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Cells adapt to environments and tune gene expression by controlling the concentrations
of proteins and their kinetics in regulatory networks. In both eukaryotes and
prokaryotes, experiments and theory increasingly attest that these networks can and
do consume biochemical energy. How does this dissipation enable cellular behaviors
forbidden in equilibrium? This open question demands quantitative models that tran-
scend thermodynamic equilibrium. Here, we study the control of simple, ubiquitous
gene regulatory networks to explore the consequences of departing equilibrium in
transcription. Employing graph theory to model a set of especially common regulatory
motifs, we find that dissipation unlocks nonmonotonicity and enhanced sensitivity of
gene expression with respect to a transcription factor’s concentration. These features
allow a single transcription factor to act as both a repressor and activator at different
concentrations or achieve outputs with multiple concentration regimes of locally
enhanced sensitivity. We systematically dissect how energetically driving individual
transitions within regulatory networks, or pairs of transitions, generates a wide range of
more adjustable and sensitive phenotypic responses than in equilibrium. These results
generalize to more complex regulatory scenarios, including combinatorial control
by multiple transcription factors, which we relate and often find collapse to simple
mathematical behaviors. Our findings quantify necessary conditions and detectable
consequences of energy expenditure. These richer mathematical behaviors—feasibly
accessed using biological energy budgets and rates—may empower cells to accomplish
sophisticated regulation with simpler architectures than those required at equilibrium.

nonequilibrium | gene regulation | transcription | biophysics

Gene regulation—to which biology owes much of its exquisite sophistication (1)—is
achieved by many network architectures that allow (and credibly depend on) energy
expenditure (2–5). To adapt to varying environments, cells often dynamically tune
concentrations of transcription factors (6) or inducers as their available control variables.
This biochemical control adjusts the probabilities of cellular states by regulating rate
constants that depend on the transcription factor or effector. Organisms use the specific
shapes of these input (transcription factor concentration) to output (transcription)
relationships to execute extraordinary signal processing (7). Given their centrality, these
induction curves also promise to help clarify how spending biochemical energy empowers
the very dynamism and fidelity of the living. While unexplained energy expenditures
in aerobically growing bacteria have been documented since at least the 1980s (8),
new measurements and models (9–12) confirm that cells often operate with surprising
surpluses in energetic capacity relative to known expenditures. These observations place
fresh urgency on deciphering how dissipation modifies vital functions such as gene
regulation (13).

How can nonequilibrium relieve fundamental constraints on physiological adaptation,
or enhance the flexibility of cellular behavior? To confront this question, here we
investigate the nonequilibrium output behaviors of networks formed by regulatory
binding proteins. These systems can represent the dynamic behaviors of genetic
transcription executed by RNA polymerase and regulated by transcription factors as
control variables (Fig. 1). While our analysis generalizes to accommodate more complex
regulation, including combinatorial action by many transcription factors and DNA
looping (Fig. 2 and SI Appendix), we focus on the widely relevant case of a single
transcription factor governing a cycle of four states. This architecture is putatively the most
common regulatory architecture in well-characterized bacteria (Fig. 2). This motif is also
among the simplest closed systems capable of breaking equilibrium using basic reactions
pervasive in biology. Accordingly, quantifying the behavior and limitations of the square
graph is also a crucial step toward understanding more complex transcriptional networks.

Given their simplicity, equivalents of the system in Fig. 1 have enjoyed earlier study in
guises such as enzymatic control (14); remodeling of nucleosomes (5); and other settings
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in transcription (15, 16). In this work, we use tools from graph
theory (17, 18) to explore the full space of transcriptional
steady-state outputs available for this system under different
energetic drives, compared to equilibrium control. We find that
all equilibrium responses must be monotonic (with one inflection
point) as a function of control variables, such as the concentration
of transcription factor, measured in a conventional logarithmic
scale. In contrast, we find that nonequilibrium models can exhibit
three types of output: an “equilibrium-like,” monotonic response
with one inflection point, potentially displaced from equilibrium;
a new—but still-monotonic—shape with three inflection points;
and a new, surprising nonmonotonic shape with two inflection
points, where, for instance, increasing a control variable can
change its effect from repression to activation. Combining
analytical and numerical analysis, we globally bound the maximal
sensitivities of transcriptional responses. Demonstrating that
these mathematical behaviors are feasible to access within biolog-
ical energy expenditures around typical rates, we systematically
analyze the impact of breaking detailed balance along each
transition rate. This analysis establishes design principles for
optimizing sensitivity and unlocking behaviors that are especially
prone to implicate nonequilibrium in measurements.

These broader, multiply-inflected transcriptional responses
unlocked by nonequilibrium could be harnessed to achieve
useful physiological functions. Our findings illustrate surprising
regularity revealed by graph theoretic tools and dissect how even

Fig. 1. Structure of a fundamental gene-regulatory motif. A square cycle
of four-states emerges when up to two molecules (such as a transcription
factor X and polymerase P) can bind to a common substrate (say a genome).
Output observables 〈r〉 are linear combinations of the state probabilities; for
instance, mRNA production scales with the probabilities of transcriptionally
active states where polymerase is bound to the genome (states P and XP).
These outputs vary with the control parameter [X ], here schematized as the
concentration of a transcription factor. (Numerical values of rate constants
underneath edges are biologically plausible values, as inferred in SI Appendix,
section 2B).

A

B

C

Fig. 2. Incidence of regulatory architectures for transcription, where a
square cycle’s response is common. (A) Regulatory architectures reported
in E. coli, organized by the numbers of activating and repressing transcription
factors associated with each regulated promoter, according to data in
the RegulonDB database (19) release 11.2. Over half of these regulated
promoters are reported to be regulated by the most common architecture
of a single transcription factor (purple bars) and thus can be described
by a square graph of states (Fig. 1). Less common network architectures
with multiple transcription factors form hypercubic state spaces whose
complete responses are analyzed in SI Appendix. (B) While larger binding
networks can generically show more complex regulatory responses than
the square cycle, simpler topologies and responses result from restrictions
like overlapping binding site (SI Appendix, section 3D). Over half of all
nontrivial transcriptionally potent derivative networks formed by up to three
transcription factors show a response that resembles the square graph with
respect to at least one transcription factor. (C) Transcriptional regulation by
DNA looping accomplishes distinct responses, whose properties are analyzed
algebraically and numerically in SI Appendix.

primordial biological networks operating out of equilibrium can
rival the regulatory sophistication of (plausibly) larger, slower
networks at equilibrium.

Results

Modeling Pervasive Gene Regulatory Motifs. At steady state, a
system is in equilibrium (or, equivalently, at detailed balance) if,
for all pairs of states (i, j), the probability flux kijpi into state j from
state i equals the flux kjipj into state i from state j, where pi is the
probability of state i and kij is the transition rate from state i to j.
Otherwise, the system is out of equilibrium and requires energetic
dissipation to sustain the system’s steady state. Nonequilibrium
steady states can only be achieved with systems that contain at
least one cycle; linear or branched architectures at steady state
must be at equilibrium (for systems closed to external material
inputs; see SI Appendix, section 1B and refs. 20 and 21). A single
cycle is thus the simplest closed setting where the intriguing new
consequences of nonequilibrium become possible.
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A cycle of four states emerges naturally from up to two
molecules binding or unbinding to a substrate. When the
substrate S is a promoter site on the genome, one molecule is RNA
polymerase P, and the second molecule is a transcription factor
protein X that can enhance or impede polymerase binding to the
genome, the resulting cycle captures transcriptional regulation.
Specifically, the four states represent the empty site of the genome
substrate (“S”); the genome substrate bound to the transcription
factor only (“X”); to the polymerase only (“P”); or to both (“XP”).
Fig. 1 illustrates this central, motivating setting. (Note that the
transcription factor and polymerase concentrations [X ] and [P]
do not affect whether the system is in or out of equilibrium and
can be tuned while maintaining any extent of disequilibrium; see
SI Appendix, section 1C.

This square cycle of states pervades gene regulation. We
analyzed the incidence of regulatory architectures reported for
Escherichia coli, according to the most recent release of the
canonical RegulonDB database of known interactions (19). As
summarized in Fig. 2A, over half of all regulated promoters in
E. coli are reported to accommodate a single copy of a transcrip-
tion factor. The four-state cycle also finds widespread examples
or structural-equivalents in models of eukaryotic gene regulation
(5, 15, 22, 23). Accordingly, these promoters and genes can be
modeled by the four-state cycle in Fig. 1. These cyclic archi-
tectures also contrast the more commonly studied, noncyclic,
motif of simple repression that cannot break detailed balance
(SI Appendix, section 1B) (1, 6, 24–26). We also provisionally
quantified an empirically common role for the square graph motif
in the eukaryote Drosophila, according to interactions reported
by the Redfly (27) database (SI Appendix, section 2A.2). However,
this apparent commonality of a single transcription factor binding
site per gene is probably more an artifact of our field’s substantial
regulatory ignorance for eukaryotes than a well-tested empirical
finding, since only ∼1.8% of genes are canonically annotated
with known regulatory interactions in Drosophila.

Fig. 2 also documents other more complex regulation,
including by multiple transcription factors and via DNA looping,
used by prokaryotes and eukaryotes. Tellingly, eukaryotic gene
expression is a setting where explicit consumption of adenosine
triphosphate (ATP) is especially plausible (3, 4) yet poorly
understood (2, 13, 15). These larger networks often form
hypercubic state spaces or variants thereof. We analyze extensively
these more complex networks, and their reachable behaviors, in
SI Appendix. Often, however, we find that biophysical constraints
(such as overlapped binding sites) compel even these more
complex networks to resemble the mathematical behavior of the
square graph with respect to at least one transcription factor as a
control variable (Fig. 2B and SI Appendix, section 3D). In sum,
the prevalence of architectures that are exactly square cycles across
organisms—and those that mathematically resemble the square
cycle—establish the importance of understanding the regulatory
capabilities of the square graph. Further, understanding how the
square graph operates is a key prerequisite for understanding
more complex regulatory networks. However, for completeness,
we derive how a wide variety of other common regulatory
architectures perform using similar analyses in SI Appendix,
section 3.

Kinetic measurements often justify the assumption that tran-
scription factors bind and unbind with genomes quickly relative
to transcription by polymerase. This separation of timescales
makes macroscopic gene expression proportional to the steady-
state probability of finding the system in transcriptionally active
microstates. (We precisely validate this assumption for our setting
using plausible transcriptional rates in SI Appendix, section 2C.)

We note that the average gene production rate 〈r〉mRNA,
proportional to gene expression, is a typical and crucial output
of interest. This response grows with the net probability that
the polymerase is bound, 〈r〉mRNA = r(pP + pXP), where r is
the transcription rate once the polymerase is bound, pp is the
probability of the state P, where just the polymerase is bound,
and pXP is the probability of the state XP, where both polymerase
and transcription factor are bound.

However, other outputs (that depend on other states) may
also be biologically or experimentally significant. For instance,
the localization of the transcription factors themselves to the
genome (to recruit other cofactors or epigenetic modifications)
can shape biological function independent of the polymerase,
e.g., invoking the probability pX . We accommodate the breadth
of these possible outputs by studying how any (nonnegative)
linear combination 〈r〉 =

∑
states i

ripi of state probabilities varies

with the transcription factor concentration X as a control variable,
where ri gives the potency of the ith state. These different outputs
and problem settings are captured by adopting particular {ri}, but
as we will now see, all are subject to universal behavior.

Nonequilibrium Steady-State Output Responses. To explore
how these input–output functions operate away from equi-
librium, we cannot apply equilibrium statistical mechanical
models that assign thermodynamic energies to each state to
calculate their probabilities (1, 6, 28–30). Instead, we now
require a fully kinetic description (also known as a chemical
master equation or continuous-time Markov chain) based on
transitions between states. A large increase in complexity and the
number of parameters typically accompanies this generalization.
Fortunately, these dynamics admit a beautiful and powerful
correspondence to graph theory that helps tame this complexity
(17, 18, 20). Our guide is the Matrix Tree Theorem, which gives
a simple diagrammatic procedure on a network’s structure to find
stationary probabilities (Materials and Methods and SI Appendix,
section 2D).* In brief, the Matrix Tree Theorem asserts that at
steady state, the probability of any state is proportional to the
sum of products of rate constants over all spanning trees rooted
in that state. A rooted spanning tree of a graph G is a subset of
(directed) edges that collectively visits every state exactly once, has
no cycles, and designates a specific root vertex u. As illustrated
by the example in Fig. 3A, each state in a spanning tree has
exactly one outgoing edge (except the root state, which has only
incoming edges); thus, spanning trees contain a unique directed
path from any state to the root state.

Counting all sixteen rooted spanning trees of the four-state
transcriptional system (Fig. 3B) and deploying the Tree Theorem
explains how probabilities must vary with the transcription factor
control parameter [X ]. Depending on the root (separated by
column in Fig. 3B), each spanning tree carries two edges that
depend on [X ] (Top row of Fig. 3B); one edge (Middle row,
Fig. 3B); or no [X ]−dependent edges (Bottom row, Fig. 3B).
This structure yields relative probabilities with up to quadratic
scaling with [X ]. Hence we find that, for this class of architectures,
the form of any output function 〈r〉, in or out of equilibrium, is
a ratio of quadratic polynomials in [X ],

〈r〉 =
A + B[X ] + C [X ]2

D + E [X ] + F [X ]2
, [1]

*Though the square graph could also be analyzed directly by (more arduous) linear
algebra, this setting already shows how the Matrix Tree Theorem dramatically simplifies
practical calculations and organizes terms in powers of the control variable (as shown in
Fig. 3B). It also shows power, calculationally and conceptually, in more complex graphs
where linear-algebraic operations become forbidding (SI Appendix, section 3).
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A

C

D

E

B

Fig. 3. Nonequilibrium response of the four-state fundamental transcriptional motif. (A) An example of a spanning tree (rooted in state XP) like those that
define steady-state probabilities via the Matrix Tree Theorem. (B) All 16 directed, rooted spanning trees of the four-state cycle in 1(A): trees are grouped by
the root state (in columns) and by how many participating edges depend on the control parameter X (in rows). As guaranteed by the Matrix Tree Theorem,
the steady-state probability of any state—in or out of equilibrium—is given by the sum of the weights of these spanning trees, introducing up to a quadratic
dependence in X in any output, as represented by Eq. 1. (C–E) Three universal output behaviors (regulatory shape phenotypes) can result from this architecture.
A monotonic “equilibrium-like” output (C) manifests a Hill-like or MWC-like response, behavior familiar from equilibrium thermodynamic models. However,
exclusively out of equilibrium, new multiply-inflected regulatory shape phenotypes become possible. Under drive, outputs can (D) vary nonmonotonically and
reach two inflection points with the control parameter; or show three inflection points and vary monotonically (E). These richer phenotypes show a wider set of
properties that characterize each curve: These include the “leak” value of the observable when the control variable is absent (〈r〉0 = 〈r〉([X ] = 0), in orange; the
saturation asymptotic limit as the control variable is maximally present (〈r〉∞ = lim

[X ]→∞
〈r〉; in light blue); the observable’s values at intermediate plateau regions

(〈r〉∗; in red); and slopes 1 and 2 at inflection points [X ]1 and [X ]2 when they are defined (in green and purple, respectively).

where the coefficients A, B, C , D, E , and F are sums of
subsets of (weighted) directed spanning trees carrying various
[X ]-dependencies (SI Appendix, section 2D). The denominator,
the sum of all rooted spanning trees and hence also a quadratic
polynomial, serves as a normalizing factor that converts statistical
weights to probabilities and represents a nonequilibrium partition
function.

Note that while we derived the output form Eq. 1 using the
particular choice of [X ]-dependent arrows appropriate for this
transcriptional setting, the same formalism can treat many other
control parameters that appear quite (structurally or biologically)
distinct from these details, such as a concentration of another
internal molecule (for instance polymerase, [P]) or an external

molecule (for instance explicit drive by [ATP]). Specifically,
any graph need only display up to two powers of the control
variable [X ] among its spanning trees—a modest structural
condition—for its response to exactly reproduce that of the
square graph. SI Appendix, section 2H gives further examples
of different placements of controlled edges that still produce a
network output with the functional form of Eq. 1, and therefore
remain precisely addressable by the analysis of this paper. Other
outputs, like those of the more complicated networks of multiple
transcription factors analyzed in SI Appendix, invite a fresh
application of the Matrix Tree Theorem but benefit from the
same framework; an ensemble of such analyses relevant to
transcription appears in SI Appendix, section 3.
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Equilibrium Output Curves Are Constrained. Eq. 1 describes
all input–output curves, in or out of equilibrium, produced
by this four-state transcriptional system. When detailed balance
does hold, this equation becomes equivalent to thermodynamic
statistical-mechanical models (as it must). We explain alge-
braic correspondences to thermodynamic models, like those
communing with earlier transcriptional experiments (6, 30),
in SI Appendix, section 2G.3. Importantly, we find that the
equilibrium condition demotes any observable output to the
simpler form of a ratio of linear polynomials in [X ], namely

〈r〉eq =
A′ + B′[X ]
C ′ + D′[X ]

, [2]

for constants {A′, B′, C ′, D′} set wholly by thermodynamic
parameters (SI Appendix, section 2G.1). Not coincidentally, this
functional form formally reproduces or evokes the Hill induc-
tion, Michaelis–Menten, Langmuir-binding, Monod–Wyman–
Changeux, or two-state Fermi function forms from the equi-
librium statistical mechanics of binding commonly used to
model and fit induction curves in natural (6, 31) or synthetic
(32) settings. This equilibrium curve is paradigmatic of our
biochemical intuition—smoothly saturating, with one point of
inflection, with respect to transcription factor concentration [X ]
in a conventional logarithmic scale (Fig. 3A and SI Appendix,
section 2E).†

While earlier insightful work identified raw algebraic expres-
sions similar to Eqs. 1 and 2 in different contexts (including
refs. 16 and 34), their functional flexibility has not been
deeply explored, and such studies largely asked distinct questions
(e.g. focusing on sensitivity; see SI Appendix, section 2G.6).
Next, we derive biological consequences of these behaviors
that represent precise contrasts between nonequilibrium and
equilibrium regulation.

New Regulatory Shape Phenotypes Unlocked by Nonequilib-
rium. How much more complex is the regulation realizable by
nonequilibrium outputs 〈r〉 (Eq. 1), compared to that of their
equilibrium special case, 〈r〉eq (Eq. 2)? To reach the qualitative
essence of this question, we first investigate the possible shapes of
the output curve. Specifically, we monitor the output’s changes
in concavity with respect to the control parameter. We postpone
comment on the characteristic positions and scales of output
curves—any shifts in their horizontal position (viz. characteristic
concentration scales) or vertical expanses (e.g. maximally induced
responses)—until shortly.

Neglecting scales and shifts allows us to collapse the general,
six-parameter output curve of Eq. 1 to a normalized function of
just two emergent shape parameters,

〈r〉 − 〈r〉0
〈r〉∞ − 〈r〉0

=
ax + x2

1 + bx + x2 , [3]

Here, the emergent shape parameters a and b are complicated
functions of the coefficients in Eq. 1 (and hence of underlying rate
constants), and x is the governing concentration [X ] measured
in terms of a characteristic concentration scale (all defined in
SI Appendix, section 2F). The values 〈r〉0 ≡ 〈r〉 ([X ] = 0) and
〈r〉∞ ≡ lim

[X ]→∞
〈r〉 are the leakiness (uninduced) and saturation

†Throughout our analysis and discussion in this paper, we monitor the shape, number
of inflection points, and sensitivity of transcriptional outputs with respect to the control
parameter of the concentration of transcription factor, on a logarithmic scale. We use
this logarithmic convention in alignment with common practice in biochemical and
transcriptional studies (6, 32, 33).

(maximally induced) responses; we return to these values in the
following subsections. This representation preserves the concavity
of the response function, allowing us to explore shapes and
quantitative features in a two-dimensional space more efficiently
and comprehensively than possible in the space of the eight rates.‡

Harnessing this collapsed representation, we find that all
output curves assume just three different universal shapes
(Materials and Methods and SI Appendix, section 2I). First, the
output can be “equilibrium-like:” monotonic and saturating
with a single inflection point with respect to the control
parameter (on a log scale), recalling the shape of the equilibrium
response (Fig. 3C ). Uniquely out of equilibrium, however, two
additional multiply-inflected response shapes become possible.
Under energy expenditure, outputs can become nonmonotonic
and show two inflection points (Fig. 3D), or remain monotonic
with three inflection points (Fig. 3E), with respect to the log
of the control parameter. Responses with three inflections are
always shaped as depicted in Fig. 3E : maximally steep at the
first and third inflection points, but minimally steep at the
second inflection point. Clearly, these nonequilibrium curves are
marked departures from simple equilibrium-like curves but show
a remarkable parsimony and regularity, given that they describe
all departures from equilibrium for any rate parameter values.
These three regulatory behaviors can pose different physiological
implications for an organism; admit distinct quantitative con-
straints on sensitivity (as we will soon see); and require different
conditions on underlying rate constants to be reached. In view
of their categorical differences, we refer to these possible shapes
as regulatory (shape) phenotypes.§

Leakiness, Saturation, and EC50 Are Tunable at Equilibrium.
Does spending energy enable finer control over these quantitative
traits, beyond growing their number? In fact, only some quan-
titative traits are given extra adjustability by spending energy.
Without the transcription factor, the system cannot be found
in any microstate that involves it, collapsing four states into
just the two {S, P} states. This pair of states forms an acyclic
graph, so these steady-state probabilities must show detailed
balance (i.e., are set purely thermodynamically). Thus, leakiness
〈r〉0, determined exclusively by S and P states, can be adjusted
freely while maintaining detailed balance. Analogously, when
the transcription factor concentration is saturating ([X ]→∞),
the system is never found in the two microstates without the
transcription factor, again admitting an orthogonal description
of a balance between two states, now {X, XP}. Hence, saturation
〈r〉∞ is also freely adjustable at equilibrium. These leakiness and
saturation values are independently adjustable by two separate
energy parameters—the binding energies of the polymerase to
the genome when the transcription factor is absent or present,
respectively. At equilibrium, once the leakiness and saturation are
fixed by energy parameters, the response’s maximal sensitivity
(slope at the inflection point) is predetermined and no longer
tunable, as revealed by its algebraic dependencies. In contrast,
while the location of the governing inflection point depends on
these two energy parameters, it can also be tuned—remaining
at equilibrium—using another energy parameter (the binding

‡The two-parameter simplicity of Eq. 3 is one possible nonequilibrium sophistication of
the (usually one-parameter) data collapses used to unify simpler, equilibrium, two-state
physiological responses (31) and regulation (6) in bacteria.
§We use the phrase “regulatory (shape) phenotype,” referring to the overall shape of
a response curve, to distinguish our meaning from the usage of ref. 2, who instead
referred to specific quantitative traits within curves of a single mathematical shape (such
as sensitivity or noise) as “regulatory phenotypes.”
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energy between the transcription factor and genome); further
details are discussed in SI Appendix, section 2G.2.

Nonequilibrium Control of Sensitivity Obeys Shape-Dependent
Global Bounds. Out of equilibrium, the sensitivity of responses
enjoys greater adjustability. Specifically, the diversity of input–
output curves accessible under drive motivates us to assess
sensitivity by a suitably normalized slope s([X ]), defined by

s([X ]) ≡
∣∣∣∣ d〈r〉
d ln ([X ]/[X ]0)

1
〈r〉max − 〈r〉min

∣∣∣∣ , [4]

where 〈r〉min ≡ min
[X ]
〈r〉 and 〈r〉max ≡ max

[X ]
〈r〉 are the extremal

values of the observable over all [X ], and [X ]0 is a character-
istic concentration scale ensuring dimensional consistency. For
monotonic curves, the maximum 〈r〉max and minimum 〈r〉min
responses are necessarily the uninduced leakiness 〈r〉0 and the
maximally induced saturation 〈r〉∞ (or vice versa), whereas for
nonmonotonic responses with two inflections, the maximal and
minimal responses can occur at intermediate finite values of [X ].
This normalized sensitivity s([X ]) is directly related to familiar
measures such as the logarithmic sensitivity and the effective Hill
coefficient, but more naturally and tightly describes sensitivities
of nonmonotonic phenotypes (SI Appendix, section 2J).This
measure parameterizes sensitivity with greater indifference to
absolute scales of the function.

By combining wide numerical sampling, symbolic inequality
solving, and analytical arguments (SI Appendix, section 2J),
we investigated the maximal normalized sensitivity s([X ]) any
response curve can exhibit for the four-state system across its three
possible shape phenotypes. We found that sensitivity is tightly
bounded above and below by precise finite limits; these limits
vary by phenotype. Fig. 4 summarizes these bounds, visualized
by how normalized and centered response curves 〈r〉−〈r〉min

〈r〉max−〈r〉min
behave around inflection points of maximal slope. Equilibrium
response curves always show a normalized sensitivity of exactly
one-fourth. Out of equilibrium, singly-inflected response curves

Fig. 4. Global bounds, in or out of equilibrium, restrict maximal (normalized)
response sensitivity (with respect to input concentrations [X ] on a log scale).
The normalized responses 〈r〉−〈r〉min

〈r〉max−〈r〉min
are plotted near points of inflection

that maximize slope, separated by shape phenotype. When the output has
one inflection point (Left), the maximal sensitivity is bounded between a
minimum of 0.16 (blue line) and a maximum of 1/2 (red line) for any set of
rate values or any dissipation; this subsumes the equilibrium case, whose
normalized sensitivity is fixed at 1/4 (black dotted line). When the output has
two inflections (Middle), the maximal sensitivity is bounded between 1/4 and
1/2. When the output has three inflections (Right), the maximal sensitivity is
bounded between 1/8 and 1/4.

can increase this maximal sensitivity up to one-half, or decrease
maximal sensitivity below the equilibrium value to a numerical
value of about 0.16. (We lack a coherent explanation for this
curious numerical lower bound but verified it by precise symbolic
inequality solving; see SI Appendix, section 2J). Nonequilibrium
with two inflection points all have maximal sensitivity of at
least the equilibrium level of one-fourth, but up to one-half.
Nonequilibrium curves with three inflection points all show
maximal sensitivity of at most the equilibrium level of one-fourth,
and at least a sensitivity of one-eighth.

Cast in terms of the raw maximal sharpness d〈r〉/d ln ([X ]/[X ]0)
of each response curve, these bounds report that raw maximal
sharpness is always between one-eighth and one-half of the
distance between the maximum and minimum responses per e ≈
2.7-fold increase in the concentration [X ]. We stress that these
bounds on sensitivity, in terms of the observed 〈r〉min and 〈r〉max,
are tighter quantitative constraints than bounds merely in terms
of the maximal or minimal transcription rates (or other potency
values) max

i
{ri} or min

i
{ri} that any microstate of the system can

show, as can be connected to recent, related upper bounds (33).
This follows since the extrema of the average observable response
curve over all [X ] are usually more restricted than the most
extreme potencies over microstates (namely, max

i
{ri} ≥ 〈r〉max

and min
i
{ri} ≤ 〈r〉min) (SI Appendix, section 2J.4).

These findings emphasize that network architecture and
dissipation are not the only hard global constraints that bound
sensitivity. The global shape of the response curve further
categorically constrains the possible sensitivity. This relationship
is potentially biologically relevant: For instance, it is impossible
for an organism regulated by the square-graph transcriptional
motif to achieve both a triply-inflected output curve and a
normalized sensitivity greater than that at equilibrium. This
represents a tradeoff between the shape complexity of a response
and its maximal sensitivity.

Breaking Detailed Balance Along Each Edge. Our foregoing
analysis has been mathematically general. That is, the constrained
shapes and bounds on sensitivity hold for any response following
Eq. 1, over all rate constant values and energetic dissipations.
These constraints also apply even—as previously noted—if the
response is produced by a different underlying graph architecture
than the particular transcriptional motif shown in Fig. 1, as
long as the graph still yields spanning trees that depend up
to quadratically on the control variable. Just because multiply-
inflected or adjustable response curves are mathematically pos-
sible, however, does not establish that they are biologically
plausible. To assess whether these behaviors can be accessed
using physiologically plausible amounts of energy expenditure
or typical biological rates, we now specialize to the plausible
particulars of transcription as in Fig. 1. In the remainder of
this paper, we quantify the extent of dissipation sustaining a
nonequilibrium steady-state by focusing on the free energy Δ�
coupled to the system, with units of kBT or Joule; we refer to this
quantity as the nonequilibrium driving force or simply as the (net)
drive (SI Appendix, section 1D). In addition, we now adopt the
transcriptional potencies rP = rXP = 1 and rS = rX = 0. This
choice makes our response observable 〈r〉mRNA the probability
that polymerase is bound to the genome. (More general responses
can be easily analyzed analogously; see SI Appendix.)

Typical empirical binding energies, diffusion-limited rates,
and single-molecule kinetic measurements yield order-of-
magnitude estimates for the eight rates governing transcription
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A C

B

Fig. 5. Systematically
breaking detailed balance
edge-by-edge. (A) Example
of how spending energy
to modify a single rate
(here, kXS )—while the
seven other rates remain
fixed—changes the res-
ponse curve away from
default equilibrium be-
havior (pale yellow curve
labeled “0” net drive and
outlined in black). Res-
ponses from rate values
larger than (or smaller
than) at equilibrium are
shown in increasingly
red (or blue) colors, res-
pectively; curves are
also labeled with the
numerical values of the
net drive that generated
them in kBT units (positive
for an increase; negative
for a decrease). Each
curve’s resulting inflection
points are marked by
yellow, orange, or pink
markers, denoting one
to three inflection points
(respectively), and sum-
marized in the associated
one-dimensional (shape

phenotypic) phase-diagram with the same colors on the Right. Inset: the position of the final inflection point max ln [X]∗/[X]0 versus net drive (power law exponent
is ∼1). (B) Another representative behavior is displayed when kX,XP is instead the rate varied. Inset: the saturation 〈r〉∞ versus net drive (power law exponent
is ∼1). (C) Summary of how all eight rates respond to energy expenditure to realize different regulatory shape phenotypes. Below, stem plots give precise
values of each default rate constant at equilibrium. (These rates satisfy initial “broken symmetries” that violate the conditions in Eq. 5 by default, facilitating
more ready access to nonmonotonicity. SI Appendix, section 2K documents the impact of departing from different default starting rates that instead satisfy
Eq. 5, in addition to the impacts of driving all other edges.) (Here, the reference concentration scale setting the horizontal offset of the concentration axis is
[X ]0 ≡ 1 nM).

at equilibrium (SI Appendix, section 2B and Fig. 1). First, we
choose a set of default rates consistent with these orders-of-
magnitude (given in the Lower Right stem plot of Fig 5C ). Next,
we investigate how breaking detailed balance by spending energy
to increase or decrease a single rate constant at a time—while
keeping the seven other rates fixed at biological default values—
modulates the transcriptional response curve. Hydrolyzing an
ATP molecule makes available≈20 kBT of energy [Bionumbers
ID 101701, (35, 36)] that can be used as a chemical potential
gradient to drive transitions [for instance, by powering an
enzymatically assisted pathway (37)]. This amount of free
energy is also the scale observed to power active processes like
biomolecular motors (38). Accordingly, to conservatively emulate
a biological energy budget, we allot a maximum of just two ATP
hydrolyses’ worth of free energy, |Δ�| ≤ 40 kBT , to break
detailed balance. This budget for drive allows a given individual
rate to be scaled by up to a factor exp[Δ�/kBT ] = exp[±40].

Applied edge-by-edge, this procedure reveals that biologically
feasible energy expenditures dramatically modify the response
curve and easily attain all three regulatory shape phenotypes.
Illustrating this regulatory plasticity, Fig. 5A shows how breaking
detailed balance by scaling a rate up (increasingly red curves) or
down (increasingly green-blue curves) can shift response curves
to the left or right on the horizontal log[X ] axis (effectively
tuning what EC50 formerly represented at equilibrium), and
also smoothly change the number of inflection points (See
SI Appendix, section 2K for many further example response
curves). Yet even for the same net nonequilibrium driving
force, the consequences of breaking detailed balance depend
significantly on the edge it is broken along. Fig. 5B shows

another representative behavior by modifying a different edge,
where the major effect of departing equilibrium is to modulate
the leakiness, saturation, or intermediate scales of the response.
Despite the diversity of this regulation, quantitatively regular
control behavior emerges as well: Inset plots emphasize that
phenotypic properties such as the position, max{log[X ]∗}, of
the final inflection point and the saturation, 〈r〉∞, scale as power
laws with the net drive over some regimes.

This broad regulatory flexibility is sustained over all eight rate
constants, whose comprehensive response behaviors under drive
are analyzed in SI Appendix, section 2K. Fig. 5C summarizes how
driving each rate attains different shape phenotypes (number of
inflections). Notably, any rate can be driven to access any of the
three response shape phenotypes at some small, biologically fea-
sible dissipation. Yet the minimum nonequilibrium driving force
values needed to unlock a given phenotype—and the fraction of
rate space manifesting this phenotype—varies markedly across
the rates. For instance, the two-inflection-point nonequilibrium
response shape (orange) is only reached for a fairly narrow,
fine-tuned region of drive for the rates kPS , kXP,X , kSP , and
kX,XP , but is the most common shape phenotype over finite
net drives for the rates kXS , kXP,P , kSX , and kP,XP . Such variable
consequences of injecting energy along different rate transitions
reflect the privileged roles that states XP and P play in the
graph, given that their probability is the transcriptionally potent
response we monitor. The contrasting impacts of modifying
each edge are also sensitive to the default rates that define
the system’s biological equilibrium starting point, a revealing
dependence that we will return to in the penultimate Results
section.
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A

C D E

B Fig. 6. Breaking detailed bal-
ance along two edges unlocks
higher sensitivity and multiply-
inflected outputs with smaller
drive than required for break-
ing detailed balance along sin-
gle edges. (A) Adjusting the rate
pair (kSX , kPS)—while fixing the
other six rates at their default
biological values at equilibrium
(of Figs. 3Aand 5C ’s stem plot)—
varies the number of inflec-
tion points (light yellow: one
inflection, orange: two inflec-
tions, pink: three inflections), in
a 2D analog of Fig. 3. Specif-
ically, this rate pair illustrates
a case where nonmonotonic
two-inflection curves can be
reached with only an infinites-
imal net drive. (B) In contrast,
when tuning (kXS , kSX ), a finite
minimum drive is needed to ac-
cess nonmonotonicity; numeri-
cal sampling reveals that this to-
tal drive is the same as required
while only tuning one edge at a
time. (C) Maxima of raw slope
d〈r〉/d ln [X]/[X]0 over the same
modulations (axes) of the rate
pair (kSX , kPS) shown in (A), with
slope-maximizing rates within
the permissible rate space indi-
cated with a circle. [X ]0 ≡ 1 nM
is a reference concentration. (D)
Overlaying the same positions

of maximal slope for all twenty-eight rate pairs emphasizes that optimal slopes are found at the boundary of the permissible rate space. Marker colors reflect
the maximal slope achieved for each rate pair. Panel (E) summarizes the behavior of panel (D) by representing each optimal rate pair value with two important
natural parameters: the net drive Δ�/kBT (either the log ratio or log product of each rate’s difference from their equilibrium starting values, depending on the
relative (counter)clockwise orientation of the rates in a pair); and the net total distance in rate space between the optimal values and their starting values,

D
(

ln kmn
kmneq

, ln
kij
kijeq

)
≡

√√√√(ln kmn
kmneq

)2
+

(
ln

kij
kijeq

)2
.

Breaking Detailed Balance Two Edges at a Time. Adjusting one
edge at a time, as we have just investigated, is one of many ways a
network could invest energy to control its input–output function.
For instance, the classical scheme of kinetic proofreading recog-
nized that many steps could each be driven independently (39),
as has later been repeatedly observed in the multistep ways that
T-cell or mitogen-activated protein kinases activation implement
kinetic proofreading (40–43) or in mechanochemical operation
of myosin motors (44). How do such distributed investments
of energy afford expanded control of response functions? To
understand this question, we now appraise how breaking detailed
balance along up to two edges at a time expands how different
response behaviors may be accessed. With two independent
drives (one for each edge’s departure from its default biological
value), the formerly-one-dimensional phase diagrams of Fig.
5 become slices of two-dimensional phase diagrams that map
where response shapes are reached (see Fig. 6 A and B; and also
the census of how all twenty-eight rate pairs behave found in
SI Appendix, section 2K).

Geometrically more complex than their one-edge equivalents
in Fig. 5, these two-edge phase diagrams expose new ways to
transition between the shape phenotypes. One measure of this
new facility is the energetic cost needed to reach nonmonotonic
(two inflection-point) response curves. Starting from biological
equilibrium, what is the minimum net driveΔ�0 required for the
response to become nonmonotonic, when energy can be injected
along just one edge at a time (Fig. 5) or up to two edges at a
time (Fig. 6 A and B)? Regarding this question, we find that the

(8
2
)

= 28 possible pairs of edges can be divided into two types.
A few—like the edge pair (kXS , kSX ) illustrated in Fig. 6B—
require the same finite total dissipation to reach nonmonotonicity
as needed if only driving either individual edge. However, the
majority of rate pairs—such as the edge pair (kSX , kPS)—offer
a dissipative bargain: By controlling both rates, it is possible to
find a point in rate space where only an infinitesimal departure
from detailed balance activates nonmonotonicity (as circled in
Fig. 6A). These infinitesimal minimal drives contrast the finite
drives always required while modifying single edges (Fig. 5C ).
This new economy is enjoyed by the 22 rate pairs that include
at least one of the four special rates kX,XP , kSP , kXP,X , or kPS ;
their membership is a clue for identifying critical conditions on
nonmonotonicity as we deduce in the next Results section.

The richer behaviors achievable by breaking detailed balance
along two rates (instead of just one) become even more
pronounced from the lens of sensitivity. The heatmap of Fig.
6C depicts the maximal unnormalized sharpness d〈r〉/d ln[X ]
reached by modifying the rate pair (kSX , kPS) (the same rates
mapped phenotypically in the phase space of Fig. 6A). If only
one rate constant at a time were allowed to be driven, only
the slices of sharpness along the white dotted x = 0 and y = 0
vertical and horizontal lines would be accessible, at most realizing
a maximal unnormalized sharpness of .0.15 with respect to the
concentration [X ] on a log scale. However, once both edges can be
modified, it becomes possible to access the maximal slope region
on the Lower Right, yielding a greater maximum sensitivity of
about 0.35. Repeating this procedure for all 28 rate pairs, as
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shown in Fig. 6D, we find that the points in rate space that
maximize slope all require both rate constants in each pair to be
modified from their default equilibrium values (lying away from
the x = 0 and y = 0 vertical and horizontal lines). To maximize
sensitivity, all rate pairs show one (but usually not both) rate
constant that has been driven to the maximal extent allowed
by the nonequilibrium driving force budget (localizing optimal
points to the borders—but not necessarily corners—in Fig. 6D).
The net drive Δ� ensuing from both rate’s departure from
their equilibrium values is often distinct from those independent
departures. Fig. 6E recasts the same slope-maximizing points in
Fig. 6D in terms of these two separate properties (the net drive
Δ�, and the average geometric distance, D, each edge moved
from its biological starting point.) Different rate pairs show
dramatically different optimal maximum sensitivities at varying
cost: Choosing to break detailed balance along the (kSX , kPS)
can achieve a maximal slope of about 0.35 (probability units per
e-fold change in [X]) at a net drive of only Δ� ≈ 10 kBT (dark
gray marker), but choosing less wisely the rate pair (kSX , kPXP)
at best attains a slope of about 0.054 (probability units per e-fold
change in [X]), even while spending a net energy Δ� & 35 kBT
almost four times as large. Collectively, these findings highlight
how distributing dissipation over the transitions in a network can
achieve more precise and dramatic responses.

Generic Rate Conditions Forbid Access to Nonmonotonic
Responses. Why, as we have seen, are nonmonotonic responses
accessed with different ease while driving some rates—or still
more economically, rate pairs—rather than others? How do the
default equilibrium rates from which biology departs affect the
tunability of responses? Confronting these questions leads us
to glean general kinetic conditions that enable or forbid non-
monotonicity. We reformulate the criterion for nonmonotonicity
to explicitly invoke net drive and rate constants (SI Appendix,
section 2L). Using these analytical arguments, we determine that
nonmonotonicity is forbidden for any net drive when transition
rates satisfy the following, surprisingly loose, conditions:

〈r〉
is always

monotonic
in [X ]

≡

{
kX,XP ≥ kSP and kXP,X ≤ kPS , or
kX,XP ≤ kSP and kXP,X ≥ kPS .

[5]

That is, if the presence of the transcription factor on the genome
increases or decreases the polymerase’s binding rate in a sense
opposite to its effect on the unbinding rate (or leaves either
unchanged), the response must depend on the transcription
factor monotonically. Only when the transcription factor plays
a functionally “ambiguous,” dualistic role—coherently changing
both the polymerase’s binding and unbinding rates (that them-
selves have opposite effects on the response)—may the response
become nonmonotonic under a sufficient net drive. Since access
to nonmonotonicity is governed by kinetic conditions in Eq. 5—
but thermodynamic parameters instead set whether a response is
globally activating or repressing (SI Appendix, section 2L)—the
qualitative origin of nonmonotonicity stems from when kinetic
and thermodynamic aspects in the system oppose each other.

This condition of Eq. 5 helps explain why some rates and
rate pairs reach regulatory shape phenotypes so differently under
drive, and how default starting rate constants matter. A compre-
hensive census of responses while driving one edge at a time when
default rates satisfy Eq. 5 is provided in SI Appendix, section 2K.
Instructively, Eq. 5 demands that when the transcription factor
does not change the polymerase’s (un)binding rates—namely,
either kX,XP = kSP or kXP,X = kPS—the response must be

monotonic. By default, under the often reasonable classical as-
sumption that the binding rate of polymerase is purely diffusion-
limited (1), the transcription factor indeed may not affect
the polymerase’s binding rate, thus forcing the response to be
monotonic.¶ This type of biophysical constraint may contribute
to why transcriptional responses are most canonically pictured as
monotonic. However, while plausible, this biophysical scenario
is hardly inescapable or universal. In fact, even for architectures
as “simple” as lac repression, there is gathering empirical evidence
that proteins associate with DNA binding sites under more
intricate regulation than merely diffusion (45). Transcription
factors that mediate steric access to the genome (dissipatively or
not), such as via DNA looping (46), may also be especially prone
to contravene this condition.

More Complex Regulatory Architectures Obey Similar
Constraints. As documented earlier in Fig. 2, more complex
regulatory networks than the square cycle also govern transcrip-
tion, albeit less commonly. In SI Appendix, section 3, we use the
Matrix Tree Theorem to derive how combinatorial regulation
by multiple transcription factors—forming hypercubic graphs—
generalize the algebraic behavior of the square graph. Further, we
also investigate two distinct architectures for DNA looping, thus
generalizing quantitative input–output functions characterized
in previous experiments (e.g., ref. 47) but previously studied
with models confined by equilibrium assumptions (30, 47).
These larger networks also produce outputs that are ratios
of particular (multivariate) polynomials in transcription factor
concentrations as control variables. Like in the square graph, these
responses attain restricted subsets of monomials in the control
variables, whose constrained algebraic forms we calculate in SI
Appendix, section 3. At equilibrium, these responses analogously
collapse further to much simpler expressions with constrained
shapes. To learn which nonequilibrium behaviors are not just
mathematically possible but also biologically plausible to reach
in such systems, we further systematically broke detailed balance
along each edge in the architecture of DNA looping by repression.
This operation illustrates how the edge-by-edge analysis in Fig.
5 can extend to more complex graphs. These algebraic and
numerical analyses promise to identify constraints on the ultimate
signal processing and combinatorial logic that cells can perform
even with larger networks, in or out of equilibrium. For instance,
we also derive separate kinetic criteria needed for DNA looping
architectures to attain nonmonotonic response shapes. These
conditions reveal how even in these more complex networks,
narrow and biophysically challenging parameter regimes are re-
quired to reach specific response features (SI Appendix, section 3).

Discussion

In this work, we dissected how spending energy transforms
the control of gene expression in minimal and common
transcriptional architectures. Harnessing a kinetic description
and diagrammatic procedure from graph theory, we found
that any transcriptional outputs follow a universal form with
respect to a control parameter like a transcription factor’s
concentration. Focusing on a particularly simple and pervasive
regulatory motif, we found these responses may only adopt

¶By contrast, by the assumption that the transcription factor has the typical biophysical
effect of changing the affinity between the polymerase and genome, the polymerase’s off-
rate from the genome is affected by the transcription factor’s presence, and kXP,X 6= kPS .
So usually it is not an equality between polymerase’s off-rates that prevents a response
from being nonmonotonic.
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three shapes, including an equilibrium-like (monotonic, singly-
inflected, saturating) response. Uniquely out of equilibrium,
however, two unexpected and noncanonical output behaviors
become possible: a doubly-inflected , nonmonotonic response,
and a triply-inflected, monotonic response. Underneath wide
parametric complexity, we established tight global bounds on the
maximal sensitivity of transcriptional responses and learned these
can vary and tradeoff with response shape. Next, we systematically
mapped how biologically feasible amounts of energy along single
rates or rate pairs control responses. These findings established
that the noncanonical responses are easily accessed around rates
plausible for transcription, especially when dissipation can be dis-
tributed more widely over a network. Last, we uncovered global,
transparent kinetic conditions that forbid (or enable) novel
nonmonotonic responses. An important aspect of the present
work is that beyond focusing on point quantities such as the
sensitivity, we characterize the entire input–output function over
the full range of different detailed-balance-breaking behaviors.

The flexible regulation unlocked by nonequilibrium could
be widely biological salient. Responses that can show three
inflection points—instead of just one at equilibrium—could
accomplish the role of two classical (singly-inflected) input–
output functions. Since an inflection can mark a local region
of enhanced output sensitivity, and effectively implement a
threshold, this functionality could allow cells to achieve distinct
cellular fates, such as in Wolpert’s classical French Flag model
(48). By contrast to our small architecture, canonical pictures of
multiple thresholded responses usually require multiple genes—
often at least one specific gene per threshold (49). One important
example is the celebrated Dorsal protein in Drosophila, where two
critical thresholds have been proposed to accomplish twist gene
activation and decapentaplegic gene repression to help establish
distinct parts of dorsal patterns in embryonic development
(50, figure 2.26, p. 64). We propose that triply-inflected
responses from a single gene could accomplish some of this same
functionality with a smaller architecture.

Nonmonotonic response functions with two inflection points
could empower cells to accomplish more sophisticated signal
processing, such as band-pass or band-gap filtering of chemical
inputs, and/or generate temporal pulses of chemical outputs.
Similar implications have been explored by Alon (64), inter alios,
who established how nonmonotonic outputs can be produced
by chaining together incoherent feed-forward loops (51–54). To
achieve more complex outputs, these networks use transcriptional
interactions among multiple genes at equilibrium—e.g., from
two to six (or more) genes in such examples. Hence, these
networks operate with comparatively larger sizes and timescales
than mere binding-unbinding reactions on a single gene’s
regulatory network like the square graph we study in this
report. We suggest these comparisons contribute useful material
to a maturing discourse about when and how biology uses
thermodynamic or kinetic control mechanisms (37, 44).

Even responses that remain “equilibrium-like” with a single
inflection benefit from energy expenditure, since our bounds
establish they may be up to two times more sensitive than
at equilibrium, and enjoy new kinetic (instead of merely
thermodynamic) ways of controlling the location of the gov-
erning inflection point (EC50). Such adaptation evokes earlier
influential models of ultrasensitivity by energy expenditure (55).

While only mild net drives unlock useful regulatory shapes
and traits, our analysis emphasizes other mechanistic factors that
govern how easily these behaviors can be accessed, or measured
as signatures of nonequilibrium in natural or synthetic settings.

First, the biological network’s architecture determines whether
these distinct macroscopic behaviors can be attained at all.
Although prokaryotic gene regulation has regularly shown a
compelling coherence between quantitative measurements and
equilibrium statistical mechanical models [including demanding
studies from our own laboratories over the past two decades
(6, 25, 28, 56, 57) and beyond (46)], many of the most fiercely
interrogated systems (e.g. the lac repressor) are indeed exactly
those with acyclic network topologies that make nonequilibrium
steady-states impossible (without open fluxes) and guarantee
detailed balance. This reflects a possible overrepresentation of
biological settings where detailed balance may be expected a
priori to apply on mere structural grounds. On the other hand,
the means to spend energy biochemically clearly exist, even in
bacteria through two-component regulatory systems (58) and
other active settings like nucleosome remodeling in eukaryotes
(5). Accordingly, our findings invite and vigorous reappraisal of
whether signatures of nonequilibrium are lurking in architectures
that are more prone to accommodate it, such as the four-state
“simple activation” motif we discussed here. Moreover, the
measurements (or synthetic biological perturbations) needed to
map the nonequilibrium landscape of transcriptional responses
must differ from the convenient binding site modifications
[e.g. parallel promoter libraries (25, 59)] previously used
to test equilibrium models, since manipulating binding
energies inherently preserves detailed balance. Developing fresh
experimental approaches to augment or attenuate a single
transition between microstates (or set of transitions) in situ to
break detailed balance is a crucial direction of future empirical
work, whose value is advocated for by our results. To manipulate
and probe tractable models of transcription, these methods
might include optogenetic control (60, 61), or adjustments of
governing enzyme concentrations or activities.

Second, where energy is invested crucially dictates which
regulatory behaviors are available. We found that investing energy
along more than one rate at once was capable of achieving more
dramatic response curves more economically. This finding may
help explain the many observations in biological systems where
energy is independently injected along multiple steps (39–44).
However, since each independently regulated injection of energy
may also be accompanied by architectural costs, not all examples
of biological regulation may contain the distributed dissipation
machinery required to make novel nonequilibrium response
signatures conspicuous.

Third, the structures of responses while breaking detailed
balance edge-by-edge, and our general kinetic criteria that forbid
nonmonotonicity, highlight that certain critical imbalances
between rate constants are needed to produce some out-of-
equilibrium signatures. On basic biophysical grounds, some
natural systems may (or may not) exhibit the required rate im-
balances to make novel responses as easy to activate (SI Appendix,
section 2L.2). Indeed, the rate imbalances required to produce
nonmonotonicity we found are nonobvious. These kinetic
criteria have significant implications for organizing parameter
explorations. For instance, we show in SI Appendix, section 2M
that two exciting, completely separate studies recently published
(2, 15) exploring the informational and functional consequences
of nonequilibrium impose simplifying assumptions on rate
constants that in fact preclude the possibility of nonmonotonic
responses, according to equivalents of our monotonicity criterion.
We expect that this approach and our kinetic criteria will help
future works include and capture the regulatory consequences
of these rich behaviors. We anticipate this flexibility may be
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especially germane for environments that present nonuniform
input statistics.

The contrast between the nonequilibrium steady-states possi-
ble to support using this “simple activation” architecture, and
the difficulty of sustaining nonequilibrium steady-states in a
simple repression architecture that lacks a cycle, also possibly
provides a distinct design principle to understand the timeless
question of why both activators and repressors are employed
as distinct architectures when they can produce the same mean
gene expression. Intriguing rationalizations based on ecological
demand have been offered for why these architectures are used
differently in E. coli, such as the classical proposal by Savageau
(62–64). We speculate that another, quite distinct, feature—the
very possibility of using nonequilibrium to steer input–output
response curves so flexibly—may also contribute to why organ-
isms might use a simple-activation (or other cycle-containing)
architecture over acyclic architectures, all other features being
equal. Whether this nonequilibrium controllability significantly
shapes the natural incidence of regulatory architectures can only
be assessed using quantitative measurements of input–output
behaviors from a much broader set of architectures than the
relatively narrow (e.g., Lac repressor, Bicoid, Ph05, and CI in
bacteriophage-� switch) subjects of existing analyses.

Our work urges the value of measuring the global shapes of
input–output functions. This approach complements but con-
trasts the more common practice of attempting to fit and compare
single scalar parameters like sensitivity or pointwise proofreading-
ratios (13, 55). Unexpectedly flexible global curve shapes might
be even more obvious and robust signatures of nonequilibrium
than pointwise estimators, since scalar measures like derivatives
are often highly sensitive to measurement noise (65). Yet, just as
for pointwise measures, inferring nonequilibrium from global
shape requires sufficient knowledge of a system’s states. As
our wider analysis of transcriptional architectures (SI Appendix,
section 3) stresses, larger graphs can reach complex shapes at
equilibrium only accessible by small graphs out of equilibrium.
Whether a measured complex response stems from a simple
system operating out of equilibrium, or a more architecturally
complex system operating near equilibrium, may depend on
separate lines of empirical evidence, including knowledge of
binding site topology. Nevertheless, such details are often
known—or knowable—for promoters of interest.

Our calculations also provide explicit maps of parameter spaces
that can guide the naturalist looking for whether this expanded
regulation occurs naturally in specific examples of transcription.
This information is also a guide to the synthetic biologist who
endeavors to engineer such responses in genetic circuits and
exploit the advantages of producing complex regulation using a
small driven network, instead of a comparatively larger, more
slowly tuned network of multiple genes and/or proteins at
equilibrium.

Beyond advocating for experiments, our findings invite many
theoretical extensions. How dissipation affects the intricate
tradeoffs between sensitivity, specificity, speed, and stochasticity
in (steady-state or transient) gene regulation is a large, open,
physiologically relevant question amenable to further graph-
theoretic dissection. In addition, we hope for deeper analytical
rationalization of our bounds on sensitivity; our upper bounds
surely share similar foundations with looser, more architecturally
general, bounds recently and insightfully established by Owen
and Horowitz (33), though our additional lower bounds and
different mathematical quantities suggest separate theoretical
ingredients.

Overall, we foresee that graph-theoretic treatments like we
have deployed here—and as have been first so powerfully
established and refined by foundational investigators (18, 20,
33, 66)—will help understand still more sophisticated networks.
Just as Feynman diagrams and other diagrammatic reasoning
catalyze field theory and particle physics (67, 68), drawing graphs
promises to help build structural principles about how energy
enlivens biology.

Materials and Methods

NonequilibriumSteady-State Probabilities via theMatrix Tree Theorem.
Consider a continuous-time Markov chain with N states, whose transition rates
kij between states i and j are stored in the j, ith element of the transition matrix
L, and so the probabilitiesp(t) = [p1, . . . , pN]

> of finding the system in these
states evolve according to

dp
dt

= Lp.

(With this convention of p as a column vector, the columns of the matrix L sum
to zero and the diagonal entries are accordingly Lii = −

∑
j 6=i

Lji = −
∑
j 6=i

kij.)

Identifying our Markov system as a weighted graph, a spanning tree over the
states is a set ofN− 1 edges that visits every state exactly once. A spanning tree
i rooted in a state i contains no outgoing edges from state i (and exactly one

outgoing edge for every other state j 6= i). These notions are summarized in the
example of Fig. 3A. The Matrix Tree Theorem (MTT), also known as the Markov

Chain Tree Theorem, states that at steady state
(
dp
dt = Lp = 0

)
, the statistical

weight of the ith microscopic state is the sum of products of rate constants over
spanning trees rooted in node i

[6]

where NTi is the number of spanning trees rooted in i (18, 24). This weight
�i is the relative odds of finding the system in state i as a fraction of all the
statistical weights �tot =

∑
j

�j, namely pi = �i/�tot. Applying the MTT

to the regulatory motif of Fig. 3A indicates that any steady-state probabilistic
observable depends on the transcription factor control parameter [X] according
to Eq. 1 (SI Appendix, section 2D).

Emergent Shape Parameters and Shape Phenotypes. The collapsed shape
representation of Eq. 3 allows us to solve for the number of positive solutions
to d〈r〉/d ln ([X]/[X]0), yields the numbers of possible inflection points (via,
for instance, Descartes’ rule of signs or explicit inequality solving) and hence
shapes (SI Appendix, section 2I). Numerical and symbolic analysis of the space
formed by these two emergent shape parameters (a, b) (Eq. 3 and SI Appendix,
section 2I.2) helps establish our global bounds on sensitivity. Ultimately, this
collapsed representation is also a crucial theoretical stepladder to find the generic
conditions forbidding nonmonotonicity given in Eq. 5 (SI Appendix, section 2I).

Single Edge and Edge Pair Perturbations. We estimated default biological
rates for transcription at equilibrium by synthesizing reported binding affinities,
association rates, and diffusion constants (SI Appendix, section 2B). We solved
the condition for an inflection point symbolically and numerically (SI Appendix,
sections 2I–2K).

Data, Materials, and Software Availability. Symbolic and numerical code
used for this study’s analyses and figures is available open source. See https://
github.com/RPGroup-PBoC/graphnoneq (69). All other data are included in the
manuscript and/or SI Appendix.
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