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Abstract 1 

Metagenomic studies have revolutionized the study of novel phages. However these studies 2 

trade the depth of coverage for breadth. In this study we show that the targeted sequencing of a 3 

phage genomic region as small as 200-300 base pairs, can provide sufficient sequence diversity to 4 

serve as an individual-specific barcode or “Phageprint”. The targeted approach reveals a high-5 

resolution view of phage communities that is not available through metagenomic datasets. By 6 

creating instructional videos and collection kits, we enabled citizen scientists to gather ~700 oral 7 

samples spanning ~100 individuals residing in different parts of the world. In examining phage 8 

communities at 6 different oral sites, and by comparing phage communities of individuals living 9 

across the globe, we were able to study the effect of spatial separation, ranging from several 10 

millimeters to thousands of kilometers. We found that the spatial separation of just a few 11 

centimeters (the distance between two oral sites) can already result in highly distinct phage 12 

community compositions. For larger distances, spanning the phage communities of different 13 

individuals living in different parts of the world, we did not observe any correlation between spatial 14 

distance and phage community composition as individuals residing in the same city did not have any 15 

more similar phage communities than individuals living on different continents. Additionally, we 16 

found that neither genetics nor cohabitation seem to play a role in the relatedness of phage 17 

community compositions across individuals. Cohabitating siblings and even identical twins did not 18 

have phage community compositions that were any more similar than those of unrelated individuals. 19 

The primary factor contributing to phage community composition relatedness is direct contact 20 

between two habitats, as is demonstrated by the similarity between oral phage community 21 

compositions of partners. Furthermore, by exploring phage communities across the span of a 22 

month, and in some cases several years, we observed highly stable community compositions. These 23 
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studies consistently point to the existence of remarkably diverse and personal phage families that are 24 

stable in time and apparently present in people around the world. 25 

  26 

Introduction  27 

The study of bacteriophages, or viruses of bacteria, has traditionally relied on the culturing of 28 

the bacterial hosts. Because the vast majority of bacteria remain unculturable, we have only recently 29 

begun to recognize the overwhelming presence of phages through culture-independent techniques 30 

(1, 2). These advances collectively paint phages not only as the most numerous and diverse 31 

biological entities on our planet, but also as regulators of microbial ecosystems through rapid 32 

infection cycles and gene transfer events (3-7). Yet, compared to their bacterial hosts, and despite 33 

their proven potential to transform fields such as medicine (8-10), agriculture (11, 12), and 34 

biotechnology (13-15), phages are, in general, poorly characterized (16-20).   35 

Even across familiar microbial habitats such as those within the human body, the identity of 36 

phages and their corresponding bacterial hosts, their community compositions, their modes of 37 

transfer between habitats, their co-evolutionary history with bacterial and human hosts, their role in 38 

health and disease, among other important topics remain highly unexplored. We thus chose to study 39 

the human oral cavity, not only because it represents a multifaceted and medically important 40 

ecosystem, but also because there are very few studies focused on oral phage communities (21-25).  41 

Several intriguing studies have revealed phages as the most abundant members of the human 42 

oral cavity (108 virus like particles per mL of saliva) (22, 26), with distinct communities at sites of 43 

disease (27, 28), capable of augmenting the bacterial arsenal of pathogenic genes (29, 30). These 44 

studies have relied on the shotgun metagenomic approach, in part because one of the defining 45 

features of viral genomes is the lack of a universally conserved sequence. Given that the ribosomal 46 

RNA sequence can be used as a universal marker for cellular genomes, its sequence variation is used 47 
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to draw conclusions about cellular evolution and taxonomic classification (31-33). This marker-48 

based approach to microbiology is additionally indispensible to microbial ecology as it allows a high 49 

coverage depth of the 16S region, which in turn, enables precise and reproducible depictions of 50 

bacterial community compositions (34-38). 51 

Using the current sequencing platforms, the trade-off for coverage depth is typically the 52 

coverage breadth (Figure 1). In comparison to the marker-based approach, shotgun metagenomics 53 

provides a much greater breadth in coverage and offers several advantages. However, it suffers from 54 

several disadvantages. The coverage depth is often heterogeneous and remains comparatively low in 55 

these studies, a manifestation of which is that the de novo assembly of genomes from complex 56 

environments remains a significant challenge (39), even for abundant members with relatively short 57 

genome lengths (40). Moreover, the genomes assembled through shotgun metagenomics are often 58 

consensus genomes or an average representation of similar genomes within an environment (41). It 59 

is typical to see genomic segments with ~100x coverage that are islands in the sea of lower coverage 60 

depth regions (42-44). Even across regions with high coverage depth, a notable limitation surfaces 61 

when there are variants that occur with a frequency below the detection limit.  62 

Due to these technical challenges, the marker-based approach, which allows orders of 63 

magnitude greater coverage depth by focusing the reads on a small genomic segment, provides a 64 

higher resolution view of community compositions. The targeted approach is therefore widely used 65 

to complement shotgun metagenomic depictions of bacterial communities (45-47). 66 
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 67 

Figure 1. Comparison of A) shotgun metagenomic sequencing and B) targeted 68 

sequencing approaches. A) Shotgun metagenomic sequencing offers high breadth of 69 

coverage, spanning genomes from many different organisms, however it suffers from 70 

low depth of coverage (shown here by the incomplete assembly of phage genomes). 71 

B) Targeted sequencing approaches, which use PCR to amplify a specific genomic 72 

region, exchange breadth of coverage for depth. Targeted sequencing studies, due to 73 

their greater depth of coverage, provide much higher resolution for constructing the 74 

community composition by equating coverage depth with relative abundance of 75 

species or strains.   76 

 77 
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Due to the immense sequence diversity of phage genomes (48-50), an in-depth view of their 78 

communities through a targeted sequencing approach could provide novel insights. As such, the 79 

overarching aim of this study was to explore oral phage communities and their inter-and intra-80 

personal diversity, their spatial patterns of distribution, as well as temporal dynamics in a large-scale 81 

and high-resolution fashion. Towards this aim, we first had to choose regions within phage genomes 82 

on which to perform targeted sequencing. Because of the vast diversity of uncultured phages, we 83 

relied on oral metagenomic datasets to identify candidate marker sequences from such phages.  84 

We have described the methods for phage marker discovery and validation in our recent 85 

manuscript (Tadmor et al., in preparation). Briefly, we arrived at seven phage markers, each 86 

corresponding to a distinct lineage of the terminase large subunit gene (TerL), which is involved in 87 

the packaging of DNA inside the phage capsid. The terminase was chosen as a target because it is 88 

considered to be a uniquely phage gene encoded by many double-stranded DNA phages (51, 52). In 89 

the absence of a genomic taxonomy for viruses, we will refer to those phages (or prophages) that 90 

share similar TerL sequences as members of a phage family. This assumption is predicated on 91 

previous studies that have shown no significant sequence similarity between TerL sequences of 92 

unrelated phages (53-55). In this study we will explore three of the seven markers, and will refer to 93 

those phages that contain these TerL markers as members of the HA, HB1 or PCA2 phage families. 94 

Refer to Materials and Methods for further information on marker discovery. 95 

By designing primers to target these phage families, we were able to obtain at least several 96 

thousand sequences per marker, per individual (see Materials and Methods). As a direct comparison 97 

to our exploration of the same markers from hundreds of shutgun metagenomic samples (Tadmor et 98 

al., in preparation), this study increases the coverage depth of a marker per subject by at least three 99 

orders of magnitude (from a few sequences to a few thousand sequences). We will demonstrate that 100 

at high sequencing depth, the phage community composition derived from members of just a single 101 
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phage family can already serve as a fingerprint, or a “phageprint” – highly unique to a microbial 102 

habitat and stable over time.  103 

By creating instructional videos and collection kits, we enabled citizen scientists to gather 104 

~700 oral samples spanning ~100 individuals residing in different parts of the world. As a point of 105 

comparison, one of the largest studies of the human microbiome recently reported on data from 265 106 

individuals (56). By examining phage communities at 6 different oral sites, and by comparing phage 107 

communities of individuals living across the globe, we were able to study the effect of spatial 108 

separation, ranging from several millimeters to thousands of kilometers. We found that the spatial 109 

separation of just a few centimeters (the distance between an individual’s gingival sites and the hard 110 

palate, for example) can already result in highly distinct phage community compositions. For larger 111 

distances, spanning the phage communities of different individuals, we did not observe any 112 

correlation between spatial distance and phage community composition. In other words, individuals 113 

residing in the same city did not have any more similar phage communities than individuals living on 114 

different continents.  115 

Additionally, we found that neither genetics nor cohabitation seem to play a role in the 116 

relatedness of phage community compositions across individuals. Cohabitating siblings and even 117 

identical twins did not have phage communities that were any more similar than those of unrelated 118 

individuals. The only factor we observed that contributes to phage community relatedness is direct 119 

contact between two habitats, as is demonstrated by the similarity between oral phage community 120 

compositions of partners. Furthermore, by exploring phage communities across the span of a 121 

month, and in some cases several years, we observed highly stable communities. These studies 122 

consistently point to the existence of remarkably diverse and personal phage families that are stable 123 

in time and apparently present in individuals living in different parts of the world. 124 

 125 
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Methods Summary 126 

From a methodological standpoint, targeted sequencing of these phage markers is very 127 

similar to 16S sequencing (35, 57). Using barcoded primers, we employ PCR and next generation 128 

sequencing to attain millions of paired-end reads (Figure 2). After several quality control filters, the 129 

reads are demultiplexed based on their barcoded primer sequence and linked back to the sample and 130 

the marker from which they originated. All reads derived from the same primer sets (i.e. reads 131 

corresponding to the same TerL marker) are then pooled and clustered based on their sequence 132 

similarity into Operational Taxonomic Units or OTUs. An OTU table is constructed wherein the 133 

number of reads belonging to each OTU across each sample is denoted. Using the OTU table, we 134 

can plot the relative abundance of each OTU within a sample. We refer to this plot, which 135 

represents relative abundance profile of members within a phage family as a “community 136 

composition” plot. Finally, we will use various diversity metrics to further explore phage 137 

communities within and between individuals. This procedure is repeated for each of the three phage 138 

families. Detailed description of these protocols can be found in the Materials and Methods.  139 
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 140 

Figure 2. A schematic summary of the main experimental and bioinformatic 141 

methods: 1) Discovery of ubiquitous phage families by examining large terminase 142 

sequences that occur across different metagenomic datasets, 2) experimental 143 

sampling, 3) DNA extraction from oral biofilm samples, 4) PCR using barcoded 144 

primers followed by PCR clean-up, 5) paired-end Next Generation Sequencing, 6) 145 

joining paired-end reads to eliminate sequencing errors, 7) additional quality control 146 

steps to further eliminate errors, 8) demultiplexing of reads based on their barcode 147 

sequence and linking sequences to the sample they originate from, 9) gathering reads 148 

from all samples and clustering them based on sequence similarity (OTUs), 10) 149 

counting the number of sequences belonging to each OTU from each sample (i.e. 150 

constructing an OTU table), and rarefying the table so that each sample is 151 

represented by the same total number of sequences, and 11) performing various 152 

downstream diversity analysis (e.g. community composition plots or phageprints) 153 

using the constructed OTU table as the basis. Note that these steps are performed 154 

separately for each of the three phage families (three separate OTU tables are 155 

constructed).  156 

 157 
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Results 158 

An exploration of phage families reveals the presence of highly diverse, personal 159 

phage community compositions that are stable in time. As previously described in the 160 

introduction, due to the high depth of coverage afforded through targeted sequencing, we are able 161 

to explore phage sequence diversity in extraordinary detail. With bacterial 16S data, sequences are 162 

generally clustered at 97% sequence similarity into operational taxonomic units (OTUs), primarily to 163 

manage the large volume of data. At this threshold, each OTU is conventionally referred to as a 164 

bacterial species. In fact, it is based on OTU counts that the number of bacterial species in a habitat 165 

is estimated. In the absence of any convention for handling viral targeted sequencing data, we have 166 

used here various sequence similarity thresholds for clustering (including 100% sequence similarity 167 

threshold). We found the results to be largely robust to variations in the sequence similarity 168 

threshold (see Materials and Methods).  169 

Figure 3 demonstrates the HA phage community composition from a subject’s tongue 170 

dorsum (top surface) at two time points. The x-axis is a list of OTUs that were generated when HA 171 

phage family sequences from all subjects were clustered based on sequence similarity. The y-axis 172 

counts the relative abundance of the subject’s HA sequences that fall into each OTU. As shown in 173 

this representative figure, and across all other community composition plots we have seen for all 174 

three phage families, the community composition is highly skewed towards a small number of 175 

dominant OTUs (typically one or two OTUs). In addition to these OTUs, there are many other 176 

OTUs with abundance values that are fairly stable in time. Generally, the dominant OTUs are not 177 

the same across different individuals, and the presence of numerous other OTUs with temporally 178 

stable relative abundances, gives rise to phage community compositions that are highly personal. 179 

Therefore, we coined “phageprint” as shorthand to refer to a community composition plot.  180 

 181 
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 182 

Figure 3. HA Phage community compositions (phageprints) from subject 37 at two 183 

different time points. Samples were collected from the tongue dorsum.  A) Subject 184 

37’s phageprint at 0th time point, collected right after brushing tongue dorsal and 185 

teeth surfaces. B) Subject 37’s phageprint 24 hours after the initial time point (no 186 

brushing in between time points). Each phageprint is derived from the analysis of 187 

4000 sequences. OTUs are defined at 98% sequence similarity. 188 

 189 

We have so far demonstrated the highly personal nature of phage communities residing in the 190 

human mouth. To better explore the temporal dynamics of these phage communities, 10 subjects 191 
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collected biofilm from the tongue dorsum every 24 hours for 30 days. The HB1 community 192 

composition as it evolved over 30 days on subject 1’s tongue dorsum is depicted in Figure 4. Here, 193 

to provide a more detailed view of this community, we cluster the HB1 TerL sequences into OTUs 194 

based on 100% similarity.  195 

 196 

 197 

Figure 4. A 3D surface plot depicting the HB1 phage community composition as it 198 

evolves over 30 days on subject 1’s tongue dorsum. The x-axis contains ~10,000 199 

OTUs ordered according to the depicted phylogenetic tree of the OTU sequences 200 

(the phylogenetic tree is provided largely to serve as a schematic since it is hard to 201 

visualize the details of this tree). Each OTU is composed of identical sequences (i.e. 202 

100% sequence similarity threshold). The y-axis depicts the relative abundance of 203 

each OTU, and the z-axis shows the fluctuations in relative abundance of each OTU 204 

in time.  205 

 206 
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Surprisingly, over 30 days, the main features of each phage community composition is 207 

preserved, though there are also interesting fluctuations that are well above the experimental error 208 

and detection threshold (see SI). Figure 5 demonstrates different degrees of temporal stability and 209 

phylogenetic diversity across individuals. However, a global trend is that the dominant OTU(s) 210 

remain dominant over the span of 30 days in all subjects. This observation is especially interesting in 211 

light of the inter-and intra-personal differences in diet and oral hygiene practices over time (Figure 212 

6).  213 

 214 

Figure 5. Depictions of HB1 phage community composition evolution in different 215 

subjects over 30 days. The format of the plots is the same as that of Figure 4, and the 216 

order of OTUs is based on their phylogenetic distance and identical across all plots. 217 

All samples are collected from the tongue dorsum. Note that subject 2 and 4 are a 218 

couple, and their phage community compositions share some main features. The 219 

metadata associated with these subjects is provided in Figure 6.  220 
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 221 

To make quantitative pairwise comparisons between community compositions we employed 222 

several commonly used metrics such as the Bray-Curtis and Unifrac (see Materials and Methods), 223 

and in doing so, we distill the comparison of thousands of sequences from any two samples to a 224 

single score. We will therefore present heatmaps of pairwise comparison scores for each phage 225 

family.  226 

All distance metrics explored paint similar pictures of the HB1 phage communities, depicting 227 

them as highly personal and stable over time (Figure 7, Figure 8). Because phage communities in 228 

different individuals have such distinct compositions, abundance-based metrics are especially 229 

suitable for describing them. However, even the binary Jaccard and weighted Unifrac distance 230 

metrics demonstrate a similar message. Figure 8 further demonstrates the intra-and -interpersonal 231 

distances as measured through these various distance metrics. As is expected from the heatmaps 232 

shown in Figure 7, the intra-personal distances are markedly different from the inter-personal, with 233 

the notable exception being subject 2 and 4, who are partners.  234 

 235 

 236 
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 237 

Figure 6. Subject daily metadata during 30 consecutive days. Top panel for each 238 

subject represents the Caloric intake from fats, carbohydrates, and protein. Mean 239 

Caloric intake or MCI reports the Caloric intake averaged over 30 days (the x-axis for 240 

all plots is number of days). Pie charts demonstrate the diet over 30 days based on 241 
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median fat, carbohydrate and protein consumption. The second panel depicts the 242 

change in Calorie intake from the previous day. The third and fourth panel 243 

correspond to the number of times that the subject brushed his or her teeth and 244 

tongue, respectively, during the 24 hour sampling interval. We have used asterisk to 245 

denote days for which we did not receive data from subject, and to distinguish them 246 

from zero values in third and fourth panel, they have been given “-.1” value. The 247 

subjects are the same as those shown in the previous two figures, however two of 248 

the subjects did not report dietary information so they are not included in this figure.  249 

 250 
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 251 
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Figure 7. HB1 phage community temporal dynamics (previously shown graphically in 252 

Figure 5) depicted here by pairwise distance metrics: A) Peason, B) Binary Jaccard, 253 

Abundance Jaccard, Bray Curtis and unweighted Unifrac. The heatmap scale applies 254 

to all heatmaps shown. Subjects 02 and 04 are a couple. Samples from each subject 255 

are chronologically ordered.  256 
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Figure 8. Intra-and inter-personal distances between HB1 phage communities from 258 

10 subjects, over the span of 30 days (further quantifying the heatmaps from Figure 259 

7). Box-plots depict distances from pairwise comparisons made using the following 260 

metrics: A) Binary Jaccard, B) Abundance Jaccard, C) Bray-Curtis, D) Pearson, and 261 

E) unweighted Unifrac. The outliers defined as those outside of the 1.5 x IQR (inter-262 

quartile range) are denoted by “+”. The box-plots corresponding to the comparisons 263 

between the couple in this study are highlighted.  264 

 265 

Phage community comparisons across siblings, couples, and non-related individuals 266 

residing across the globe. Given the ubiquitous presence of the phage families across subjects 267 

residing in the U.S. we wondered whether phage families (HA and HB1, specifically) are globally 268 

distributed, and whether subjects residing in the same country would have more similar phage 269 

communities. We discovered that phage families were in fact found in individuals from various 270 

ethnicities, nationalities, and ages. Surprisingly, neither from abundance-based nor phylogenetic 271 

distance comparisons did we find an indication that people residing in the same country share more 272 

similar phage communities (Figure 9). Instead, we continued to find that individuals typically have 273 

highly unique phage communities.  274 

 Even siblings who were either living in the same household or had previously, do not have 275 

any more similar phage communities than unrelated individuals. In fact, one of the four sibling 276 

groups with uncorrelated phageprints are identical twins (Figure 9). However, 3 out of 4 couples in 277 

this study exhibited highly similar phage communities. The dissimilar couple may be due to celiac 278 

disease diagnosed in one of the partners, which is known to alter oral ecology (58). These results 279 

suggest that genetics and cohabitation do not significantly impact a person’s oral phage community. 280 

The more impactful factor appears to be direct oral contact with another person. To further test 281 

these trends, larger studies encompassing a greater number of individuals and regions in the world 282 

are required. 283 
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Figure 9. HB1 phage community across 61 individuals residing across different parts 285 

of the globe. Samples are obtained from the tongue dorsum. A) Pearson distance (1 286 

– Pearson correlation) is shown as a heatmap. A subset of individuals residing in the 287 

U.S. are either couples or siblings. Green and red boxes are drawn around samples 288 

from each sibling group and couple, respectively. B) Intra- and inter-country 289 

distances from pairwise comparisons made using Bray-Curtis and unweighted 290 

Unifrac distance metrics. The outliers are denoted as points outside of the 1.5 x IQR 291 

(inter-quartile range). Siblings and couples are excluded from this analysis.  292 

 293 

Different oral sites. Thus far, all phage communities shown are those sampled from the tongue 294 

dorsum. In order to examine the spatial patterns of phage communities we obtained additional oral 295 

samples spanning 9 individuals and 6 oral sites (Courtesy of Bik et al.).  Figure 10 shows the HB1 296 

phage community compositions of a subject at four oral sites where HB1 phage family was found. 297 

Clearly, different oral sites in this subject have very similar HB1 phageprints. When examining all 298 

HB1 positive samples, an immediately recognizable pattern is that the HB1 phage community 299 

compositions of an individual are highly correlated. In stark contrast are the correlations between 300 

the phage community compositions of different individuals. 301 

 302 
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 303 

Figure 10. HB1 phage community compositions (phageprints) across 4 different oral 304 

sites in subject 16. Each phageprint is derived from the analysis of 4000 sequences 305 

(see SI). OTUs are defined at 98% sequence similarity and OTUs with less than or 306 

equal to 0.1% relative abundance across all phageprints were filtered out (see SI). 307 
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 308 

Figure 11. Pearson correlation coefficient matrix of HB1 phage community 309 

compositions spanning 9 subjects and four oral sites. Each community composition 310 

is derived from the analysis of 4000 sequences associated with an individual and a 311 

particular oral site. OTUs are defined at 98% sequence similarity and OTUs with less 312 

than or equal to 0.1% relative abundance across all phageprints were filtered out (see 313 

SI). Phageprints are color-coded based on the individual they originate from. 314 

Community compositions that have been replicated at least twice and averaged have 315 

an asterisk next to them (see SI).  316 

 317 

As in the case of the HB1 phage family, there is low to non-existing correlation between the HA 318 

phage community compositions of different individuals at the same oral site (Figure 12), reinforcing 319 

the notion of highly personal phage communities. However, unlike HB1, not all oral sites within the 320 

same subject are highly or even moderately correlated (see subjects 3, 12, and 17).  In subject 12 for 321 
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example, the tongue dorsum has a correlation close to zero with supra-gingiva and sub-gingiva sites, 322 

which are nearly perfectly correlated. Similarly, in subject 3, the hard palate and the tongue ventral 323 

surface have nearly identical phage community compositions while they have a very low correlation 324 

with the community at the tongue dorsum. However, unlike subject 12, the tongue dorsum in 325 

subject 3 seems to be an intermediate community, having a moderate correlation with all other sites 326 

that are distinct from each other. In subject 17 as well, buccal mucosa serves as the intermediate 327 

community, having a moderate correlation with the disparate communities of sub-gingiva and the 328 

hard palate. Phage-host network representations for HB1 (SI Figure 1) and HA (SI Figure 2) phage 329 

families across this cohort demonstrates in extensive detail the cause of weak or strong correlations 330 

between different oral sites.   331 

 332 
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 333 

Figure 12. Pearson correlation coefficient matrix of HA community compositions 334 

encompassing 11 subjects and six oral sites. Each community composition is derived 335 

from the analysis of 4000 sequences associated with an individual and a particular 336 

oral site. Samples are color-coded based on the individual they originate from. Oral 337 

sites shown are the tongue dorsum (TD), buccal mucosa (BM), supra-gingiva (SP), 338 

sub-gingiva (SB), hard palate (HP), and ventral surface of the tongue (TV). Samples 339 

whose community composition has been replicated at least twice and averaged have 340 

an asterisk next to them (see SI).  341 

 342 

A bioinformatic search for the bacterial hosts. Because we aimed to study previously 343 

uncharacterized phages, the bacterial hosts for the phage families in this study have not yet been 344 

cultured or identified. However, using homology-based searches we can identify candidate host 345 
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species. For each phage family, the most abundant sequence in each OTU served as its 346 

representative sequence and was used as a query for BLASTx homology search. With the exception 347 

of a few sequences tagged as “putative proteins”, all resulting homologs were terminase sequences 348 

(SI Table 1, SI Table 3, SI Table 5). Additionally, the bacterial species with the highest chance of 349 

harboring members of these three phage families were determined based on the results of the 350 

BLASTx homology search (SI Table 2, SI Table 4, SI Table 6, SI Figure 3).  351 

The HA phage family infects only a single genus of Firmicutes (Streptococcus), but appears in 352 

the genomes of many different species within this genus (SI Table 4). The majority of HB1 353 

homologs belonged to ReqiPepy6 phage isolated from Rhodococcus equi (phylum Actinobacteria). 354 

Other OTU homologs were matched to ReqiPoco6, another R. equi phage, and six species spread 355 

across two different families of the Firmicutes phylum.  356 

 357 

Discussion 358 

Our method for finding ubiquitous human oral phages relied on a relatively small  359 

metagenomic dataset, which contained sequences from 6 individuals residing in Spain (59). Yet, on 360 

the basis of markers designed from this small dataset we were able to identify the same phage 361 

families in at least 10 times as many individuals from across the globe. This finding seems to suggest 362 

that there exist certain phage families that are a stable feature of the human oral microbiome. Studies 363 

of phages from various natural environments (e.g. marine, soil, lakes) also report the finding of 364 

phage families that are distributed across similar types of habitats despite vast geographical distances 365 

and barriers that exist between these habitats (17, 60, 61). The discovery of core bacterial members 366 

within the human microbiome (21, 62, 63) that are present globally (23) further support our 367 

discovery of globally distributed phage families. Similar to our findings for phages, the oral bacteria 368 
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of individuals from the same part of the world was as different from each other as they were to 369 

individuals from other parts of the world (23). 370 

The ubiquitous presence of the identified phage families in individuals, together with their 371 

temporal stability, seems to suggest that they likely play important roles in this environment. The 372 

observed temporal stability of these phage community compositions over the span of a month is 373 

supported through metagenomic studies of oral phages (64, 65) as well as 16S sequencing of 374 

bacterial communities inhabiting various sites in the human body (62, 66, 67). Our study represents 375 

one of the largest studies of human oral phages. As a comparison, the most recent version of the 376 

Human Microbiome Project, contains samples from 265 individuals (56). However, future studies 377 

are required to expand our dataset to include many more individuals and many more parts of the 378 

world.  379 

A particularly important aspect of our study is that it combined the advantages of 380 

metagenomics with targeted sequencing to not only identify core phage families inhabiting the 381 

human oral cavity, but to also characterize their communities with a resolution that is unavailable 382 

through metagenomic studies of phages. This detailed view allowed us to clearly observe the highly 383 

complex, and personal nature of phage community compositions. Moreover, the emergence of 384 

phageprints is directly the result of the remarkable phage sequence diversity that we were able to 385 

capture via targeted sequencing. For example, we observed a few hundred HB1 OTUs (defined at 386 

97% sequence similarity). Even though the HB1 phage family is only one of many oral phage 387 

families, it contains the same level of sequence diversity as the entire bacterial population in the 388 

human mouth. This perhaps explains the need to use highly elaborate algorithms applied onto 16S 389 

and metagenomic sequences from all bacterial strains to be able to identify a person based on 390 

his/her microbiome (68) whereas the personal nature of phage community composition plots is a 391 

clearly apparent feature of the datasets. Although it is widely known from shotgun metagenomic 392 
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studies that viruses are highly diverse, targeted studies employing different types of bacterial and 393 

viral markers could perhaps enable more quantitative comparisons of sequence diversity across these 394 

organisms. 395 

Because of the great diversity of sequences associated with just one phage family, in our 396 

study of about 60 individuals we found one case where unrelated individuals whose phageprints had 397 

similar correlation coefficients. This may be due to experimental error or due to the course-graining 398 

associated with Pearson correlation matrices. However, if we conservatively assume that each phage 399 

family can provide just 50 unique patterns, then the combination of phageprints from just 6 400 

independent phage families would already provide a greater number of possible patterns than the 401 

size of the current human population. Identifying individuals based on characteristic patterns of 402 

anonymized personal microbiomes is a legitimate ethical concern (69) and should be considered with 403 

the potential uses of phageprints as well. Future studies are needed to test the long-term stability of 404 

the human phageprints especially with regard to perturbations such as exposure to antibiotics. To 405 

our knowledge, this is the first study that demonstrates the potential application of phage sequences 406 

for human identification.  407 

 408 

Figure 13. An estimate for the number of additional globally-distributed phage 409 

families needed to achieve the number of possible phageprint patterns that surpass 410 

the current human population. Assuming that phageprints from each phage family 411 

can provide 50 unique patterns, there would only be 3 additional globally distributed 412 

phage families needed.  413 
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Materials and Methods 414 

Phage marker discovery. In our search for candidate phage markers, we combined the 415 

advantages of metagenomic and marker-based approaches. To study previously unexplored phage 416 

families, we first used existing metagenomic datasets to identify candidate phage families, and then 417 

by targeting these families using PCR, we were able to explore them with high depth of coverage. 418 

We limited our bioinformatic and later experimental search for ubiquitous phage families to those 419 

inhabiting the human oral cavity.  420 

We have described our method for finding candidate phage markers (Tadmor et al., in 421 

preparation), but here we will provide a brief summary. Depending on the question of interest, there 422 

are potentially numerous ways by which phage marker sequences can be selected.  In our method, 423 

we imposed several search criteria: 1) candidate markers should be unique to phages; 2) candidate 424 

markers should not share any significant sequence similarity so that they are more likely to represent 425 

distinct phage groups, and 3) candidate markers should be present across different oral metagenomic 426 

datasets so that they are more likely to represent core (though not necessarily abundant) members of 427 

the human oral phageome. Just as one gut phage genome was detected and assembled by an analysis 428 

that took into account its presence across multiple metagenomic datasets (40), we suspected that 429 

presence of a phage marker across multiple metagenomes could suggest that it belongs to a 430 

ubiquitous phage family. In the absence of a taxonomic convention for viral genomic data, we use 431 

the term “phage family” to refer to phages that share a given marker. 432 

To meet the first criterion, we focused our search on the terminase large subunit (TerL), 433 

which is a powerful motor used to package DNA into the phage capsid. We have previously used 434 

terminases as phage markers to study phage-host interactions within the termite gut (70). Unlike 435 

many other viral genes such as integrases and lysins, terminases lack bacterial homologs, and thus, 436 

are considered to be unique to viruses (51, 52). In meeting the second criterion, pairwise sequence 437 
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similarity analysis was performed to exclude candidate markers that shared any significant similarity. 438 

In exploring thousands of double-stranded DNA phage genomes, we have found that terminases 439 

from different phages typically do not share any significant sequence similarity (55). In cases where 440 

we detected sequence similarity between two terminase sequences, they belonged to highly similar 441 

phages infecting the same host species (55). As such, by imposing the second criterion, we likely 442 

arrived at distinct TerL lineages, with each lineage representing a distinct phage family.   443 

Moreover, to meet the third criterion, we used two small oral metagenomic datasets (59, 71) 444 

and chose only TerL sequences that appeared in more than one individual. Together, these criteria 445 

led us to 7 non-homologous TerL lineages. We then searched for these 7 markers across larger, 446 

publically available metagenomic datasets (24, 72), and found the markers to be present across many 447 

individuals (Tadmor et al., in preparation). Now that we had used shotgun metagenomic datasets to 448 

identify several ubiquitous phage markers, we aimed to use the benefits of targeted sequencing to 449 

develop a high-resolution survey of phage communities across space and time. 450 

The sample collection kit and measures against sampling contamination. To obtain 451 

samples, we developed a sample collection kit and prepared kit contents within the PCR flowhood. 452 

Before and after every kit preparation session, the flowhood surfaces and pipettes were wiped using 453 

sterile wipes, DNA AWAY™, and 95% ethanol. At the end of each session the surfaces were also 454 

UV-sterilized (60 minutes). Each kit contains plastic tongue scrapers (Yellow CeraSpoon Safe Ear 455 

Curettes, Bionix) that were first autoclaved and then UV-sterilized for 60 minutes, 1.5 mL gamma-456 

sterilized and pre-packaged collection tubes certified as pyrogen- RNase- DNA- and ATP-free 457 

(VWR), each containing 200 uL sterile 1X PBS buffer (VWR), along with pre-packaged sterile gloves 458 

(VWR). Each collection tube and tongue scraper pair was placed inside a sterile bag and the bags 459 

were placed in another bag. The next steps were performed outside of the flowhood. Each 460 

collection bag was put inside a Styrofoam box along with ice gel packs. Ice gel packs and Styrofoam 461 
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boxes were not reused to prevent cross contamination between individuals in case of a spill, which 462 

would already be highly unlikely due to multiple layers of packaging. Upon arrival of samples, 463 

collection tubes were taken out of their original bags, wiped with 95% ethanol and DNA AWAY™ 464 

using sterile wipes and placed into a new sterile bag. Gloves were frequently exchanged both during 465 

this step and before proceeding to the next collection tube to prevent cross contamination. In 466 

addition to standard lab attire such as gloves and lab coat, a facemask was worn to prevent 467 

contamination during kit preparation and sample storage.   468 

Subject recruitment and sample collection. For the bulk of our sample collection, we 469 

relied heavily on citizen scientists. We made an educational video to introduce a diverse audience to 470 

the fascinating world of phages, explain our study and to recruit volunteers. We also created an 471 

instructional video for prospective volunteers on subject disqualifying criteria and subject rights, and 472 

to provide a step-by-step demonstration of sample collection, storage, and shipment. Among other 473 

exclusion criteria, subjects could not have taken antibiotics for the preceding 3 months and subjects 474 

could not have active cavities or gum disease. Qualified subjects were sent a kit and were asked not 475 

to brush their teeth or tongue for a minimum of 8 hours prior to sample collection to allow for a 476 

substantial build up of plaque on the tongue dorsum. Put simply, subjects were instructed to 1) wear 477 

gloves, 2) scrape their tongue (dorsal surface) several times using the tongue scraper, 3) deposit their 478 

sample into the collection tube, 4) place the tube back into the bag, and 5) store the bag in their 479 

freezer along with ice gel packs prior to an over-night shipment of their samples. They were also 480 

instructed to report any sources of error that occurred at any step, and to send their samples along 481 

with their signed consent form and questionnaire. Our sample collection and processing protocols 482 

were approved by Caltech Institutional Review Board (IRB protocol 14-0430) and Institutional 483 

Biosafety Committee (IBC protocol 13-198).  484 
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Nine subjects included in this study are those included in a previous study of oral microbial 485 

diversity by Bik et al. (21). Briefly, samples were collected from individuals by a dentist who 486 

examined subjects for their oral health, thereby excluding subjects with active cavities, gingivitis, or 487 

periodontal disease. For each subject, samples from different oral sites were collected using sterile 488 

curettes and deposited separately in 1.5 mL collection tubes containing PBS buffer. The 6 oral sites 489 

sampled include plaque from tongue dorsum, tongue ventral, buccal mucosa, hard palate, supra-490 

gingiva, and sub-gingiva.  491 

Measures against contamination. A common source of contamination in PCR originates 492 

from previously amplified template sequences that enter new PCR reactions. To prevent 493 

contamination this type of contamination, four physically separated workstations were developed 494 

for DNA extraction (station A1), PCR preparation (station A2), PCR and gel electrophoresis 495 

(station B1), and PCR cleanup (station B2). A and B specify two different buildings at Caltech while 496 

1 and 2 refer to two different rooms within the same building. The flow of materials was from 497 

building A to B and never the vice-versa. Every station had its own set of lab equipment, materials, 498 

and storage space. Disposable lab coats (Sigma-Aldrich®) were worn and disposed of at the end of 499 

every procedure to ensure that DNA was not carried between stations via clothing. Facemasks 500 

(Fisher Scientific) were also worn at all times to prevent any oral or nasal droplets from entering 501 

reactions. Prior to the start of every DNA extraction, lab equipment and bench tops were cleaned 502 

using sterile wipes and DNA AWAY™ (Thermo Scientific), a surface decontaminant that eliminates 503 

DNA and DNAses. PCR preparations and aliquoting of reagents were carried out in a PCR 504 

flowhood (AirClean® Systems) equipped with a UV light and laminar airflow capabilities. Lab 505 

equipment required for PCR preparation was designated to the PCR preparation flowhood. At the 506 

end of every experimental session and when introducing new equipment into the flowhood, all 507 

surfaces were first wiped with DNA AWAY™ solution and then exposed to UV radiation for 60 508 
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minutes. Prepackaged, sterile gloves were used for PCR preparation. To prevent sample-to-sample 509 

contamination during DNA extraction, PCR preparation, and PCR cleanup, gloves were frequently 510 

exchanged. Most importantly, 5 No Template Control (NTC) reactions accompanied every PCR 511 

run. Similarly, to test the presence of contaminants in extraction reagents, for every extraction 512 

experiment, 3 reactions were carried out without the addition of any sample. PCR using phage 513 

primers was performed on these extraction control reactions.  514 

DNA Extraction (Station A1). DNA extraction of human oral samples was done 515 

according to the manual from MoBio PowerBiofilm® DNA Isolation Kit. The advantage to using 516 

this kit for DNA extraction and purification is that it combines the use of chemical and mechanical 517 

(bead-beating) treatments for an increased efficiency in biofilm disruption, lysis, and removal of 518 

inhibitors such as humic acid. The final concentrations of DNA were measured using Nanodrop. 519 

The concentration range of the total extracted genomic DNA was typically between 5 to 50 ng/µL.  520 

PCR preparation (Station A2) and PCR (Station B1). Each PCR reaction contained 12.5 521 

µL of PerfeCTa® qPCR SuperMix, ROX™ (Quanta Biosciences), a premix containing AccuStart™ 522 

Taq DNA polymerase, MgCl2, dNTPs, and ROX reference dye for qPCR applications. Additionally, 523 

each reaction contained 10.5 µL of RT-PCR Grade Water (Ambion®) which is free of nucleic acids 524 

and nucleases, 1 µL of extracted DNA at 1 ng/µL, 0.5 µL of forward and 0.5 µL of reverse primers, 525 

each at 50 ng/µL (synthesized by IDT). A higher than recommended primer concentration was used 526 

because the phage primers used are 32-64 fold degenerate. The thermocycling protocol was made 527 

according to PerfeCTa qPCR SuperMix recommendations: 1) a 10-minute activation of AccuStart™ 528 

Taq DNA polymerase at 95°C, 2) 10 seconds of DNA denaturation at 95°C, 3) 20 seconds of 529 

annealing at 60°C, and 4) 30 seconds of extension at 72°C, 40 cycles repeating steps 2 to 4, followed 530 

by 5 minutes of final extension at 72°C.  531 
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Gel electrophoresis (Station B1) and PCR cleanup (Station B2). Phage PCR products 532 

were visualized using 2% agarose in TAE buffer. After gels were cast, 5 µL of each PCR product 533 

was mixed with 1 µL of 6X loading dye and loaded into a well. 5 µL of 100 base-pair ladder was 534 

used, and the gel electrophoresis instrument was set to run for 30 minutes at 100V. Phage PCR 535 

positive hits were purified using the QIAquick PCR Purification Kit (QIAGEN). 20µL of PCR 536 

products were used and purified according to the QIAquick PCR Purification manual. 537 

Illumina sequencing. Upon PCR cleanup, double stranded DNA concentration in each 538 

sample was measured using Qubit instrument. Qubit measurements were performed in Building C 539 

due to practical considerations rather than a necessary treatment for preventing contamination. 540 

Samples were combined into one reaction (~2 µg dsDNA) and submitted to GENEWIZ, Inc for 541 

library preparation and MiSeq 2x300bp Paired-End sequencing.   542 

DNA barcodes for multiplexed sequencing. To enable multiplexing, unique DNA 543 

barcodes (Table 1) were appended onto the forward primer sequences (Table 3) used to amplify 544 

each phage marker. These barcoded primer sequences were synthesized by IDT. Using this scheme, 545 

~100 samples were submitted per MiSeq sequencing run (Table 1) and by matching the barcode 546 

sequence to the sample ID, information about who and where the sample came from was accessible. 547 

More specifically, Hamady error-correcting 8-letter barcodes (73) were used. Hamady DNA 548 

barcodes are an example of Hamming code wherein the addition of parity bits allow for detection 549 

and correction of errors within the barcode sequence. In the case of Hamady barcodes, up to 2 550 

errors in the barcode sequence can be detected and one error can be corrected.  551 

Quality control steps to eliminate sequencing errors. We used Illumina MiSeq’s 552 

2x300bp paired-end configuration (GENEWIZ, Inc). Each sequencing run produced about 20-25 553 

Million paired-end reads. Paired-end reads were joined using join_paired_ends.py script from QIIME 554 
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(Quantitative Insights Into Microbial Ecology) package, and unless noted otherwise scripts used in 555 

this chapter are part of QIIME (74). When a base is confirmed by both reads, higher Phred score is 556 

increased by up to 3 points. If paired reads had any mismatches across their overlapping bases, the 557 

paired reads was eliminated from any further analysis (QC step #1). For markers HB1, PCA2, and 558 

HA the overlap between the paired reads entirely covers the marker sequence, hence eliminating 559 

many sequencing errors.  560 

Upon joining reads and eliminating those with mismatches in the region of overlap 561 

seqQualityFilters.py, an in-house script, was used to preform QC step #2: taking joined reads from QC 562 

step #1, and eliminating any sequences that have one or more bases marked by a Phred score below 563 

30. Excluded from QC step #2 were the first two bases in the beginning and end of each sequence, 564 

which for majority of reads have much lower quality scores.  565 

Using seqQualityFilters.py, sequences were placed in 3 different bins according to their primer 566 

sequences, and any sequence that did not have the correct barcode length, or the correct primer 567 

sequences at the expected positions, was eliminated (QC step #3). Additionally, nearly half of 568 

remaining sequences had to be reverse complemented so that all sequences were oriented in the 5’ 569 

to 3’ direction. Using the same script, primer and barcode sequences were removed, and barcode 570 

sequences were written to a separate file (to be used as input to split_libraries_fastq.py). At this point 571 

sequences that did not have the correct length were filtered out (QC step #3). Sequences were 572 

demultiplexd using split_libraries_fastq.py and reads with errors in the barcode sequence were 573 

eliminated (QC step #4).  574 

Phage community composition plots (“Phageprints”). After demultiplexing quality-575 

controlled reads, sequences were clustered according to a specified sequence similarity threshold 576 

using UCLUST de novo clustering algorithm (75) used in pick_otus.py script. Using make_otu_table.py, 577 

OTU tables were generated. An OTU table summarizes counts of sequences assigned to each OTU 578 
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across each sample. We refer to this per-sample sequence count as the OTU size. As long as an 579 

OTU of size 1 or greater exists in at least one sample, it is included in the OTU table. In this way, 580 

the counts of OTUs for samples containing the same marker remains the same, though their size 581 

could vary widely across different samples. Later we will demonstrate the effects of noise filters 582 

applied to the OTU table. The relative abundance of each OTU within each sample was calculated 583 

via processOtuTable.py, another in-house script. In plotting the relative OTU abundance values for 584 

different samples, we arrived at complex, individual-specific patterns. We dubbed these phage 585 

community composition plots as “phageprints”.  586 

Metrics for quantitative comparison of phageprints. The first metric explored is binary 587 

Jaccard distance, which is equal to one minus the ratio of the intersection to the union of two 588 

samples’ OTUs: 1−  |!∩!|
! ! ! !|!∩!|

. Here, 𝐴 and 𝐵 represent the OTUs that are present in sample 1 589 

and 2, respectively. This is a binary method of comparing samples simply based on the 590 

presence/absence of the OTUs. In addition to the Pearson distance (1- Pearson correlation), we 591 

chose two other abundance-based distance metrics, namely abundance-weighted Jaccard and Bray-592 

Curtis. Abundance-weighted Jaccard, which is equal to 1−  !"
!!!!!"

 (76), is similar to Jaccard but 593 

here 𝑈 and 𝑉 represent the sum of relative abundances of OTUs shared between samples 1 and 2, 594 

respectively. Bray-Curtis dissimilarity (77) is defined as  
|!!"! !!"|
!!"! !!"

, where 𝑥!" and 𝑥!" correspond to 595 

the relative abundance of OTU 𝑘 in samples 𝑖 and 𝑗.  596 

Lastly, we explored unweighted Unifrac, a phylogenetic distance metric (78). The Unifrac 597 

algorithm operates on a phylogenetic tree containing sequences from all samples. It proceeds to 598 

create pairwise comparisons between samples by identifying the branch lengths that are shared 599 

between two samples, as well as the branch lengths that are unique to each sample. The Unifrac 600 

distance is then defined as the unshared branch lengths divided by the total branch lengths, where 601 
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total branch lengths is the sum of shared and unshared branch lengths. If two samples are identical, 602 

the fraction of the tree’s branch lengths that is unique to one sample or the other will be zero, and 603 

thus, the Unifrac distance will be zero. 604 

Examining the effect of OTU sequence similarity threshold. In analyzing 16S 605 

sequences, clusters or Operational Taxonomic Units (OTUs) are conventionally defined at 97% 606 

sequence similarity threshold. To examine the effect of sequence similarity threshold for phage OTU 607 

formation, we tested OTU sequence similarity thresholds of 98%, 97%, 95%, 90%, and 80%. Figure 608 

14 is a matrix of Pearson correlation coefficients calculated during the pairwise comparison of HB1 609 

community compositions using different sequence similarity thresholds for defining OTUs. Very 610 

similar Pearson correlation matrices are obtained as the sequence similarity threshold is lowered 611 

from 98% to 80%. However, because the number of cluster is reduced as we reduce the sequence 612 

similarity threshold, with lower sequence similarity thresholds, the chance that individual-specific 613 

variations are lumped into the same cluster is increased. If noise-induced sequence variations are 614 

effectively accounted for, higher sequence similarity thresholds for defining OTUs can enable a 615 

more accurate and detailed depiction of a person’s phage community composition. For this reason, 616 

we used a sequence similarity threshold of 98% for the study of different oral sites, and later we used 617 

a 100% sequence similarity threshold for the temporal and the global study.   618 
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 619 

Figure 14. Pairwise Pearson correlation coefficient values calculated for HB1 phage 620 

community compositions as a function of A) 98%, B) 97%, C) 95%, D) 90%, and E) 621 

80% sequence similarity thresholds for OTU formation. Sample IDs can be decoded 622 

as before: subject ID precedes oral site ID. Oral sites 1-6 correspond to tongue 623 

dorsum, hard palate, buccal mucosa, ventral tongue, supra-gingiva, and sub-gingiva 624 

respectively (e.g. 3.3 corresponds to subject 3 community composition derived from 625 

the buccal mucosa, and 3.5 is subject 3 supra-gingiva community composition). The 626 

number of OTUs generated at 98%, 97%, 95%, 90%, and 80% sequence similarity 627 

thresholds are 210, 181, 172, 170, and 80, respectively.  628 

 629 

Detecting experimental noise. How reproducible is a phage community composition 630 

plot? Figure 15 summarizes the sources of noise from all experimental processes performed during 631 
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this study. First, it’s important to capture sampling variation. How consistently can we capture a 632 

phage community from an individual’s oral site given that we are sampling different parts of the 633 

biofilm each time? Another factor that could contribute to sampling variation are the personal 634 

differences in the rate of biofilm mass accumulation on the tongue dorsum. Secondly, we need to 635 

ask whether processes of lysis and DNA extraction allow for the availability of the same template 636 

DNA sequences in the same relative abundances across different extraction runs.  637 

Third, we need to evaluate the OTU abundance variations that could result in PCR due to 638 

both errors as well as other stochastic events. For example, it’s possible that very rare template 639 

sequences are left out of the initial cycles of PCR and their relative abundance at the end of PCR is 640 

lower than their relative abundance prior to PCR. In this hypothetical scenario PCR could serve as a 641 

biased amplifier. PCR purification is similar to extraction and sampling in that it does not introduce 642 

sequence errors; however it is unlike these processes because after PCR billions of template copies 643 

are created and it’s unlikely that the loss of a fraction of templates during PCR purification will 644 

dramatically change OTU relative abundances. Finally, Illumina MiSeq sequencing is another error-645 

prone process not only at the level of base-calling, but at the level of bridge amplification which like 646 

PCR could introduce errors that propagate exponentially. Refer to Figure 15 for a summary of 647 

processes that could result in irreproducible OTUs or variation in OTU relative abundances.  648 
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 649 

Figure 15. Sources of error and variation in experimental processes used in this 650 

study. A) Sampling of the same oral site in the same individual could result in 651 

collection of different microbial communities, which could introduce new OTUs or 652 

change relative abundance of existing OTUs. B) DNA extraction is not 100% 653 

efficient and the fraction of DNA extracted from an environment could serve as a 654 

source of variation across different samples.  C) PCR introduces errors that could 655 

present themselves as novel OTUs or cause variation in abundance of genuine 656 

OTUs. D) Sequencing also introduces errors both at the level of base-calling and 657 

bridge amplification. 658 

 659 

To quantify how reproducible a given phage community composition is, we obtained 3 660 

different samples from subject 37 tongue dorsum. We then performed DNA extraction and PCR 661 

separately on each sample and sent samples for sequencing (sequencing run #2). The logic behind 662 

this experiment was to capture a lumped measure of noise arising from various processes depicted in 663 

Figure 15. After performing quality control steps 1-4, demultiplexing reads based on their barcode 664 
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sequences, clustering reads based on 98% sequence similarity threshold for OTU formation, 665 

rarefying the OTU table to 4000 reads per sample, and calculating the relative abundances of OTUs, 666 

we measured the standard deviation in the relative abundance of each OTU across these three 667 

samples (Figure 16). Remarkably, relative abundance values across these three samples were highly 668 

consistent, with the majority of OTUs having standard deviations below 0.2% and the maximum 669 

standard deviation observed was less than 0.7% relative abundance. 670 

 671 

Figure 16. Standard deviations of OTU relative abundances calculated for all 672 

experimental processes. Three data points per OTU are used for standard deviation 673 

calculations. These three data points correspond to measurements of OTU relative 674 

abundances obtained for three different samples obtained from subject 37 tongue 675 

dorsum (HB1 marker) which underwent separate sampling, DNA extraction, PCR 676 

and PCR cleanup procedures. The maximum standard deviation observed is less than 677 

0.007 relative abundance, and majority are close to 0. 678 

 679 

  Identifying non-reproducible OTUs. To identify OTUs that were non-reproducible 680 

across the three samples from subject 37’s tongue dorsum (HB1 marker), we flagged OTUs that had 681 

appeared in only one or two samples out of three. We then plotted the histogram of non-682 

reproducible OTUs as a function of their relative abundance (for those OTUs appearing in 2 out 3 683 

samples, the higher relative abundance value was used). The thresholds defining each bin, b, were 684 
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selected to be the following: 0>b1≥0.00025 (OTU of size 1 sequence since the total number of 685 

sequences per sample is 4000), 0.00025>b2≥0.0005 (2 sequences), 0.0005>b3≥0.00075 (3 686 

sequences), 0.00075>b4≥0.001 (4 sequences), and 0.001<b5 (5 or more sequences).  687 

Figure 17 demonstrates the number of non-reproducible OTUs drops as a function of OTU 688 

relative abundance, and all OTUs with more than 4 sequences (0.001 relative abundance) are 689 

reproducible. To conclude, we arrived at 0.001 relative abundance as the detection threshold for 690 

OTUs.   691 

 692 

Figure 17. Number of non-reproducible OTUs across three samples obtained from 693 

subject 37 tongue dorsum (HB1 marker), presented as a function of OTU relative 694 

abundance. A total of 30 OTUs appear in one or two samples out of three, and 695 

therefore are considered non-reproducible. 21 out of 30 OTUs are defined by a 696 

single sequence which translates into 0.00025 relative abundance since samples are 697 

rarefied to 4000 sequences. The number of non-reproducible OTUs drops as a 698 

function of OTU relative abundance, and all OTUs with more than 4 sequences 699 

(0.001 relative abundance) are reproducible across three samples.  700 

 701 

In addition to capturing a lumped sum of noise across all experimental processes for subject 702 

37 tongue dorsum sample (Figure 16,Figure 17), for samples from subjects 3, 6, 10, 16, and 17, we 703 

performed a second set of PCR on previously extracted DNA samples, and submitted those samples 704 
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for sequencing (Figure 18). In addition to these replicates, we acquired new samples from the tongue 705 

dorsum for subjects 31, 35, 37, and 38, and submitted these samples for the second sequencing run. 706 

In obtaining replicate phageprints, we were able to demonstrate that with proper quality filtration 707 

steps phageprints are highly reproducible even when they are generated from two separate PCR and 708 

sequencing steps (Figure 18).  709 

 710 

Figure 18. Panel A is the Pearson correlation matrix of all HB1 phageprints. Each 711 

phageprint is derived from the analysis of 4000 sequences associated with an 712 

individual and a particular oral site. OTUs are defined at 98% sequence similarity and 713 

OTUs with less than or equal to 0.1% relative abundance across all phageprints were 714 

filtered out. Phageprints are color-coded based on the individual they originate from. 715 

Oral sites shown to be positive for the HB1 marker are the tongue dorsum (TD), 716 

buccal mucosa (BM), supra-gingiva (SP), and sub-gingiva (SB). Phageprints that were 717 

acquired from sequencing run #1, are those marked as replicate #1. Panel B shows 718 

that to confirm reproducibility of phageprints, a second set of PCR was performed 719 

on previously extracted DNA from all samples included in sequencing run #1 and 720 
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those PCR products were included in sequencing run #2. Phageprints derived from 721 

the second sequencing run are marked as replicate #2. 722 

 723 

Identifying phage marker homologs. The most abundant sequence from each OTU was 724 

retrieved using pick_rep_set.py to serve as a representative sequence. BLASTx function was used to 725 

detect the closest homolog to each OTU’s representative sequence from within the NCBI’s non-726 

redundant protein database. HB1 representative sequences were aligned using Geneious (79), using a 727 

gap open penalty of 30 and gap extension penalty of 15 and a 65% similarity cost matrix. No gaps 728 

were introduced. The alignment is shown in SI Figure 4.  729 

Phage-host networks. OTU tables were input to createNetwork.py, an in-house script that 730 

creates node and edge tables. The nodes represent samples and phage OTUs, and a directed edge 731 

connects samples to the OTUs that they host. The weight of this connection is based on the relative 732 

abundance of the OTU in that sample. Gephi software (80) was used to visualize the resulting 733 

networks, and to obtain the degree distribution. 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 
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Supplementary Information 743 
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SI Figure 1. HB1 phage family network. Purple nodes are the OTU nodes and all 745 

other nodes represent samples. Sample nodes and edges are color-coded based on 746 

the individual they originate from. The oral site associated with each sample is 747 

abbreviated next to the sample’s node. Each edge connects an OTU a sample it 748 

exists in, and the edge weight is proportional to the relative abundance of the OTU 749 

in that sample. Node IDs are displayed. For OTU nodes, the node ID is the OTU 750 

ID which can be matched to IDs in SI Table 1 for identifying taxonomic 751 

information regarding each OTU. For sample nodes, the nodes IDs are simply the 752 

subjects’ IDs.  753 

 754 

 755 
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 756 
SI Figure 2. HA phage-host network. Purple nodes are the OTU nodes and all other 757 

nodes represent samples. Sample nodes and edges are color-coded based on the 758 

individual they originate from. Subject node color code, ID, and the oral sites are 759 

displayed above sample nodes. Each edge connects an OTU a sample it exists in, and 760 

the edge weight is proportional to the relative abundance of the OTU in that sample. 761 

Node IDs are displayed. For OTU nodes, the node ID is the OTU ID which can be 762 
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matched to IDs in SI Table 3 for identifying taxonomic information regarding each 763 

OTU. For sample nodes, the nodes IDs are simply the subjects’ IDs.  764 

 765 

SI Table 1. Closest homolog to each OTU’s representative sequence (HB1 phage 766 

family). Each OTU’s representative sequence was used as a query for NCBI’s 767 

BLASTx homology search against the non-redundant protein database. The table 768 

summarizes the E-value and the percent amino acid identity across the query 769 

sequence and the closest homolog, as well as the closest homolog’s name, sequence 770 

ID, and taxon ID.  The taxon ID is color coded, and the taxonomic classification 771 

corresponding to each taxon ID can be retrieved from the following table. Note with 772 

the exception of a few “putative uncharacterized” homolog names that most are 773 

identified as terminases or TerLs (terminase large subunits). 774 

   775 
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 776 

Query&
Sequence&
ID&(OTU&

ID)

Percent&
Identity

E&
value Closest&Homolog Closest&Homolog&

Sequence&ID

Closest&
Homolog&
Taxon&ID

0 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
1 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
10 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
103 69.14 5.00E(30 terminase.[[Clostridium].scindens] gi|639772655|ref|WP_024738760.1| 29347
104 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
106 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
109 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
11 72.84 1.00E(34 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
112 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
117 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
118 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
12 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
122 70.37 2.00E(19 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
123 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
128 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
13 70.37 6.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
132 70.37 4.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
134 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
14 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
140 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
142 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
149 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
15 71.6 5.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
161 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
162 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
164 72.84 2.00E(32 TerL.[Rhodococcus.phage.ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964
165 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
166 71.6 5.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
17 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
170 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
176 71.6 3.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
178 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
18 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
183 66.67 7.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
184 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
189 71.6 4.00E(33 TerL.[Rhodococcus.phage.ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964
19 72.84 1.00E(34 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
195 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
196 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
197 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
2 66.67 7.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
202 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
203 65.43 2.00E(28 TerL.[Rhodococcus.phage.ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964
206 70.37 2.00E(32 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
207 71.6 5.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
208 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
21 67.9 3.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
210 71.6 2.00E(31 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
213 69.14 2.00E(29 TerL.[Rhodococcus.phage.ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964
216 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
218 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
22 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
220 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
221 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
222 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
225 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
227 66.67 7.00E(30 terminase.[[Clostridium].symbiosum] gi|489596073|ref|WP_003500516.1| 1512
229 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
231 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
233 71.6 2.00E(33 TerL.[Rhodococcus.phage.ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
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236 70.37 2.00E(32 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

237 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

238 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

24 71.6 5.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

241 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

242 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

245 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

249 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

25 71.6 3.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

250 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

255 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

256 72.84 4.00E(34 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

257 66.67 7.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

259 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

26 71.6 5.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

260 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

261 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

262 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

264 71.6 3.00E(32 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

265 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

27 62.96 2.00E(26 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

272 70.37 3.00E(32 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

273 67.9 2.00E(30 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

274 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

29 74.07 2.00E(35 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

3 67.9 3.00E(29

terminase-[Clostridiales-bacterium-VE202(

03] gi|639707411|ref|WP_024723669.1| 1232439

30 64.2 2.00E(28

putative-uncharacterized-protein-

[Ruminococcus-sp.-CAG:17] gi|547240587|ref|WP_021976510.1| 1262951

32 67.9 3.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

33 67.9 3.00E(31 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

34 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

36 76.54 2.00E(35 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

37 67.9 3.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

38 66.67 2.00E(29 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

4 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

40 66.67 3.00E(32

putative-uncharacterized-protein-

[Ruminococcus-sp.-CAG:17] gi|547240587|ref|WP_021976510.1| 1262951

42 64.2 3.00E(26 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

44 66.67 5.00E(19 terminase-[[Ruminococcus]-torques] gi|490985259|ref|WP_004846995.1| 33039

46 67.9 3.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

48 71.6 9.00E(34 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

5 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

50 86.42 3.00E(44 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

51 67.9 3.00E(30 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

54 65.43 6.00E(31 terminase-[[Clostridium]-symbiosum] gi|489596073|ref|WP_003500516.1| 1512

59 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

6 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

60 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

62 69.14 2.00E(30 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

67 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

68 74.07 1.00E(34 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

7 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

71 70.37 2.00E(31 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

72 62.96 4.00E(27 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

75 70.37 8.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

77 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

8 56.79 9.00E(26 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

80 69.14 3.00E(31 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

81 74.07 7.00E(33

putative-uncharacterized-protein-

[Ruminococcus-sp.-CAG:17] gi|547240587|ref|WP_021976510.1| 1262951

82 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

86 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965

87 67.9 1.00E(27 terminase-[[Clostridium]-hathewayi] gi|493833739|ref|WP_006781000.1| 154046

89 74.07 1.00E(34 TerL-[Rhodococcus-phage-ReqiPoco6] gi|593774729|ref|YP_009012597.1| 691964

9 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
90 71.6 2.00E(33 TerL-[Rhodococcus-phage-ReqiPepy6] gi|593779801|ref|YP_009017628.1| 691965
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SI Table 2. Taxonomic classification of closest homologs (HB1 phage family). 779 

Majority of OTUs (86 out of 123) have the closest match to ReqiPoco6 terminase 780 

large subunit, whereas 15 OTUs have closest homologs belonging to ReqiPepy6.  781 

 782 

 783 

SI Table 3. Closest homolog to each OTU’s representative sequence (HA phage 784 

family). Each OTU’s representative sequence was used as a query for NCBI’s 785 

BLASTx homology search against the non-redundant protein database. The table 786 

summarizes the E-value and the percent amino acid identity across the query 787 

sequence and the closest homolog, as well as the closest homolog’s name, sequence 788 

ID, and taxon ID.  The taxon ID is color coded, and the taxonomic classification 789 

corresponding to each taxon ID can be retrieved from the following table. Note with 790 

the exception of a few “putative uncharacterized” homolog names that most are 791 

identified as terminases or TerLs (terminase large subunits). 792 

Closest'
Homolog'
Taxon'ID

Kingdom Phylum Class Order Family Genus Species

1262951 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus
Ruminococcus7
sp.7CAG:17

691964 Viruses
dsDNA7viruses,7
no7RNA7stage Caudovirales Siphoviridae

unclassified7
Siphoviridae

Rhodococcus7
phage7 ReqiPoco6

691965 Viruses
dsDNA7viruses,7
no7RNA7stage Caudovirales Siphoviridae

unclassified7
Siphoviridae

Rhodococcus7
phage7 ReqiPepy6

1512 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium
Clostridium7
symbiosum7

29347 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium
Clostridium7
scindens7

33039 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia
Ruminococcus7

torques7

1232439 Bacteria Firmicutes Clostridia Clostridiales
unclassified7
Clostridiales

unclassified7
Clostridiales

Clostridiales7
bacterium7VE202P

03

154046 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium
Clostridium7
hathewayi
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Query&
Sequence&ID&
(OTU&ID)

Percent&
Identity E&value Closest&Homolog Closest&Homolog&

Sequence&ID

Closest&
Homolog&
Taxon&ID

0 97.56 4.00E)49 hypothetical4protein4[Streptococcus4sp.4F0442] gi|497418421|ref|WP_009732619.1| 999425
1 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
10 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
100 98.78 4.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
101 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
102 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
103 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
104 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
106 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
107 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
108 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
109 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
11 98.78 1.00E)48 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
110 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
111 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
112 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
113 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
114 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
117 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
118 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
119 98.78 3.00E)49 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
12 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
120 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
121 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
122 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
123 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
125 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
126 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
127 98.78 3.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
128 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
129 98.78 1.00E)48 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
13 98.78 1.00E)49 hypothetical4protein4[Streptococcus4sp.4F0442] gi|497418421|ref|WP_009732619.1| 999425
130 98.78 2.00E)49 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
131 98.78 6.00E)48 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
132 98.78 1.00E)48 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
133 98.78 7.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
134 98.78 6.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
135 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
136 98.78 5.00E)49 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
137 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
138 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
139 98.78 1.00E)48 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
140 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
141 98.78 1.00E)48 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
142 97.56 4.00E)48 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
143 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
145 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
146 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
147 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
148 98.78 2.00E)48 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
15 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
150 98.78 9.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
151 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
152 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
153 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
154 97.56 1.00E)48 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
155 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
156 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
157 98.78 3.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
158 97.56 1.00E)48 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
159 98.78 9.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
16 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
160 98.78 4.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
161 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
162 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
164 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
165 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
166 97.56 1.00E)48 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
167 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
168 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
169 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
17 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
170 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
171 98.78 3.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
172 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
173 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
174 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
175 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
176 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
177 97.56 1.00E)48 terminase4[Streptococcus4oralis] gi|446545997|ref|WP_000623343.1| 1303
178 98.78 4.00E)49 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
179 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
18 100 2.00E)49 terminase4[Streptococcus4infantis] gi|493136448|ref|WP_006154887.1| 68892
180 100 1.00E)49 terminase4[Streptococcus4pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
181 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
182 100 9.00E)50 terminase4[Streptococcus4sp.4SR1] gi|726981126|ref|WP_033585808.1| 1161416
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183 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
184 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
185 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
186 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
19 98.78 3.00E'49 terminase2[Streptococcus2parasanguinis] gi|671602035|ref|WP_031575397.1| 1318
2 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
20 96.34 2.00E'48 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
21 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
22 91.46 8.00E'46 hypothetical2protein2[Streptococcus2sp.2F0442] gi|497418421|ref|WP_009732619.1| 999425
23 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
24 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
25 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
26 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
27 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
28 98.78 7.00E'50 terminase2[Streptococcus2parasanguinis] gi|671602035|ref|WP_031575397.1| 1318
29 98.78 7.00E'49 terminase2[Streptococcus2infantis] gi|493136448|ref|WP_006154887.1| 68892
3 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
30 100 2.00E'49 terminase2[Streptococcus2infantis] gi|493136448|ref|WP_006154887.1| 68892
31 98.78 6.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
32 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
33 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
34 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
35 98.78 1.00E'49 hypothetical2protein2[Streptococcus2sp.2F0442] gi|497418421|ref|WP_009732619.1| 999425
36 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|565851306|ref|WP_023933954.1| 257758
37 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
38 98.78 7.00E'50 terminase2[Streptococcus2parasanguinis] gi|671602035|ref|WP_031575397.1| 1318
39 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
4 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
40 98.78 2.00E'49 hypothetical2protein2[Streptococcus2sp.2F0442] gi|497418421|ref|WP_009732619.1| 999425
42 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
43 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
44 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
45 98.78 9.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
47 98.78 7.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
48 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
49 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
5 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
50 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
51 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
52 98.78 3.00E'49 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
53 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
54 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
56 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
57 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
59 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
6 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
60 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
61 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
62 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
63 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
64 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
65 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
66 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
68 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
69 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
7 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
71 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
72 100 1.00E'49 putative2phage2terminase,2large2subunit2[Streptococcus2tigurinus] gi|494783687|ref|WP_007519095.1| 1077464
73 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
74 98.78 3.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
76 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
77 98.78 3.00E'49 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
78 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
79 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
8 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
80 98.78 3.00E'49 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
82 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
83 97.56 1.00E'48 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
84 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
85 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
86 95.12 3.00E'48 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
87 98.78 3.00E'49 terminase2[Streptococcus2oralis] gi|446545997|ref|WP_000623343.1| 1303
88 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
89 98.78 2.00E'48 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
9 98.78 3.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
90 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
93 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
95 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
96 98.78 4.00E'49 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
97 100 1.00E'49 terminase2[Streptococcus2pseudopneumoniae] gi|446545996|ref|WP_000623342.1| 257758
98 100 9.00E'50 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416
99 97.56 1.00E'48 terminase2[Streptococcus2sp.2SR1] gi|726981126|ref|WP_033585808.1| 1161416



 55 

SI Table 4. Taxonomic classification of closest homologs to each OTU’s 796 

representative sequence (HA phage family).   797 

 798 

 799 

SI Table 5. Closest homolog to each OTU’s representative sequence (PCA2 phage 800 

family). Each OTU’s representative sequence was used as a query for NCBI’s 801 

BLASTx homology search against the non-redundant protein database. The table 802 

summarizes the E-value and the percent amino acid identity across the query 803 

sequence and the closest homolog, as well as the closest homolog’s name, sequence 804 

ID, and taxon ID.  The taxon ID is color coded, and the taxonomic classification 805 

corresponding to each taxon ID can be retrieved from the following table. Note with 806 

the exception of a few “putative uncharacterized” homolog names, most are 807 

identified as terminases or TerLs (terminase large subunits). 808 

Closest'
Homolog'
Taxon'ID

Kingdom Phylum Class Order Family Genus Species

1318 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+parasanguinis
1077464 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+tigurinus
257758 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+pseudopneumoniae
999425 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+sp.+F0442
1161416 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+sp.+SR1
1303 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus+ +Streptococcus+oralis
68892 Bacteria +Firmicutes +Bacilli +Lactobacillales +Streptococcaceae +Streptococcus +Streptococcus+infantis
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 809 

Query&
Sequence&
ID&(OTU&
ID)

Percent&
Identity

E&
value Closest&Homolog Closest&Homolog&

Sequence&ID

Closest&
Homolog&
Taxon&ID

0 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
10 90 2.00E&28 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
100 76.27 4.00E&21 terminase0[Peptostreptococcaceae0bacterium0CM2] gi|497213446|ref|WP_009527708.1| 796939
101 98.33 1.00E&30 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
103 98.33 2.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
104 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
107 98.33 1.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
108 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
109 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
11 93.33 3.00E&30 terminase0[Fusobacterium0periodonticum] gi|496096975|ref|WP_008821482.1| 860
110 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
111 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
112 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
113 98.33 6.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
115 73.33 4.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
116 73.33 5.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
117 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
12 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
120 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
123 83.33 6.00E&25 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
124 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
126 98.33 1.00E&30 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
127 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
128 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
129 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
13 35.59 4.00E&04 terminase0[Bacillus0bogoriensis] gi|651939129|ref|WP_026673624.1| 246272
132 98.33 1.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
135 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
136 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
137 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
138 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
139 96.67 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
14 96.67 5.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
140 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
141 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
142 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
143 91.67 1.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
144 98.33 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
146 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
147 98.33 6.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
149 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
15 73.33 2.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
150 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
151 98.33 3.00E&31 terminase0[Fusobacterium0periodonticum] gi|496096975|ref|WP_008821482.1| 860
152 98.33 1.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
153 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
154 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
155 98.33 6.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
156 98.33 5.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
16 98.33 1.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
2 91.67 1.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
21 73.33 7.00E&21 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
22 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
23 73.33 5.00E&21 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
24 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
25 98.33 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
26 98.33 1.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
27 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
29 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
3 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
32 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
33 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
34 98.33 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
36 96.67 1.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
4 96.67 1.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
40 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
41 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
45 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
47 73.33 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
5 75 1.00E&21 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
50 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
51 98.33 2.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
54 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
56 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
60 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
62 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
63 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
64 93.33 3.00E&29 terminase0[Fusobacterium0periodonticum] gi|496096975|ref|WP_008821482.1| 860
65 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
66 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
67 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
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 811 

 812 

SI Table 6. Taxonomic classification of closest homologs to each OTU’s 813 

representative sequence (PCA2 phage family).   814 

 815 

 816 

 817 

70 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
72 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
73 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
75 96.67 2.00E&30 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
77 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
78 90 5.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
79 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
8 95 5.00E&30 terminase0[Fusobacterium0periodonticum] gi|496096975|ref|WP_008821482.1| 860
80 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
81 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
82 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
83 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
84 98.33 1.00E&30 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
86 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
89 90 5.00E&29 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
90 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
91 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
92 98.33 8.00E&31 terminase0[Fusobacterium0nucleatum] gi|495968206|ref|WP_008692785.1| 851
93 96.67 9.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
94 96.67 4.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
95 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
96 100 7.00E&32 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
97 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900
99 98.33 3.00E&31 putative0phage0terminase0large0subunit0[Fusobacterium0sp.0CAG:649] gi|547450305|ref|WP_022069933.1| 1262900

Closest'
Homolog'
Taxon'ID

Kingdom Phylum Class Order Family Genus Species

860 Bacteria Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium gonidiaformans
851 Bacteria Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium Fusobacterium8nucleatum

796939 Bacteria Firmicutes Clostridia Clostridiales Peptostreptococcaceae
unclassified8

Peptostreptococcaceae

unclassified8
Peptostreptococcaceae8

(CM2)

246272 Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus
Bacillus8bogoriensis8(ATCC8

BAAF922)
1262900 Bacteria Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium Fusobacterium8sp.8CAG:649
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 818 

SI Figure 3. Percentage of HB1, PCA2 and HA phage family OTUs belonging to 819 

each taxonomic group identified in SI Figure 2, SI Figure 1, and SI Table 3.  820 
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 829 

SI Figure 4. The nucleotide alignment of HB1 phage family OTU representative 830 

sequences. Sequences were aligned using Geneious (79). No gaps were introduced. 831 

Each base is color-coded according to its relative abundance within a column in the 832 

alignment. Conserved bases are black and highly variable sites are denoted in white833 
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