sequence, these happen to leave the number of sign changes454

unchanged from S = 2.) Hence when a < 0 there are exactly zero or two (positive) inflection points: in other words,455

every nontrivial input-output curve with a < 0 has two inflection points.456
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• a = 0: Now the signs (of nonzero coefficients) are {⊕,⊕,⊕ OR �,�}. Observe that there is exactly S = 1 sign change.457

(This is unchanged even if the third coefficient vanishes). So input-output curves with a = 0 must have exactly one458

inflection point (they are “equilibrium-like”).459

• a > 0: Here the sign of a− b critically affects how many positive roots exist:460

– If a > b, the signs are {⊕,⊕ OR �,�,�,⊕}; hence S = 2 sign changes permit exactly zero or two positive461

inflection points.462

– If a < b, the signs are {⊕,� OR ⊕,� OR ⊕,� OR ⊕,�}. Hence there are up to S = 3 sign changes, permitting463

one or three positive inflection points.464

In general, this analysis has often benefited from the fact that if the signs of two or more coefficients are fixed at key positions465

in the coefficient sequence, then ambiguity in the signs of the coefficients in between has no effect on the number of possible466

changes of sign. For instance, the fact that the zeroth and fifth coefficients are respectively positive ⊕ and negative � in the467

last 0 < a < b case just examined immediately ensures that S < 4, so there are not four inflection points possible here (despite468

initial impressions from the fact that the underlying polynomial is a quartic).469

The general conclusions we have reached from this elementary application of Descartes’ rules are wholly consistent with a470

more precise, and algebraically-elaborate, inspection of the inflection points in the (a, b) space, as now follows. (We give both471

analyses because the former may add some transparency.)472

I.2. Monotonicity of response via (a, b) parameterization. Here, we find the conditions on the emergent shape parameters (a, b)
participating in the normalized response of Eq. [28] that assure nonmonotonicity. Since the logarithm is itself a monotonic
transformation, the (non)monotonicity of responses remains unchanged whether we regard them with respect to the input
variable on a linear scale or logarithmic scale. So for algebraic convenience, we inspect the first derivative of the response Eq.
[28] with respect to the input on a linear scale, finding

d〈r〉
dx

= (〈r〉∞ − 〈r〉0) (b− a)x2 + 2x+ a

(x(b+ x) + 1)2 . [71]

The response 〈r〉(x) is nonmonotonic if this derivative changes sign. Since x must be positive on physical grounds (as when473

it represents a concentration), we further demand that the derivative change sign for some x > 0. The polynomial in the474

derivative’s numerator, p(x) ≡ (b− a)x2 + 2x+ a, behaves according to its discriminant475

∆ ≡ 4(1− a(b− a)), [72]476

and the roots477

x± = ±
√
a2 − ab+ 1

(a− b)2 + 1
a− b = 1

a− b

(
1±

√
1 + a(a− b)

)
. [73]478

This polynomial has real solutions when the discriminant is nonnegative, ∆ ≥ 0, namely, 1− a(b− a) ≥ 0. Recalling that b > 0479

by construction, one way for this to happen is when a < 0. Another way for the discriminant to be positive is when a > 0480

while still ensuring that a(b− a) < 1, or equivalently 0 < b < a+ 1
a
.481

The requirement that at least one root be positive further refines these conditions on (a, b). We proceed by inspecting the482

positivity of roots under each possible condition that ensures they are real:483

• a < 0: Only the root x− = 1
a−b −

1
a−b

√
1 + a(a− b) could be positive, since sign

(
1
a−b

)
= �. In this case, we still need484

to verify that this root x− > 0; this is true when 1−
√

1 + a(a− b) < 0. Happily this must be true, since a(a− b) is a485

positive number, meaning the term in the square root is greater than one and so the square root is also greater than one.486

Hence, the case of a < 0 automatically ensures there is a real and positive solution to the inflection point changing sign487

(and thus nonmonotonicity).488

• 0 < b < a + 1
a
, but b > a > 0: Since a is now positive but still smaller than b, we still have sign

(
1
a−b

)
= �, still489

suggesting x+ cannot be positive. However, in this case, we further see that 1 + a(a− b) < 1, so the other root x− is also490

negative. Therefore, this condition does not guarantee nonmonotonicity.491

• a > b > 0: Now, sign
(

1
a−b

)
= ⊕, and the term under the square root in the discriminant is greater than one. This means492

that only the root x+ can be positive, which is automatically the case. Hence a > b suffices to ensure nonmonotonicity.493

(We also note that the discriminant cannot vanish and also produce a positive x > 0, ensuring these are the only conditions494

enabling nonmonotonicity.) Altogether, we summarize the necessary and sufficient conditions for nonmonotonicity, where a, b495

are defined, as496

nonmonotonicity ≡
{
a > 0 and a > b, or
a < 0 and b > 0

. [74]497

When we return shortly to consider the number of inflection points possible for a response curve, we will see that these498

conditions for nonmonotonicity only intersect the conditions for having two inflection points, establishing that singly or triply499

inflected responses must be monotonic.500
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I.3. Bounds on the absolute magnitudes of response extrema. If a response is monotonic, then for any [X], it must always be bounded501

above and below by the leakiness and saturation values 〈r〉0 or 〈r〉∞. So finding an upper or lower bound on the response only502

becomes more subtle and interesting in the case of nonmonotonic responses.503

To make progress, we translate the nonmonotonicity conditions Eq. [74] more concretely in term of the values B
E
, 〈r〉0 and

〈r〉∞. This process shows that a response is nonmonotonic if any of the following conditions are true:
condition 1: 〈r〉∞ > 〈r〉0 > B

E
, or

condition 2: B
E
> 〈r〉∞ > 〈r〉0, or

condition 3: B
E
> 〈r〉0 > 〈r〉∞, or

condition 4: 〈r〉0 > 〈r〉∞ > B
E
.

[75]

In general, this reasoning establishes that for any type of response (nonmonotonic or monotonic),504

min
{
〈r〉0, 〈r〉∞,

B

E

}
≤ 〈r〉 ≤ max

{
〈r〉0, 〈r〉∞,

B

E

}
. [76]505

Returning to the individual conditions for nonomonotonicity, we see they each give separate bounds for the extremal values
of the observable: 

condition 1: B
E
≤ 〈r〉 ≤ 〈r〉∞

condition 2: 〈r〉0 ≤ 〈r〉 ≤ B
E

condition 3: 〈r〉∞ ≤ 〈r〉 ≤ B
E

condition 4: B
E
≤ 〈r〉 ≤ 〈r〉0.

[77]

Therefore the quantity B
E

bounds the extremum of any nonmonotonic response function.506

The upper and lower bounds on any observable, Eq. [76], follow from a simple elementary result bounding ratios of sums.507

We quickly digress to establish the elementary result:508

Simple bound on ratios of non-negative sums. For nonnegative ai, bi,

min
i

(
ai
bi

)
≤

N∑
i=1

ai

N∑
i=1

bi

≤ max
i

(
ai
bi

)
. [78]

Consider the lower bound/left inequality. By definition, we know

min
i

(
ai
bi

)
≤ aj
bj
, for all j ∈ [1, N ] [79]

Multiplying by bj on both sides,
min
i

(
ai
bi

)
bj ≤ aj , for all j ∈ [1, N ] [80]

and summing over all j gives

min
i

(
ai
bi

)
×

N∑
j=1

bj ≤
N∑
j=1

aj . [81]

Hence indeed, min
i

(
ai
bi

)
≤

N∑
j=1

aj

N∑
j=1

bj

as desired. The right (upper bound) inequality follows identically.

509

Returning to the ratio of polynomials form 〈r〉 = A+B[X]+C[X]2
D+E[X]+F [X]2 , this means that510

min
{
A

D
= 〈r〉0,

B

E
,
C

F
= 〈r〉∞

}
≤ 〈r〉 ≤ max

{
A

D
= 〈r〉0,

B

E
,
C

F
= 〈r〉∞

}
, [82]511

which supports the claim of Eq. [76] and Eq. [77].512
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I.4. Number of inflection points via the (a, b) parameterization. Now we study the number of inflection points of the observable with513

respect to the control parameter on a logarithmic scale. To do this, we study the polynomial that appears in the numerator of514

the second derivative with respect to log control variable, Eq. [69],515

q(x) ≡ x4(a− b) + x3 (−ab+ b2 − 4
)

+ x2(3b− 6a) + x(4− ab) + a. [83]516

In what follows, we examine how many roots of this polynomial can simultaneously be real and positive. As a preview of this517

logic, we do this by solving for each of the roots of the quartic; finding independent conditions on the parameters a, b that518

ensures each of these roots would be positive and real; then consider all the possible logical unions of these conditions, testing519

whether zero up to four inflections are simultaneously defined. We largely perform this tedious procedure using the symbolic520

capabilities of Mathematica—see our Github code repository for more details—and do not suggest that the intermediate521

conditions on individual roots are themselves enlightening or transparent. Yet their collective implications are meaningful and522

so we summarize them below.523

The polynomial Eq. [83] can have up to four roots; denote them (x1, x2, x3, x4). These roots have a closed-form solution524

given by the famously grotesque quartic formula or returnable by Mathematica. Asking each of them to be positive and real525

gives individual conditions on (a, b); denote these conditions C1, C2, C3, C4, where Ci is the set of conditions where root xi is526

real and positive. Then the condition of finding zero inflection points is the setting where none of C1, C2, C3, or C4 are true;527

the condition of finding one inflection point is where exactly one of them is true; and so on.528

This analysis reveals two trivial cases. First, when there are no inflection points, the response transpires to be constant529

everywhere for all positive x, namely 〈r〉 = 〈r〉0 = 〈r〉∞. Second, we find that since not all of C1, C2, C3, C4 can be simultaneously530

true, it is impossible for the function to have four inflection points.531

In contrast, it is readily possible to reach one, two, or three inflection points under specific parametric conditions. The532

borders between these conditions have somewhat complicated structure, particularly between the one and three inflection point533

cases. To assist us in expressing them as concisely as feasible, define the polynomial534

Ha(b) ≡ −1024− 1024a2 + 1024ab+ (−64− 64a2)b2 + 64ab3 + (−28− a2)b4 + ab5, [84]535

and in particular define its three real and positive roots when solving it with respect to the shape parameter b given a: denote536

them b1(a), b2(a), b3(a). (These roots turn out to form independent branches of an implicit representation of the border between537

one and three inflection point regimes, each valid for different restricted values of a.) The final ingredient needed to define538

the borders between logical conditions turns out to be a numerical constant cutoff value of a, approximately alim ≈ 2.35 (see539

Mathematica code on Github and figure S6). Armed with these ingredients, the conditions to reach one, two, and three540

inflection point curves are expressed as follows, and plotted explicitly in Figure S6.541

Output curves are “equilibrium-like,” presenting only one inflection point, when

one inflection, monotonic ≡ (b ≤ b1(a) or (b3(a) ≥ b ≥ b2(a), a ∈ [2, alim])) and a ≥ b or a = 0 . [85]

It transpires that output curves have two inflection points exactly under the same conditions on a, b as we found assured
nonmonotonicity in Eq. [74]: namely,

two inflections, nonmonotonic ≡
{
a > 0 and a > b, or
a < 0 and b > 0

. [86]

(Note that this condition also subsumes the case a = ±∞, where the observable is also nonmonotonic.)542

Output curves show three inflection points if,543

three inflections, monotonic ≡ b > b1(a) and (b > b3(a) or b2(a) > b, a ∈ [2, alim]) . [87]544

We can summarize the border between one and three inflection point responses by considering the shape of this overall545

implicit function, bcutoff(a), defined as546

bcutoff(a) =
{

max(b1(a), b2(a), b3(a)) if 2 ≤ a < alim
b1(a) else [88]547

We visualize this cutoff function in Fig. S7.548
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Fig. S7. The value of the cutoff bcutoff(a), defined in Equation Eq. [88] with respect to a, delimits the first and third inflection points regimes.

At equilibrium, the collapse of an observable to a ratio of linear polynomials (Eq. [26]) allows us to rewrite the normalized
response as

〈r〉eq = 〈r〉0 + (〈r〉∞ − 〈r〉0) dx

1 + dx
.

The constant d is the same in the numerator and denominator, so that the limit at infinity of the observable is 〈r〉∞.549

For the detailed balance case, we can identify 〈r〉(x) = 〈r〉eq(x)∀x ∈ R∗+. This is equivalent to seeing the polynomial550

R(X) = X(d(b− a)− 1) + d− a have each of its coefficients vanish. This situation implies that the coefficients are related to551

one another according to,552 {
d = a
b = a+ 1

a
.

[89]553

Note that the detailed balance curve always lies within the one-inflection (pale yellow) region: this region forms is a thin ribbon554

between the three and two inflection points region along the diagonal a = b. The detailed balance curve becomes asymptoptically555
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closer to the border with the two-inflection-point regime (lower boundary/orange) versus the (upper boundary/pink) three-556

inflection-point regime as a grows larger (see Figure S6).557

J. New bounds on nonequilibrium sensitivity.558

J.1. Motivation of the the definition of the normalized sensitivity. Sensitivity—how steeply output changes with input—is one of the559

most fundamental quantitative traits that energy expenditure can modulate in biological systems, as celebrated by a plethora560

of famous biological models (e.g. the Goldbeter-Koshland ultrasensitivity mechanism (25), inter alia). Nonetheless, network561

architecture imposes strong constraints on the maximal sensitivities systems can achieve (1), even under arbitrarily large drive.562

We investigate sensitivity (and bounds thereof) for our setting in this spirit, but strive to use mathematical quantities that563

align closely with experimental conventions.564

One common measure of sensitivity in conversation with experimental measurements and existing performance bounds is
simply the (raw) sharpness (with respect to an input x),

sharpness ≡ d〈r〉
d ln x [90]

= x
d〈r〉
dx

. [91]

Reference (9) is an example of a recent study which assesses sensitivity using this sharpness. The convention of considering565

changes in the raw response output with respect to a logarithmic input is also natural and coherent with the plotting convention566

of a logarithmic input, as discussed in §E. (If the response were exactly a Hill function with a Hill coefficient H, itself a common567

measure of sensitivity, then this sharpness would reach a maximal value of H/4 at the vertical midpoint of the response curve568

(1).) (When x is viewed as a concentration, we should recall that we render it unitless before taking the logarithm by viewing569

it as a normalized concentration relative to some reference [X]0, say [X]0 ≡1 nanomolar, just as discussed in §E.)570

To establish bounds on the sensitivity agnostic to specific parameter values or energetic dissipations, we normalize the raw571

sharpness, defining as our principal measure of normalized sensitivity,572

normalized sensitivity s([X]) ≡
∣∣∣∣ d〈r〉
d ln ([X]/[X]0)

1
〈r〉max − 〈r〉min

∣∣∣∣ . [92]573

where we defined 〈r〉min ≡ min
[X]
〈r〉 and 〈r〉max ≡ max

[X]
〈r〉.574

This definition of normalized sensitivity is related to the separately-normalized output r̃ ≡ 〈r〉−〈r〉0
〈r〉∞−〈r〉0

in ways that vary
depending on the curve’s shape. We review these relationships in each possible curve shape now. When the response remains
monotonic (namely when it has one or three inflection points), the normalized sensitivity is equal to

monotonic: s([X]) = d〈r〉
d ln [X]

1
〈r〉∞ − 〈r〉0

= dr̃

d ln x , [93]

since 〈r〉∞ − 〈r〉0 is the range of variation of the output curve.575

When the output is nonmonotonic, if a < 0, then the output is first decreasing up to 〈r〉∗ and then increasing, since a is the
value of the slope at zero concentration of the normalized rate. In this regime the maximum of slope is reached at second
inflection. Hence, the corresponding range of variation of the rate is 〈r〉∞ − 〈r〉∗, and the normalized sensitivity assumes the
meaning

nonmonotonic, a < 0: s([x]) = d〈r〉
d ln[X]

1
〈r〉∞ − 〈r〉∗

= dr̃

d ln x
〈r〉∞ − 〈r〉0
〈r〉∞ − 〈r〉∗

= dr̃

dx

1
1− r̃∗

= dr̃

dx

1
˜r∞ − r̃∗

[94]

When the output is nonmonotonic but a
b
< 1, the response is first increasing up to 〈r〉∗ and then decreasing to the value

〈r〉∞. The maximum of slope is reached at first inflection and the range of variation of the output values is 〈r〉∗ − 〈r〉0.
Therefore the normalized slope becomes:

nonmonotonic, a/b < 1: s([x]) = d〈r〉
d ln[X]

1
〈r〉∗ − 〈r〉0

= dr̃

d ln x
〈r〉∞ − 〈r〉0
〈r〉∗ − 〈r〉0

= dr̃

d ln x
1
r̃∗

= dr̃

d ln x
1

r̃∗ − r̃0
. [95]

J.2. Connection to other measures of sensitivity and the effective Hill coefficient. Here we clarify a few distinct but related notions of
sensitivity. First, the logarithmic sensitivity of a response, measuring how inputs change a fold-change in response, is the
response’s logarithmic derivative with respect to its input,

log. sensitivity ≡ d ln〈r〉
d ln x [96]

= 1
〈r〉

d〈r〉
d ln x [97]

= x

〈r〉
d〈r〉
dx

. [98]
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The derivative of the raw response with respect to the log control variable, d〈r〉
d ln x as emphasized with an underbracket in Eq.576

[98], is the raw sharpness we focus on throughout our analysis. It differs from logarithmic sensitivity only by a factor 1
〈r〉 ,577

whose own magnitude is bounded.578

As discussed superbly and pedagogically by Owen and Horowitz (1), the logarithmic sensitivity is directly related to various579

notions of effective Hill coefficients. One definition of an effective Hill coefficient Heff is explicitly proportional to the logarithmic580

sensitivity at a midpoint of the response (1), as used for example by references (26, 27):581

Heff ≡ 2 d ln〈r〉
d ln x

∣∣∣∣
x=x∗

= 2 1
〈r〉(x∗)

d〈r〉
d ln x

∣∣∣∣
x=x∗

[99]582

Hence the sharpness or normalized sensitivity we consider thus enjoys a close, though not identical, connection with these other583

measures of sensitivity such as effective Hill coefficients.584

J.3. Summary of our results; contrast with existing bounds. As we report and illustrate in Figure 2 of the main text, we find that
the normalized sensitivity is bounded by finite values,

1 inflection: 0.158045 ≤ s ([X]) ≤ 1
2 , [100]

2 inflections: 1
4 ≤ s ([X]) ≤ 1

2 , [101]

3 inflections: 1
8 ≤ s ([X]) ≤ 1

4 . [102]

Our main foundation for bounding response sensitivity is a dense numerical sampling of response curves facilitated by our585

two-dimensional representation of all responses: see Fig. S8. Specifically, we compute the normalized sensitivity on a fine grid of586

(a, b) values, observing the bounds above; we also symbolically simplify analogous logical conditions using Mathematica, finding587

concordance with these numbers. For instance, the curious number 0.158045 as a lower-bound on singly-inflected responses is588

reported with six decimals of precision because this was verified by explicit symbolic simplifications in Mathematica.589
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Fig. S8. Numerical validation of bounds on normalized maximal sensitivities over all curve phenotypes. Outset heatmaps depict the normalized sensitivities for curves of each
region in (a, b) curve shape parameter space. Bounds are visible as the minimum and maximum sensitivities observed in each shape category.

To augment these numerical results, we provide some—albeit incomplete—analytical results; these follow in the next three590

subsections. First, we establish a looser global analytic upper bound on sensitivity, using a straightforward extension of591

recently-established upper bound arguments (1) on a related, differently-normalized slope. Second, we establish symbolically a592

slightly tighter global upper bound for monotonic outputs, that s([X]) ≤ 1
2 . Last, for triply-inflected curves, we demonstrate593

symbolically both of our lower and upper bounds, 1
8 ≤ s([X]) ≤ 1

4 .594

In conclusion, however, we continue to lack elegant or insightful analytical justifications for all of the lower bounds595

across regulatory shape phenotypes, or the upper bound on nonmonotonic responses, that we discover in numeric sampling.596

Interpretably demonstrating these behaviors will be a natural, fruitful subject of analytical work in the future.597

J.4. General upper bound on a related, differently-normalized slope. Here we prove a (weaker) upper bound on a different sensitivity,598

closely connected with the fertile results of Owen & Horowitz (1). We will show that599 ∣∣∣∣ d〈r〉d ln x
1

rmax − rmin

∣∣∣∣ ≤ 1
2 , [103]600

where we define the (unbracketed) quantities rmin ≡ min
states i

ri and rmax ≡ max
states i

ri. We will call these quantities “theoretical”601

extrema because they are the ultimate extrema of observable weights over all microscopic states. Importantly these theoretical602

extrema are not the same as the (bracketed) quantities 〈r〉min ≡ min
[X]
〈r〉 and 〈r〉max ≡ max

[X]
〈r〉, the “observed extrema,” that603

our actual normalized sensitivity transacts in. (We will return to contrast the implications of these extrema shortly, after we604

have established this weaker result.)605
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To proceed, we invoke a useful result from Owen & Horowitz (1), who establish that606 ∣∣∣∣d ln〈O1〉/〈O2〉
d ln x

∣∣∣∣ ≤ m, [104]607

where 〈O1〉 ≡
∑

states i

O1ipi and 〈O2〉 ≡
∑

states i

O2ipi are observables defined by (positive) coefficients O1i, O2i; and m is the “size608

of the support,” namely the number of states possessing at least one outgoing transition that is scaled by the control variable.609

Here in our square graph, m = 2.610

Next, to invoke the normalization by extrema we desire, we choose the observable weights O1i ≡ ri−rmin and O2i ≡ rmax−ri.
These weights are clearly nonnegative, and so Eq. [104] applies. As a consequence, observe that 〈O1〉 =

∑
i

(ri − rmin)pi =∑
i

ripi − rmin
∑
i

pi = 〈r〉 − rmin, and similarly 〈O2〉 = rmax − 〈r〉. The bound Eq. 104 then becomes,

d ln(〈r〉 − rmin)
d ln x − d ln(rmax − 〈r〉)

d ln x ≤ m [105]

→ 1
〈r〉 − rmin

d〈r〉
d ln x −

1
rmax − 〈r〉

−d〈r〉
d ln x ≤ m [106]

→ d〈r〉
d ln x

(
1

〈r〉 − rmin
+ 1
rmax − 〈r〉

)
≤ m [107]

→ d〈r〉
d ln x (rmax − rmin) ≤ m(〈r〉 − rmin)(rmax − 〈r〉). [108]

On the right side, note that 〈r〉 − rmin can be at most halfway between the minimum and maximum values of r, namely
(〈r〉 − rmin) ≤ rmax−rmin

2 . The same is true for rmax − 〈r〉, e.g. (rmax − 〈r〉) ≤ rmax−rmin
2 . So their product in the right-hand

side is at most (rmax−rmin)2
4 . This gives

→ d〈r〉
d ln x (rmax − rmin) ≤ m (rmax − rmin)2

4 , [109]

or611

d〈r〉
d ln x ≤

m

4 (rmax − rmin) . [110]612

Substituting m = 2, as appropriate for the square graph, yields the desired result Eq. [103]. �613

average observed max

average observed min

theoretical min

theoretical max

slope

(note log scale)
x

Fig. S9. Comparison of response extrema entering different bounds. In general, the observed minima of responses give tighter bounds on a particular response curve than
theoretical minima of responses over microstates.

Now we contrast this result Eq. [103], defined in terms of the theoretical extrema rmin, rmax over microstates, with our614

observed bounds on sensitivity defined in terms of the average observed extrema, 〈r〉min, 〈r〉max. In general, the theoretical615

resposne extrema themselves more conservatively bound the response than the observed response extrema. That is, in general616

the extrema of the average observable response curve over all [X] are usually more restricted than the most extreme potencies617

over microstates (namely, rmax ≡ max
i
{ri} ≥ 〈r〉max and rmin ≡ min

i
{ri} ≤ 〈r〉min. This property is visualized in Fig. S9.618

Hence, for a generic response curve, the bounds Eq. [102] we discover and focus on in the main text of the paper are in fact619

tighter than that reported by Eq. 103.620

One reason we study that normalized sensitivity s([X]) ≡
∣∣∣∣ d〈r〉d ln x

1
〈r〉max − 〈r〉min

∣∣∣∣ is to try to connect more directly with621

measurements of biological curves that do not necessarily represent architectural optima. Indeed, for instance, the observable622
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weights (e.g. here, microscopic transcription rates) ri of every microstate i are sometimes less easily known or convenient to623

measure (and so too their extremal values rmax ≡ max
i
{ri} and rmin ≡ min

i
{ri}) than the average observable itself. Conversely,624

the observed extrema 〈r〉max, 〈r〉min can often be directly “read off” from an averaged observable curve 〈r〉([X]).625

We remark that when one is instead asking questions about optimal sensitivities realizable over all architectures, it is is626

plausible that these two styles of bound become equivalently informative. Specifically, as Jordon Horowitz suggests in personal627

communication, it is plausible that the response architectures which in fact saturate the bounds are also exactly those where628

〈r〉min → rmin and 〈r〉max → rmax.629

J.5. General upper bound on our normalized sensitivity. Now, returning to our normalized slope s([X]) =
∣∣∣∣ d〈r〉d ln x

1
〈r〉max − 〈r〉min

∣∣∣∣630

that is defined in terms of the observed (not theoretical) extrema, we show s([X]) ≤ 1
2 for all outputs.631

For monotonic cases, we use the main result stated earlier from Reference (1), Eq. [104]. For simplicity, we note632

r̂ = 〈r〉 − 〈r〉min
〈r〉max − 〈r〉min

, [111]633

where 〈r〉min/max is the minimum (maximum) value of the average observable 〈r〉 over all positive values of concentration [X].634

Both 〈O1〉 = r̂ and 〈O2〉 = 1 − r̂ are rational functions with positive coefficients. Now, using the general expression of the635

output rate Eq. [24], we re-express the form of r̂ as,636

r̂ = (A− 〈r〉minD) + (B − 〈r〉minE)[X] + (C − 〈r〉minF )[X]2
(D + E[X] + F [X]2)(〈r〉max − 〈r〉min) , [112]637

We note that D, E, F are by definition positive, because they are sums of positive weighted spanning trees. We recall
that 〈r〉0 = A

D
, 〈r〉∞ = C

F
so by definition of 〈r〉min, (A− 〈r〉minD) and (C − 〈r〉minF ) are positive coefficients. Furthermore,

(B − 〈r〉minE) is positive for monotonic outputs, using the negation of non monotonicty condition Eq. [77]. Indeed the
conditions for monotonicity can be expressed as,{

condition 1: 〈r〉∞ > B
E

and 〈r〉0 < B
E
, or

condition 2: 〈r〉∞ < B
E

and 〈r〉0 > B
E
.

[113]

This conditions enforce the fact that (B − 〈r〉minE) > 0, because since the function is monotonic 〈r〉min = min(〈r〉∞, 〈r〉0).638

Similarly, the observable 1− r̂ is also a rational function with positive coefficients, with the following expression:639

1− r̂ = (〈r〉maxD −A) + (〈r〉maxE −B)[X] + (〈r〉maxF − C)[X]2
(D + E[X] + F [X]2)(〈r〉max − 〈r〉min) . [114]640

With the same arguments than for the previous case, we show that all the coefficients of this rational function in [X] are641

positive. Last, since |s(x)| =
∣∣∣ dr̂

d ln x

∣∣∣, we recover |s(x)| ≤ 1
2 for monotonic outputs.�642

Next, we consider nonmotonic responses. Here, we do not use the equality Eq. [104] because we can’t define observables,643

which have the form of a positive rational function. Instead, we use the formalism of the coefficients a and b. Let us644

first settle to the case where a > b > 0. The extremum of the normalized function 〈r〉−〈r〉0
〈r〉∞−〈r〉0

is then a maximum because645

a = dr
dx
|x=0

1
〈r〉∞−〈r〉0

> 0, which implies that the output function first increases and then decreases and therefore reaches646

a maximum. The minimum of the normalized output is 0 because any increase or decrease of the concentration departing647

from the value that maximizes the output reduces the output value, by definition. So the minimum is reached at vanishing648

or infinite concentration. As these values for the normalized output are 0 or 1, we conclude that the minimum is 0. We649

call r̂ = 〈r〉−〈r〉0
〈r〉∞−〈r〉0

and show that dr̂
d ln x < 1

2r̂max , in order to prove that s([X]) < 1
2 . This is equivalent to showing that650

r̂max
2 x4 + (a − b + br̂max)x3 + (−2 + r̂max + b2r̂max

2 )x2 + (br̂max − a)x + r̂max
2 > 0, with r̂max = ab−2(1+

√
1+a2−ab)

−4+b2 . This is651

demonstrable by a direct appeal to Mathematica FullSimplify. The case a < 0 can be derived similarly.652

J.6. Symbolic derivation of bounds for triply-inflected outputs. When the curve has three inflections, the normalized slope has 1/8 for653

its lower bound and 1/4 for its upper bound. We now demonstrate this behavior analytically.654

For the upper bound, we aim to show that s([X]) < 1
4 for all concentration [X]. First we notice that sensitivity with respect655

to the raw concentration is the same as the sensivity with respect to a renormalized concentration, s([X]) = s(x). This is clear656

since sensitivity s is a derivative with respect to a logarithmic variable. Substituting our normalized response function in terms657

of (a, b), the desired upper sensitivity bound is equivalent to the following condition:658

f(x) = 1 + 2(b− 2a)x+ (b2 − 6)x2 − 2(b− 2a)x3 + x4 > 0. [115]659

We note that f(0) = 1 > 0 and that lim
x→∞

f(x) = +∞, so if the function f remains positive on positive values of x the condition660

Eq. [115] is satisfied. The algebraic conditions assuring three inflection points, as discussed in §I.4, implies 1 + a2 > ab, which661

implies that the function f has no roots.662
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Indeed, we can prove this quick lemma. Specialize to the case where b < 2a. In this case, we study the sign of the663

polynomial x(2(b− 2a) + (b2 − 6)x− 2(b− 2a)x2). This polynomial vanishes at x = 0 and at x+ = b2−6−
√

(b2−6)2+16(b−2a)2
4(b−2a) .664

Therefore, this polynomial takes negative values between 0 and x+ and positive for x > x+. The minimal value is taken at665

xmin = 6−b2+
√

36+48a2−48ab+b4
6(2a−b) and lies between 0 and x+. The value at xmin of the function f(xmin) is positive if 1 + a2 > ab.666

So in this case f(x) > 0.667

For the case where b > 2a, we study the sign of the polynomial x2(b2 − 6 − 2(b − 2a)x + x2), which is strictly positive668

because the associated discriminant of b2 − 6− 2(b− 2a)x+ x2 is ∆ = 16(a2 + 3
2 − ab) is negative if 1 + a2 > ab.669

Now we focus on the lower bound. We note that the maximum of slope is reached either at the 2nd of the 4th inflection,670

that we called x2 and x4. For we need to prove that it is impossible to have s(x2) < 1
8 and s(x4) < 1

8 for the same couple671

(a, b), while satisfying the algebraic condition for three inflection points. Indeed, this condition cannot be satisfied. Therefore,672

we recover that a lower bound for the maximum of slope of the output over the whole (a, b) space is 1
8 . This is demonstrable673

by a direct appeal to Mathematica FullSimplify.674

K. Systematic census of effects of pushing on one and two edges.675

K.1. Scaling a single rate constant at a time is identified with a proportional drive. The cycle condition relating the ratio of rate constants
to the net nonequilibrium driving force ∆µ affords us concise expressions for how modifying individual rate parameters induces
a net drive. In the main text (or more extensively shortly here in §K), we investigate breaking detailed balance edge-by-edge
(while keeping seven rate constants fixed at their default equilibrium values). Say that we are modifying a rate constant kij
away from its default equilibrium value keq.ij . The cycle condition Eq. [21] implies that

∆µ/kBT = ln γ = ln


N∏
i=1

ki,i+1

N∏
i=1

ki+1,i

 [116]

= ln kij
keq.ij

, [117]

since γ = 1 at equilibrium.676

By similar logic, when we adjust two rate constants at once, if they are oriented in the same clockwise or counterclockwise677

direction in the cycle, then the product of their multiplicative adjustments sets γ and therefore ∆µ. If the rates are instead678

oriented in opposite directions around the cycle, the ratio of their multiplicative adjustments sets γ.679
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Fig. S10. Systematic census of breaking detailed balance, one edge at a time, departing from (slightly) asymmetric default values. These are the parameters used for Figures 3
& 4 of the main text; main text Figure 3 contains two panels of this set. Contrast, panel-by-panel, with the effects of pushing on the same rates, but at different starting values
where some symmetries are preserved among the rates, shown in Fig. K.1. In particular, notice that nonmonotonic responses (orange in phase space plots) are significantly
less common than in Fig. K.1. (A) Comparison of two sets of starting rates; the sets are the same for four rates, but vary by a factor of less than a few in the other rates, differing
in whether critical symmetries are preserved or broken among the rates. (B) The effect of increasing or decreasing each individual rate on the input-output curve, while keeping
seven other rates constant. Responses from rate values larger than (or smaller than) at equilibrium are shown in increasingly red (or blue) colors, respectively; curves are also
labeled with the numerical values of the net drive that generated them in kBT units (positive for an increase; negative for a decrease). Each curve’s resulting inflection points
are marked by yellow, orange, or pink markers, denoting one to three inflection points (respectively), and summarized in the associated one-dimensional (shape phenotypic)
phase-diagram with the same colors on the right. (C) Summary of how all eight rates respond to energy expenditure to realize different regulatory shape phenotypes.
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Fig. S11. Systematic census of breaking detailed balance, one edge at a time, departing from symmetric default values. These are only slightly different than the default
parameters used for Figures 3 & 4 of the main text, yet yield richly different behaviors in accessing nonmonotonicity and other phenotypes and illustrate different effects of
control. Contrast, panel-by-panel, with Fig. S10. (A) Comparison of two sets of starting rates; the sets are the same for four rates, but vary by a factor of less than a few
in the other rates, differing in whether critical symmetries are preserved or broken among the rates. (B) The effect of increasing or decreasing each individual rate on the
input-output curve, while keeping seven other rates constant. Responses from rate values larger than (or smaller than) at equilibrium are shown in increasingly red (or blue)
colors, respectively; curves are also labeled with the numerical values of the net drive that generated them in kBT units (positive for an increase; negative for a decrease).
Each curve’s resulting inflection points are marked by yellow, orange, or pink markers, denoting one to three inflection points (respectively), and summarized in the associated
one-dimensional (shape phenotypic) phase-diagram with the same colors on the right. (C) Summary of how all eight rates respond to energy expenditure to realize different
regulatory shape phenotypes.
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L. Crucial imbalances in rate-constants are required for nonmonotonic responses. In this section, we derive conditions on the680

values of rate constant that enable or forbid access to nonmonotonicity. In additional, we find the minimal (nonzero) net drive681

needed to access nonmonotonicity when kinetic conditions permit. We preview our strategy as follows. First, we translate each682

of the two conditions guaranteeing nonmonotonicity we found in Eq. [74] from the space of shape parameters (a, b) back into683

expressions purely in terms of the eight rate constants governing the system. Next, we compel γ—the product of rate constants684

in one direction around the cycle divided by the product taken in the opposite direction, whose logarithm gives the net drive,685

as discussed in §C and §D—to appear in these conditions, by substituting out one of the eight rate constants. We simplify the686

resulting expressions to surprisingly concise forms that yield minimal drives required to access nonmonotonicity. However,687

these critical drive values are only defined when precise imbalances among the rates are satisfied, thus establishing sufficient688

conditions to forbid nonmonotonicity.689

1. We start with the first way to reach nonmonotonicity according to Eq. [74], namely 0 < b < a:690

For algebraic convenience, since this condition specifies the relative value of a and b, define α ≡ 1 − a
b
; this first691

nonmonotonicity condition is then expressed as α < 0. Substituting the definitions of the shape parameters a, b (Eq. [35])692

and the definitions of the coefficients A,B,C,D,E, F appropriate for the square graph (Eq. [24]) casts this condition693

back into the language of rate constants: nonmonotonicity is guaranteed when,694

α≡ ([P ]kSP+kPS)(kXXP (−kXSkXPXkPXP+kXPXkXPP kSX−kXPP kSXkPS)+kXSkXPXkSP kPXP )
(kXPXkSP−kXXP kPS)([P ](kSP kPXP ([P ]kXXP+kXS+kXPX )+kXXP kXPP kSX )+kSXkPS([P ]kXXP+kXPX+kXPP )+kXSkXPXkPXP )<0.

[118]695

Next, we simplify by positive factors, and use fact that 1
kXPXkSP−kXXP kPS

and kXPXkSP − kXXP kPS have the same696

sign. Since we want to force γ ≡ kXXP kXPP kPS
kSXkXSkXPXkSP kPXP

to appear to comment on energetic drive, we choose a rate697

constant to express in terms of γ and the other seven rates. Without loss of generality, we choose to replace kSX by698

kSX = γ kXSkXPXkSP kPXP
kXXP kXPP kPS

. These manipulations convert Eq. 118 into the much more succinct and revealing form,699 (
kSP
kPS

− kXXP
kXPX

)(
1− kXXP

kSP
− γ

(
1− kXPX

kPS

))
< 0. [119]700

Now, we solve for possible values of γ, under the mathematical constraints that γ must itself remain positive (that is,701

nonnegative because it is a ratio of positive rate constants, and greater than zero because we know nonmonotonic outputs702

cannot occur at detailed balance). We could solve this condition Eq. [119] by hand, case-by-case; but for ease we use a703

call to Mathematica’s Reduce command over γ on the PositiveReals, while enforcing assumptions that all rates are704

positive. This analysis generates all the specific possible conditions where γ is defined and satisfies this nonmonotonicity705

criterion; these transpire to be,706 
0 < γ < kPS(kSP−kXXP )

kSP (kPS−kXPX ) and
{
kSP < kXXP and kPSkXXP < kSP kXPX or,
kSP > kXXP and kPSkXXP < kSP kXPX .

or ,

γ > kPS(kSP−kXXP )
kSP (kPS−kXPX ) and

{
kXPX < kPS <

kSP kXPX
kXXP

or,
kSP kXPX
kXXP

< kPS < kXPX and kSP < kXXP .

. [120]707

Clearly this panoply of logical conditions is intricate. To interpret and summarize these conditions, we define some708

notation for the constituent kinetic conditions, which often have physical interpretations:709

• First, recall that the conditions for the transcription factor to be an overall repressor or activator are simply given710

by,711 {
activation, A ≡ kSP

kPS
< kXXP

kXPX

repression, R ≡ kSP
kPS

> kXXP
kXPX

. [121]712

• Next, for concision, denote the following pairwise conditions among rates as,713 
c1 ≡ kXPX

kPS
> 1

c2 ≡ kXPX
kPS

< 1
c3 ≡ kXXP

kSP
> 1

c4 ≡ kXXP
kSP

< 1

. [122]714

(Note that c1 and A imply c3; c2 and R imply c4; c4 and A imply c2; and last, c3 and R imply c1.)715

• Recalling that the net drive present in the cycle is given by ∆µ = kBT ln γ (see §D), we now identify two constituent716

requirements for nonmonotonicity from those of Eq. [120], expressed in terms of ∆µ. We denote them c+ and c−,717

because satisfying them respectively reflects a clockwise stationary flux and a counterclockwise flux while allowing718

nonmonotonicity; denote their logical union the condition c. These are defined as,719

c ≡
{

c+(kXXP , kSP , kXPX , kPS) ≡ (∆µ > 0) and ((c1 and A) or (c2 and R)), or,
c−(kXXP , kSP , kXPX , kPS) ≡ (∆µ < 0) and ((c4 and A) or (c3 and R)) . [123]720
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Finally, we use all this notation to interpret Eq. [120] as saying that when rate constants satisfy the necessary conditions721

c(kXXP , kSP , kXPX , kPS) (Eq. [123]), a minimum critical drive ∆µ1 exists, defined by722

∆µ1 = kBT

∣∣∣∣∣ln
kXXP
kSP

− 1
kXPX
kPS

− 1

∣∣∣∣∣ . [124]723

That is, when the drive ∆µ exceeds this ∆µ1 in magnitude under the right preexisting rate conditions,724

|∆µ| > ∆µ1, [125]725

responses are nonmonotonic.726

2. Next, we turn to the second way to reach nonmonotonicity according to Eq. [74], namely a < 0:727

Analogously to how we treated the first nonmonotonicity condition, we translate a < 0 to 1− α < 0 and substitute rate728

constants into the definitions, expressing the present nonmonotonicity condition as729

([P ]kXXP+kXPX )(−kXPXkSP (kXS+[P ]kSP )kPXP+(kXXP kXPP kSX−(kXPX+kXPP )kSXkSP+([P ]kXXP+kXS)kSP kPXP )kPS+kXXP kSXk
2
PS

)
(kXPXkSP−kXXP kPS)(kXSkXPXkPXP+[P ](kXXP kXPP kSX+([P ]kXXP+kXS+kXPX )kSP kPXP )+([P ]kXXP+kXPX+kXPP )kSXkPS) <0

[126]730

Simplifying by the positive terms; noticing that 1
kXPXkSP−kXXP kPS

and kXPXkSP − kXXP kPS have the same sign; and
replacing kSX by γ kXSkXPXkSP kPXP

kXXP kXPP kPS
recasts this condition as,

(
kSP
kPS

− kXXP
kXPX

)(
1−

(
kPS
kXPX

+ [P ]kXXP kPS
kXSkXPX

− [P ]kSP
kXS

)
− γ

(
1−

(
kXPXkSP
kXXP kXPP

+ kSP
kXXP

− kPS
kXPP

))
< 0 . [127]

Now, as before, we solve for the values of γ that are positive, real, and compatible with this condition. Since the resulting731

specific conditions are most intrepretable when expressed directly in terms of ∆µ = kBT ln γ, we report them directly in732

this variable. To do so, we again define some notation for governing subconditions that materialize as follows.733

• Denote the following logical conditions with the shorthand di,734 
d1 ≡ (kXPX + kXPP )kSP < kXXP (kXPP + kPS)
d2 ≡ (kXPX + kXPP )kSP > kXXP (kXPP + kPS)
d3 ≡ ([P ]kXXP + kXS)kPS < kXPX(kXS + [P ]kSP )
d4 ≡ ([P ]kXXP + kXS)kPS > kXPX(kXS + [P ]kSP )

. [128]735

• Then nonmonotonicity is possible, and rates induce clockwise (+) and counterclockwise (-) steady-state fluxes,736

respectively, when either of the conditions d+ and d− are satisfied,737

d ≡


d+(kXXP , kSP , kXPX , kPS , kXPP , kXS) ≡ (∆µ > 0 and kXPP > kXPXkPS

∣∣∣∣ kSPkPS
− kXXP
kXPX

kXXP − kSP

∣∣∣∣ and ((c3 and R) or (c4 and A))

d−(kXXP , kSP , kXPX , kPS , kXPP , kXS) ≡ (∆µ < 0 and kXS > kXPXkPS

∣∣∣∣ kSP
kPS

− kXXP
kXPX

[P ](kXPX − kPS)

∣∣∣∣ and ((c1 and A) or (c2 and R)),

[129]738

where we have denoted their logical union d.739

We also remark that an alternative, equivalent way of expressing Eq. [129] is as follows,740

d ≡
{

d+(kXXP , kSP , kXPX , kPS , kXPP , kXS) = (∆µ > 0) and ((d1 and c3 and R) or (d2 and c4 and A))
d−(kXXP , kSP , kXPX , kPS , kXPP , kXS) = (∆µ < 0) and ((d3 and c1 and A) or (d4 and c2 and R)).

[130]741

This notation allows us to interpret Eq. [127] as saying that when rates satisfy the conditions d(kXXP , kSP , kXPX , kPS , kXPP , kXS),742

there is a minimal drive ∆µ2 past which nonmonotonicity is activated,743

|∆µ| > ∆µ2, [131]744

where745

∆µ2 = kBT

∣∣∣∣∣ln
kXXP
kXPX

− kSP
kPS

+ kXS
kXPXP

− kXS
kPSP

kXPX
kXXP

+ kXPP
kXXP

− kXPP
kSP

− kPS
kSP

kXPP
kXS

kSP
kPS

∣∣∣∣∣ . [132]746
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L.1. Minimum drive to reach nonmonotonic phenotypes. In this section, we investigate analytical lessons from our preceding analysis747

that comment on the behaviors we encountered in our numerical analyses driving two edges in Fig. S12 and Fig. 4 of the main748

text.749

When they are mathematically defined, the critical drive values ∆µ1 and ∆µ2 are the minimum inputs of drive required to750

convert a monotonic output to a nonmonotonic output. It is worth remarking that once those critical values are exceeded,751

nonmonotonicity can persist only for a finite range of drive, because the underlying kinetic conditions—namely, c (Eq. [123]) or752

d (Eq. [129])—that enable the critical drives to exist are not always satisfied. However, so long as at least one of c or d is753

always satisfied, ∆µ1 and/or ∆µ2 are rigorous values for the critical drive the system must maintain to create nonmonotonicity.754

Now, we specialize to the case where we may control just one of the four rate constants (kXXP , kSP , kXPX , kPS), in755

addition to some other arbitrarily chosen one. To be concise, denote x1 = kXXP
kSP

and x2 = kXPX
kPS

. The first way to access756

nonmonotonicity is when condition (Eq. [123]) is satisfied, allowing ∆µ1 to exist. As long as x1 6= x2, this condition c may also757

be expressed as,758

c(kXXP , kSP , kXPX , kPS) =
{
x1 > 1 and x2 > 1 or,
x1 < 1 and x2 < 1.

[133]759

Under this condition, if x1 → x2, ∆µ1 → 0 non-monotonicity is reached for any finite drive. When at detailed balance using760

our estimated biological starting rates, the default values of these governing ratios are x1eq < 1 and x2eq < 1. Accordingly, if761

we tune one of the four rate constants that define x1 or x2, we can approach the limit where x1 → x2eq < 1 or x2 → x1eq < 1,762

while preserving the necessary conditions for ∆µ1 to exist and the response to be nonmonotonic. To compensate, the additional763

rate constant being tuned can then be adjusted to ensure that asymptotically-little energy is spent, γ → 1. This protocol764

would ensure that an asymptotically-small adjustment of rate constants from such default values would unlock a nonmonotonic765

output at any nonzero drive. This special starting point is unique for a given pair of rate constants that satisfy this condition,766

because there are two unknowns (the two rate constants) and two asymptotic equations, namely,767 {
x1 = kXXP

kSP
→ kXPX

kPS
= x2

γ ≡ kSXkX,XP kXP,P kPS
kXSkXP,XkP,XP kSP

→ 1 . [134]768

For the remaining six pairs of rate constants that do not include the four rates that define x1 and x2, the limit of the769

minimal drive needed to reach nonmonotonicity is a finite value. In fact, this value is same minimum drive needed when tuning770

only one of the two edges among a pair. We call this value ∆µ0. Indeed, with the rates at equilibrium we chose, the minimal771

drive for the output to be non monotonic when energy is injected along one of the four rate constants (kPXP , kXPP , kXS , kSX)772

is the same (also valued at ∆µ0).773

L.2. Conditions that suffice to forbid nonmonotonicity. Now, consider the cases where neither ∆µ1 nor ∆µ2 is defined. That is to774

say, when non-monotonicity cannot be achieved for any input of drive on the system. From the converse of the condition c (Eq.775

[123]), we can deduce that as soon as one of the following conditions is not satisfied, ∆µ1 is not defined,776 
kXPX = kPS or,
kXXP = kSP or,
c1 and c4 or,
c2 and c3.

[135]777

Substituting the meanings of the subconditions c1 through c4 expresses these conditions guaranteeing monotonicity as,778 
kXPX = kPS , or
kXXP = kSP , or
kXXP > kSP and kXPX < kPS , or
kXPX > kPS and kXXP < kSP

. [136]779

For instance, some of the conditions in Eq. [135] immediately suffice to forbid nonmonotonicity via ∆µ1 because the argument780

of the logarithm in ∆µ1’s definition becomes negative. Evaluating the second possible route to reach nonmonotonicity, via ∆µ2781

and its prerequisite condition d (Eq. [129]), we see the same conditions above suffice to forbid its mathematical definition.782

In summary, if any of the conditions in Eq. [136] are satisfied, the response function must remain monotonic, even for any783

nonequilibrium driving on the system.784

Notice that these conditions Eq. [136] depend only on four rate constants: the binding and and unbinding rates of the785

polymerase. These are the same four rate constants that fix both the leakiness and saturation. We illustrate these impacts of786

tuning ratios of these four rate constants in Fig. S13.787
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Fig. S13. Nonmonotonic input-output curves are impossible even under any dissipation when certain relationships are obeyed by rate constants. In particular, while kSP /kPS
and kXXP /kkXPX set whether the transcription factor is globally an activator or repressor (showing a saturation larger (smaller) than the leak, respectively; panel (A)), it is
the ratios kXPX/kPS and kXXP /kSP that set whether the curve can ever be nonmonotonic (panel (B)).

As discussed briefly in the main text, some biophysical contexts may, by default, satisfy some of the conditions Eq. [136]788

guaranteeing nonmonotonic responses. For instance, under the classical assumption that the binding rate of the polymerase is789

purely diffusion-limited, its on rate would not depend on whether the transcription factor is already bound to the genome790

or not, enforcing kXXP = kSP and hence forbidding nonmonotonicity by default, even for any drive or modulation of the791

other rate constants. Manifesting nonmonotonicity departing from these default rates would then require energy investment to792

break this rate symmetry. This pivotal constraint is plausibly relievable by diverse modes of transcriptional regulation, but793

emphasizes the privileged roles that some ratios of rate constants have in determining the flexibility of output responses. We794

illustrate two such symmetries, with different default biological plausibility, in Fig. S14.795

For biological reasons, other pairs of rate constants of the system could be equal. Indeed, if the binding of any molecules is796

only limited by diffusion, the on rates of the transcription factor should also be equal. We observe, and Eq. 5 of the main text797

reports, that the only equalities between pairs of rate constants that forbid non-monotonicity are the on- or off- rates of the798

polymerase. For instance, the equality between rates of the transcription factor does not forbid the access to non-monotonicity.799

on-rates of polymerase are equal off-rates of polymerase are equal

two pivotal symmetries individually suffice to forbid non-monotonicity

even if the system is driven arbitrarily, as long as either symmetry remains, non-monotonicity is impossible
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Fig. S14. Physical examples of critical symmetries among rate constants that suffice to forbid nonmontonic responses.
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M. Implications of critical symmetry conditions for widespread numerical screens. A common, a priori reasonable, tactic to800

confront the explosion in the number of parameters of kinetic models that can accommodate nonequilibrium (relative to the801

fewer energetic paramaters of equilibrium) is to restrict parameters within certain ranges or under simplifying functional802

constraints. These constraints help grapple with the reality that each additional parameter implies an exponential increase in803

the number of, for example, combinatorially-investigated samples of a model. However, our analytical results highlight how804

imposing such constraints among parameters can unexpectedly collapse the complexity achievable by a kinetic model into a805

restricted set of output behaviors.806

For example, Lammers, Flamholz, & Garcia (9) recently performed a study of how energetic and kinetic parameters affect807

the rate at which information is transferred from inputs to transcriptional outputs in a generic model of transcriptional808

activation inspired by the Monod-Wyman-Changeux model. This study imposed an apparently-benign constraint of parameters809

intuitively motivated by assuming that a transcription factor accomplishes activation. Specifically, Lammers et al. reasoned810

that if the transcription factor increases the rate at which the system switches between transcriptionally OFF and ON states811

(relative to this rate without the transcription factor), as encoded by an interaction term they call ηab > 1, but also decreases812

the complementary switching rate from OFF to ON (encoded by another interaction term ηib < 1), then the presence of the813

transcription factor activates transcription (namely, increases the probability of being in a transcriptionally ON state) ((9) and814

personal communication). In fact, however, this (ηab > 1 and ηib < 1) constraint is sufficient, but not necessary, for activation.815

Instead, a looser constraint—merely that the transcription factor makes the ON to OFF rate slower overall than the OFF816

to ON rate (ηib < ηab)—is the minimal condition adequate for activation. (Thus, a transcription factor can still ultimately817

activate transcription even when it increases or decreases both transcriptionally OFF-to-ON and ON-to-OFF rates, as long818

the former still exceeds the latter.) Further, surprisingly, our analytic reasoning establishes the stricter (ηab > 1 and ηib < 1)819

constraints previously assumed by Lammers & colleagues are precisely among those that suffice to forbid nonmonotonic output820

responses, even for any energy expenditure (see Eq. 5 of the main text, and also Fig. S15).821

More specifically, a transcription factor is an activator when the “leak” transcriptional output 〈r〉0 without any transcription822

factor is less than the “saturation” output 〈r〉∞ at a saturating (say infinite) concentration of transcription factor. As discussed823

earlier in §G.2, when the transcription factor is completely absent, the system cannot be found in any microstate that invokes824

it, collapsing four states into just the two states devoid of transcription factor. Similarly, when the transcription factor825

concentration is infinite, the system is never found in the two microstates without the transcription factor, again admitting an826

(orthogonal) two-state description. In the language of the model of Lammers, Flamholz, & Garcia, this implies that the leak827

〈r〉0 is set by a competition between an ON state with probability p 3© and an OFF state with probability p 0© (see Fig. S15A,828

right), where the former transitions to the latter at rate ki and the latter transitions to the former at rate ka, just as in §G.2.829

Hence,830

〈r〉0 = rp 3© = r
ka

ka + ki
= r

1
1 + ki

ka

. [137]831

Conversely, at saturating transcription factor, the output is set by a competition between an ON state with probability p 2© and832

an OFF state with probability p 2© that respectively transition between each other at rates ηibki and ηabka. So the saturation is833

〈r〉∞ = rp 2© = r
ηabka

ηabka + ηibki
= r

1
1 + ηib

ηab

ki
ka

. [138]834

Overall, these expressions indicate that the transcription factor is a net activator, 〈r〉0 < 〈r〉∞, exactly when ηib
ηab

ki
ka

< ki
ka

, or
namely

activation: ηib
ηab

< 1 . [139]

Importantly, this is a looser condition than that simultaneously (ηib < 1 and ηab > 1), as assumed by Lammers, Flamholz, &835

Garcia (9).836
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