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ABSTRACT

Motivation: Many proteins with vastly dissimilar sequences are
found to share a common fold, as evidenced in the wealth of
structures now available in the Protein Data Bank. One idea that
has found success in various applications is the concept of a
reduced amino acid alphabet, wherein similar amino acids are
clustered together. Given the structural similarity exhibited by many
apparently dissimilar sequences, we undertook this study looking for
improvements in fold recognition by comparing protein sequences
written in a reduced alphabet.
Results: We tested over 150 of the amino acid clustering schemes
proposed in the literature with all-versus-all pairwise sequence
alignments of sequences in the Distance mAtrix aLIgnment database.
We combined several metrics from information retrieval popular in
the literature: mean precision, area under the Receiver Operating
Characteristic curve and recall at a fixed error rate and found that,
in contrast to previous work, reduced alphabets in many cases
outperform full alphabets. We find that reduced alphabets can
perform at a level comparable to full alphabets in correct pairwise
alignment of sequences and can show increased sensitivity to pairs
of sequences with structural similarity but low-sequence identity.
Based on these results, we hypothesize that reduced alphabets may
also show performance gains with more sophisticated methods such
as profile and pattern searches.
Availability: A table of results as well as the substitution matrices
and residue groupings from this study can be downloaded from
http://www.rpgroup.caltech.edu/publications/supplements/alphabets.
Contact: phillips@pboc.caltech.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Naturally occurring protein structures are observed to adopt ‘folds’,
i.e. a common group of secondary structures with the same
orientation and topology. Current estimates of the number of protein
folds in nature is estimated to be between 1000 and 10 000 in total
(Grant et al., 2004), an astonishingly low number compared with
the huge space of possible amino acid sequences. From the wealth
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of structures and their associated sequences now available in the
Protein Data Bank (PDB), it is clear that the same protein fold
may be generated by different amino acid sequences; in effect, the
structure of proteins is more conserved than their sequences (Chothia
and Lesk, 1986). In some cases, the sequences underlying similar
structures show almost zero sequence identity [see, e.g. Benson et al.
(2004)]. This large degeneracy invites us to look for a coarse-grained
sequence description that will reveal the underlying structural
similarities between these apparently dissimilar sequences.

We take the inspiration for our coarse-grained, reduced alphabet
study from the hydrophobic–polar (HP) model for protein folding,
introduced by Dill (1985) to study the folding of globular proteins.
This model derives from the observation that hydrophobicity will
tend to dictate a minimum free energy protein conformation with
hydrophobic residues buried in the interior and the hydrophilic
residues exposed at the surface of a folded protein, suggesting that
these gross features are dominant in dictating the fold. The HP model
has been used fruitfully with lattice folding methods to generate
structures with motifs analogous to those in natural proteins (Li
et al., 1996) as well as to design de novo small globular proteins by
patterning of polar and non-polar residues (Hecht et al., 2004).

Applying the idea of searching for classes of amino acids was
applied with great success by Bork et al. (1992) to correctly predict
in 1992 that MreB, FtsA and ParM would adopt the same ATPase
fold as actin, nearly 10 years before any of those three proteins
were crystallized. Bork et al. used a previously described ‘property
pattern’ approach (Bork and Grunwald, 1990) to build up a profile of
five motifs from actin, HSP70 and sugar kinase sequences and were
then able to sensitively identify structural homologs by searching
for matches against those conserved motifs.

Furthermore, previous experimental work with reduced amino
acid alphabets in protein folding studies has shown that, in many
cases, a reduced alphabet is sufficient to produce native-like proteins.
The four-helix bundle protein Rop was studied by Munson et al.
(1994) who showed that 32 amino acids in the hydrophobic core
comprising eight different residues (ACEFILQT) could be replaced
by patterning with just two amino acids (AL) to produce native-
like proteins that showed activity in vitro, though only one mutant
showed activity in vivo (Magliery and Regan, 2004). Schafmeister
et al. (1997) designed de novo a 108-residue four-helix bundle with a
seven-letter alphabet (AEGKLQS) and validated their results with a
crystal structure. Riddle et al. (1997) were able to produce functional
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variants of the 57-residue Src SH3 β-sheet domain in which 38
of 40 targeted residues comprising 15 distinct amino acids were
successfully mutated to a reduced alphabet of just five amino acids
(AEGIK).

Given the success of the HP and other reduced alphabet models
in reproducing important features of protein structure and folding
together with the experimental success in designing native-like
proteins from reduced alphabets, we surmize that these simple
folding ideas might also be reflected in pairwise alignments of the
sequences of structurally similar proteins. By properly grouping 20
naturally occurring amino acids into classes and thereby coarse-
graining the scoring matrices, similarities in protein sequence
that are not readily seen in the full 20-letter alphabet would
be revealed. By all of the measures we used, reduced alphabets
showed increased effectiveness at identifying structurally similar
proteins as defined by the Distance mAtrix aLIgnment (DALI)
database by a modest though statistically significant amount. Based
on these gains in pairwise alignments and other past successes
in the literature, we believe that the reduced alphabet approach
applied to more sensitive methods, e.g. position-specific iterated
basic local alignment search tool (PSI-BLAST) profile searches,
holds promise for detecting structurally related proteins with weak
sequence similarity.

The remainder of the article is organized as follows. In Section 2,
we describe our procedure for coarse-graining substitution matrices,
outline the reduced alphabet schemes tested and reference databases
used in this study as well as describe the principal metrics for
this work: area under the Receiver Operating Characteristic (ROC)
curve (AUC), mean pooled precision and recall at 0.01 errors per
query (EPQ). In Section 3, we present the results of all-versus-all
sequence alignments using each of the reduced alphabets, showing
the performance of reduced alphabets in comparison with various
common full 20-letter substitution matrices. Finally, we compare
the results of this study with other similar work and speculate
on promising avenues for further development with the reduced
alphabet concept.

2 METHODS

2.1 Substitution matrices
There are many amino acid substitution matrices that have been formulated
for pairwise sequence database searches; one of the most commonly used
matrices and the default choice for BLAST searches is BLOSUM62. The
BLOSUM family of substitution matrices is based on a log-odds ratio of
the observed and expected frequencies of amino acids in a reference set
of alignments where a sequence identity cutoff has been applied (62% in
the case of BLOSUM62). This method, originally proposed by Henikoff and
Henikoff (1992), is described briefly here. Let us label the naturally occurring
amino acids with indices 1–20; we may then derive a matrix cij with each
entry of the matrix being the tally of the observed pairings of amino acid i
with amino acid j in the reference alignments. Pairwise alignments do not
distinguish between aligning e.g. AD and DA, so if the total count of ij and ji
pairs is C (with i �= j) we assign cij =cji =C/2 to reflect this symmetry. The
underlying reason for this symmetry is that we assume no a priori knowledge
of the order in which the sequences arose; without such knowledge, the
likelihood of a substitution from, e.g. A to G and G to A are equal. The
observed probability matrix oij is the normalized cij matrix:

oij = cij∑20
i=1

∑20
j=1 cij

. (1)

The frequencies of each of the amino acids pi is now easily calculated
from oij :

pi =
20∑

j=1

oij, (2)

and the expected (random) probability of aligning amino acid i with j is:

eij =pi pj . (3)

The substitution matrix score mij is calculated from the observed and
expected probabilities as a log-odds ratio:

mij =mji = logb

(
oij

eij

)
, (4)

where the base of the logarithm is usually chosen as b=2 so that mij has
units of bits of information (though substitution matrix values are sometimes
measured in half-bits or other fractional bit units). For convenience of
notation, the BLOSUM series of matrices will be referred to hereafter as
BL followed by the level of sequence identity used in building the matrix,
e.g. BL62 for the BLOSUM matrix with 62% identity cutoff.

We follow this log-odds method in formulating matrices based on a
reduced alphabet. Each reduced alphabet scheme clusters amino acids
together into groups where all amino acids within a group are considered
identical. Given N groups of amino acids defining a reduced alphabet, the
new frequency of group I is calculated as:

pI =
∑
k∈I

pk, (5)

where k runs over each amino acid in group I . The new expected and observed
probabilities to align group I with group J are:

eIJ = pI pJ , (6)

oIJ =
∑
i∈I

∑
j∈J

oij . (7)

Finally, the new matrix entries in the reduced N ×N matrix are:

MIJ = logb

(
oIJ

eIJ

)
(8)

= logb

[ ∑
i∈I

∑
j∈J oij∑

i∈I pi
∑

j∈J pj

]
. (9)

This method differs from that used in some previous reduced alphabet studies
(Li et al., 2003; Murphy et al., 2000), which used the arithmetic mean
of the subsitution matrix entries; using the mean of the subsitution matrix
scores is inconsistent with the log-odds probability scheme upon which the
substitution matrices are based.

2.2 Reduced alphabet schemes
A reduced alphabet is any clustering of amino acids based on some measure
of their relative similarity. Many such schemes have been proposed; the ones
used in this study are briefly reviewed here together with the abbreviations
used to refer to them. If a name for the scheme is given by the authors (e.g.
SDM and DSSP) it has also been used here, otherwise abbreviations are
formed by using the first letters of the names of the first and last authors.
Thomas and Dill (1996) created a hierarchy of amino acid groupings based
on intuitive physicochemical considerations (TD). Mirny and Shakhnovich
(1999) (MS) constructed a six-letter alphabet based mostly upon intuition
as well as a study of the effects of disulfide bonds on protein folding
which suggested separating aliphatic hydrophobic and aromatic hydrophobic
residues (Abkevich and Shakhnovich, 2000). Solis and Rackovsky (2000)
posited clusters based on maximum preservation of structural information
(DSSP and GBMR). Andersen and Brunak (2004) searched for clusters of
amino acids based on the ability of standard methods to correctly predict
secondary structure from the simplified sequences (AB). Cieplak et al. (2001)
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used the Miyazawa–Jernigan interaction matrix (Miyazawa and Jernigan,
1996) together with a distance-based clustering scheme to partition the
naturally occurring amino acids into two- and five-letter groups (CB).
Prlić et al. (2000) derived new substitution matrices based on structural
alignments of proteins with low-sequence identity and then clustered the
amino acids based on those matrices (SDM and HSDM). On the basis of a
comparison of early substitution matrices, Landes and Risler (1994) proposed
a 10-letter alphabet that showed promise for increasing the sensitivity of
protein alignment searches (LR). Li et al. (2003) proposed grouping schemes
based on preservation of information in global sequence alignments between
a sequence and its reduced-alphabet version. They produced two groupings,
one allowing amino acids to change their order or ‘interlace’ (LW-I) and one
where they were not allowed to change order (LW-NI). The LW schemes
were identical at the levels of 2, 3 and 15 through 19 letters. We also note
that the CB and LW schemes were identical at the two-letter level. Melo and
Marti-Renom (2006) created a five-letter clustering of amino acids based
on the Johnson–Overington matrix (JO20) (Johnson and Overington, 1993),
which they found performed well in aligning homologous sequences and fold
assessment (MM). Murphy et al. (2000), inspired by experimental successes
in designing proteins with reduced alphabets, proposed clusters of amino
acids based on the BL50 substitution matrix (ML). Liu et al. (2002) studied
the pair frequency counts in the Miyazawa–Jernigan and BL50 matrices to
find deviations from a random background and based thereon proposed a
clustering of amino acids (LZ-MJ and LZ-BL). Finally, Wang and Wang
(1999) derived clusters from the Miyazawa–Jernigan matrix by preserving
maximal similarity between a reduced-alphabet version of the matrix and
the full 20 × 20 matrix (WW). They found a 5-letter alphabet (IKEAG) that
matched with what Riddle et al. (1997) had found in their experimental study
producing SH3 domains from reduced alphabets. Each of these schemes
produced a hierarchy of amino acid classes. At each level in the hierarchy,
the number of classes or ‘letters’ in the alphabet is increased. We tested each
of the reduced alphabet schemes in the papers just cited; Table 1 shows the
abbreviations for each scheme, the various levels of clusterings comprising
the scheme and the frequency matrix and gap penalties used. In this work,
reduced alphabet matrices will be referred to by the alphabet scheme (TD,
SDM, HSDM, etc.) followed by the number of letters in the alphabet, e.g.
HSDM17.

2.3 Pairwise sequence alignments
2.3.1 Protein database We chose the DALI database (Holm and Sander,
1993), which uses fully automated methods to cluster protein domains based
on their structural similarity as our ‘gold standard’ for determining the
structural relatedness of proteins. DALI partitions each protein structure in
the PDB into domains by maximizing criteria of compactness and recurrence
of those domains (Holm and Sander, 1998). After determining the domains,
all-versus-all structural alignments of the domains are executed and a Z-score
estimated to indicate the statistical significance of those alignments (Holm
and Sander, 1998). Finally, the domains are clustered into families based
on Z-score cutoffs; a cutoff Z-score >2, indicating statistically significant
structural similarity at the 2σ level, is used to define proteins with roughly
the same ‘fold’ (Holm and Sander, 1998).

The sequence library for this study was drawn from the DALI pdb90
database using each of the representative sequences in the domain fold
classes defined by the DALI Domain Dictionary (Dietmann et al., 2001;
Holm and Sander, 1998), both available for download at the DALI website.1

All pairs of sequences within the same domain fold class are considered to
be structurally related ‘hits’ (true positives) in our database searches. In total,
13 351 sequences were drawn from the pdb90 database, representing 2780
fold classes. One domain fold class, number 1636, was not represented in the
database because its representative sequence,1mwxA_1, was not found in the
latest version of pdb90 available for download. We also note that there were
1264 sequences which were singletons i.e. they were the only members of

1http://ekhidna.biocenter.helsinki.fi/dali/downloads

Table 1. Reduced alphabet schemes investigated in this work

Scheme Alphabet size(s) Matrix Gaps Reference

AB* 2–19 BL62 11/1 Andersen and Brunak (2004)

CB* 2,5 BL62 11/1 Cieplak et al. (2001)

DSSP* 2–14 BL62 11/1 Solis and Rackovsky (2000)

GBMR* 2–14 BL62 11/1 Solis and Rackovsky (2000)

HSDM 2–10,12,14–17 HSDM 19/1 Prlić et al. (2000)

LR* 10 BL62 11/1 Landes and Risler (1994)

LW-I* / -NI* 2–19 BL62 11/1 Li et al. (2003)

LZ-MJ* / -BL 2–16 BL50 11/1 Liu et al. (2002)

ML 4,8,10,15 BL50 12/2 Murphy et al. (2000)

MM 5 JO20 140/0 Melo and Marti-Renom (2006)

MS 6 BL62 11/1 Mirny and Shakhnovich (1999)

SDM 2–4,6–8,10–14 SDM 7/1 Prlić et al. (2000)

TD* 2–10,14 BL62 11/1 Thomas and Dill (1996)

WW* 5 BL62 11/1 Wang and Wang (1999)

Abbreviations and references are listed in the first column; alphabet sizes, matrix used
and gap penalties are also shown. Wherever possible, we used the matrices and gaps
given in the original articles referenced, though we note that the starred schemes were
proposed independently of any particular substitution matrix. In those cases, the BL62
frequency counts were used to derive the coarse-grained matrices with 11/1 gaps.
In addition to the reduced alphabet schemes tested above, we also tested the following
full 20 × 20 matrices: BL50 11/1, BL50 12/2, BL62 11/1, JO20 140/0, SDM 7/1 and
HSDM 19/1. Data points at 20 letters for SDM or HSDM come from these last two
matrices, respectively.

their DALI fold class; these sequences are in some sense undetectable since
they have no true positive relationship to any other protein in the database.
Nevertheless, to reflect the situation in actual practice where this information
is not known a priori, the singletons were included in our analysis.

2.3.2 Alignment program All-versus-all Smith–Waterman alignments
were executed using SSEARCH version 3.4 from the FASTA sequence
alignment suite (Pearson, 1991; Smith and Waterman, 1981); the alignments
were ranked by E-value as calculated by the default SSEARCH statistics
option (specified by the ‘-z 1’ command line option).

2.3.3 Generation of search results We executed all-versus-all alignments,
using each sequence in the DALI pdb90 database in turn as a query against
the remaining sequences. The results of all these searches were then pooled
into a single list of results ranked by the E-value assigned by SSEARCH;
when true and false positives shared an E-value, the false positive alignments
were ranked ahead of the true positives to obtain a conservative estimate of
discriminating power.

2.3.4 Reference sequence alignments Structural alignment of protein
domains with the DALI method produces a reference list of structurally
equivalent pairs of residues (Holm and Sander, 1993). We compared these
structure-based alignments with the alignments produced by SSEARCH
and tallied the fraction of structurally equivalent residues found by
SSEARCH local alignments. The database of structurally equivalent
residues, dali_fragments, was obtained from the DALI downloads web
site (see footnote 1).

2.4 Metrics
A scoring matrix should ideally be able to both detect related pairs of proteins
(true positives) and reject non-related pairs (false positives); these properties
are termed sensitivity and selectivity, respectively, and in many instances
they compete with one another in the sense that as a matrix is tuned to be
more sensitive it often loses selectivity and vice versa. After pooling the
results of querying the database with each sequence, we choose a particular
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E-value and consider all results at this E-value or lower to be ‘hits’. The
recall, fall-out, precision and EPQ are calculated from the list of hits as
follows:

recall = TP

P
, (10)

fall-out = FP

N
, (11)

precision = TP

TP+FP
, (12)

EPQ = FP

Nseq
, (13)

where TP is the number of true positive hits, FP is the number of false
positive hits and Nseq is the total number of sequences; P and N are the total
number of positive and negative relationships in the database, respectively.
Moving down the pooled list of search results, we generate successively
larger groups of hits at increasing E-values with associated values for recall,
fall-out, precision and EPQ. The three curves analyzed in this work are
precision versus recall, recall versus fall-out (also called the ROC curve)
and recall versus EPQ (also called the coverage versus EPQ plot), all
parametrized by increasing E-value. We define the mean pooled precision
to be the integral of the precision versus recall curve for the combined list
of search results; this number gives the average precision achieved over the
entire range of recall. The AUC measures the ability of a matrix to identify
related pairs by assigning them lower E-values than pairs of proteins that
are not related over the entire list of pooled results. Finally, the recall at 0.01
EPQ gives the number of true positives returned at a fixed, low error rate.
Recall may be normalized in several ways, as defined by Green and Brenner
(2002). Recall without normalization gives equal weight to each true positive
relationship; quadratic normalization weights true positive hits so that each
fold represented in the database has equal weight. Linear normalization is a
compromise between these two, giving each sequence in the database equal
weight and is meant to take into account the fact that folds are not equally
represented in nature (Grant et al., 2004).

3 RESULTS

3.1 Mean pooled precision
A perfect method would have a mean pooled precision value of
unity, maintaining 100% precision until all true positives have been
identified. The mean pooled precision for all of the HSDM, SDM
and GBMR alphabets is plotted in Figure 1. Even the strongest
performers in mean pooled precision cannot maintain a high level
of precision beyond a recall value of about 0.4. This means that only
∼40% of the total number of true positives can be reliably identified
before additional true positives in the list of hits become buried in a
flood of false positives in a sort of ‘needle-in-a-haystack’ situation
(see Supplementary Material for HSDM17, SDM12 and GBMR4
precision versus recall curves).

3.2 AUC
The AUC has a very specific interpretation: it is equal to the
probability of assigning a lower E-value to a true positive than to
a false positive (Hanley and McNeil, 1982). Therefore, it gives a
measure of the sensitivity of a scoring matrix to related sequences
over the entire pooled list of results. The top overall performer
in detecting structurally related proteins by pairwise search is the
SDM12 matrix; another notable high performer is LZ-MJ6 which
finished in the top 10 with only six letters. The total AUC versus
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Fig. 1. Reduced alphabet performance in mean pooled precision. Mean
pooled precision indicates the average precision achieved by a matrix over
the entire range of recall. Points indicate reduced alphabets that were tested;
the connecting lines are a guide to the eye. A perfect method would achieve
a mean pooled precision value of unity, with all true positives ranked ahead
of false ones. The HSDM17 matrix is the top performer in this metric; the
dashed black line shows the performance of BL62 11/1 for reference.
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Fig. 2. Overall sensitivity of the HSDM, SDM and GBMR alphabets, as
measured by the AUC. The integral of the ROC gives a measure of how
well the entire pooled list of hits is sorted; a perfect method would have an
ROC area of unity. The level of sensitivity of BL62 11/1 is shown with the
black dashed line. Points indicate reduced alphabets that were tested; the
connecting lines are a guide to the eye.

number of letters in these schemes is shown in Figure 2; note that the
AUC does not necessarily increase monotonically with alphabet size.

Although it is of interest that HSDM17 maintains the best
selectivity as measured by mean pooled precision and SDM12 the
best sensitivity as measured by the AUC, what is of most interest
to a user of an alignment program with a query protein and a target
database is to find a scoring matrix that will yield the most number
of true positives at a fixed, low error rate. Operationally, a researcher
will have an intuition for what E-values indicate hits that are likely
to be significant and will ignore hits below that intuitive threshhold.
In the DALI database, we used there are more than 150 times as
many false positives as true positives, so that much of the advantage
shown by HSDM17 and SDM12 is in a regime beyond what could
be reasonably processed ‘by hand’. Therefore, we also examine the
performance of reduced alphabets in recall of true relationships at
an EPQ rate of 0.01.
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Fig. 3. Recall with linear normalization at 0.01 EPQ for various numbers of
letters in the GBMR, HSDM and SDM reduced alphabet schemes. The level
of performance of BL62 11/1 is shown with the black dashed line. Points
indicate reduced alphabets that were tested; the connecting lines are a guide
to the eye.

3.3 Recall at 0.01 EPQ
The second measure of the selectivity of each reduced alphabet
scheme was calculated as the recall (also called coverage) at 0.01
EPQ; this is the metric of the most practical interest. Figure 3 shows
the recall at 0.01 EPQ with linear normalization versus number of
letters for the GBMR, SDM and HSDM alphabets.

These results would seem to indicate that reduced alphabets
offer an advantage of immediate practical value over currently
used matrices based on the full alphabet. To further investigate this
possibility we performed all versus all alignments with HSDM17,
SDM12, GBMR4 and BL62 11/1 using proteins belonging to the
same structural classification of proteins (SCOP) superfamily to
define true positives. In the SCOP study, we found that BL62 11/1
outperformed GBMR4 in linearly normalized recall at 0.01 EPQ
with both the scop40 and scop95 databases. However, the larger
reduced alphabets maintained their advantage in selectivity and
sensitivity: HSDM17 and SDM12 both achieved higher mean pooled
precision, AUC and linear recall at 0.01 EPQ scores than BL62 11/1.
(See the Supplementary Material for the full results.) This indicates
that small reduced alphabets can show an increased sensitivity and
selectivity for proteins that are structurally related, the only criteria
used by DALI, but seem to lose selectivity when criteria such
as function and evolution are taken into account, as is done with
the human-curated SCOP superfamily classification (Murzin et al.,
1995). To the extent that performance with the SCOP and DALI
databases indicates real world performance, these results suggest
that moderately reduced alphabets like SDM12 and HSDM17 offer
increased sensitivity and selectivity over the standard BL62 11/1
matrix based on a full alphabet.

3.4 Statistical significance of results
The three top-performing alphabets (GBMR4, SDM12 and
HSDM17) are shown in Table 2 together with the results of
BL62 11/1 shown for reference. We used the Bayesian bootstrap
method developed by Price et al. (2005) to evaluate the statistical
significance of the successes of the reduced alphabets in comparison
with the standard BL62 11/1 scoring matrix. First, the differences in
performance are tabulated between each pair of bootstrap replicas,
then a Z-statistic is calculated by dividing the mean of distribution

of differences by its SD. This statistic, rather than the difference in
mean performance, was found to be the most sensitive for evaluating
the significance of differences in performance between two scoring
matrices (Price et al., 2005). We find a strongly significant Z-score of
6.17 for the superior performance of SDM12 relative to BL62 11/1
in AUC, and marginally significant Z-scores of 1.33 for HSDM17
versus BL62 11/1 in mean pooled precision and 1.49 for GBMR4
versus BL62 11/1 in recall at 0.01 EPQ with linear normalization.

4 DISCUSSION
We wish also to note that many reduced alphabets beyond the three
that we mentioned above outperform the BLAST default, BL62,
with 11/1 gaps. Among the 151 scoring matrices tested in this work,
BL62 ranked 38th overall in AUC, 18th in mean pooled precision,
and 111th, 102nd and 104th in recall at 0.01 EPQ with no, linear and
quadratic normalization, respectively. In the remaining plots, we will
compare the top performers in mean pooled precision (HSDM17),
AUC (SDM12) and recall at 0.01 EPQ (GBMR4) with one another,
using BL62 11/1 as the baseline. Full results as well as the top
10 schemes in each category are presented in the Supplementary
Material. The overall low performance of the reference matrix BL62
11/1 in mean pooled precision (∼0.03) and recall at 0.01 EPQ
(∼0.02) indicate that those metrics represent a kind of ‘stress test’
for pairwise sequence alignment. This makes the task of sorting out
the best performing matrices more obvious than if an easier test
had been chosen where all matrices performed relatively well. In
Section 5, we examine the statistical significance of our ranking of
best matrices to determine whether the differences in performance
are significant.

Some related previous work looked into the question of how many
amino acid classes are necessary both for protein folding and for
identification of related proteins. In their study of pairwise sequence
alignment, Murphy et al. (2000) estimated that a minimum of
10–12 amino acid classes is necessary to design foldable sequences
for most protein families. Fan and Wang (2003) found that the
minimum alphabet size for protein folding requires ∼10 types
of amino acids. In a recent study, Li and Wang (2007) observed
optimal sequence alignment accuracy at an alphabet size of around
9 letters. We find a similar optimal size when maximizing the AUC
(12 classes). The consensus from these diverse methods is that
performance improvements can be made by properly grouping the
amino acids into 9–12 clusters.

It is interesting that the top performing alphabets, shown in
Table 2, are compatible with one another in the sense that SDM12
can be derived from GBMR4 and HSDM17 can be derived from
SDM12 by simply breaking down larger clusters into smaller ones
without needing to interchange the grouping of any of the amino
acids. In the GBMR4, alphabet glycine and proline are singled
out as being structurally dissimilar from the other amino acids;
the remaining two groups reflect a hydrophobic (YFLIVMCWH)
and polar (ADKERNTSQ) classification. In this sense, the GBMR4
alphabet is a modest refinement of the simple HP concept. The
SDM12 alphabet maintains clusters for acidic/basic (KER), polar
(TSQ), aromatic (YF) and mostly aliphatic (LIVM) groups. Two
non-intuitive results in these groupings are the omission of aspartic
acid from the acidic/basic KER cluster and the inclusion of
methionine in the otherwise aliphatic LIVM cluster. In HSDM17,
only the strongest associations among these are maintained:
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Reduced amino acid alphabets

Table 2. The top performing alphabets found in this study in linearly normalized recall at 0.01 EPQ (GBMR4), AUC (SDM12) and mean pooled precision
(HSDM17) with the standard deviation of 1000 bootstrap replicas given in parentheses

Alphabet Amino acid groups Recall AUC MPP

GBMR4 ADKERNTSQ YFLIVMCWH G P 0.022 (0.001) 0.667 (0.004) 0.212 (0.006)
SDM12 A D KER N TSQ YF LIVM C W H G P 0.020 (0.001) 0.801 (0.005) 0.332 (0.009)
HSDM17 A D KE R N T S Q Y F LIV M C W H G P 0.020 (0.001) 0.796 (0.004) 0.347 (0.008)
BL62 11/1 A D K E R N T S Q Y F L I V M C W H G P 0.019 (0.001) 0.759 (0.005) 0.329 (0.009)

Results for BL62 11/1 are shown for comparison.
The bold values represent the best result in each column for Recall, AUC and MPP.

acidic/basic (KE) and aliphatic (LIV). By clustering together amino
acids with similar properties in this way, we increase the signal to
noise in our database searches and avoid over-assigning importance
to differences among the naturally occurring amino acids.

We wish to note several promising avenues for further investi-
gation which could not be pursued in this work for lack of time
and computing resources. In theory, an optimum alphabet could
be searched for at each alphabet size by, e.g. Monte Carlo search.
Likewise, it would be ideal to optimize the gap penalties with respect
to each reduced alphabet. Lack of sufficient computational resources
made it impractical to carry out these optimizations. We chose to
use the DALI database as our standard for determining structural
relationships among proteins in the PDB over databases like SCOP
(Murzin et al., 1995) because its determinations are informed only
by structural similarity and require no human curation. Although we
obtained some preliminary results with SCOP, it would be instructive
to compare the results using the DALI database with what would
be obtained by testing all the reduced alphabets in this work using
SCOP superfamilies as the gold standard for structural relatedness.
Given the encouraging results shown by SDM12 and HSDM17 with
both SCOP and DALI, we believe that further investigation into
the practical advantages of reduced alphabets for general use with
pairwise alignment matrices merits additional exploration.

5 CONCLUSION
We find, perhaps counter to common intuition, that reduced
alphabets increase the selectivity and sensitivity to pairs of proteins
with structural similarity as measured by the mean pooled precision,
AUC and recall at 0.01 EPQ (under all normalizations). In addition,
we found that reduced alphabets can return more distantly related
pairs of proteins. This is in contrast to some earlier studies (Li
et al., 2003; Liu et al., 2002; Murphy et al., 2000) which found
that reduced alphabets could only produce losses in performance
relative to a full alphabet. Landes and Risler (1994) also observed
improved sensitivity with reduced alphabets; in an early study with
aminoacyl-tRNA synthetases, LR10 showed an increased ability to
identify distant homologs over methods using the full alphabet. This
work also adds to the encouraging results with reduced alphabets
found by, e.g. Fan and Wang (2003), Melo and Marti-Renom
(2006) and Li and Wang (2007). Melo and Marti-Renom tested the
Johnson–Overington matrix against several small reduced alphabets:
WW5, GBMR5, ML4, MM5 and 100 randomly reduced five-letter
alphabets and used the resulting pairwise alignments as the initial
seed for an optimal structural superposition. They found that the
GBMR5 reduced alphabet produced performance gains over the

full matrix in the final structural alignment, as measured by the
root-mean-square deviation of Cα atoms.

A promising area for application of the results of this study is
in the building of protein profiles or hidden Markov models. Such
models are built up from a multiple alignment of many putatively
homologous proteins. At each position in the alignment, a number
can be assigned for the probability of observing a particular amino
acid based on the sequences in the multiple alignment. The simplest
type of protein profile is simply a consensus sequence of the most
commonly occurring amino acid at each position. One current
limitation of these methods is the limited sample of sequences with
which to build up the multiple alignment; experimentally determined
sequences account for only a fraction of the total sequence space
available to a given protein fold. By thinking of a protein as being
made up of amino acids drawn from classes with particular physical
properties, we can leverage the physicochemical similarities of
amino acids to help make up for this lack of statistics in our sampling
of sequence space. This problem of undersampling was recognized
by Sjölander et al. (1996) who developed a method of Dirichlet
mixtures for use with multiple alignments to improve detection of
remote homologs. The method of Dirichlet mixtures estimates the
most likely expected distribution of amino acids at a given position
in a multiple alignment and could be extended to estimate the most
likely expected distribution of classes of amino acids, as studied
here, instead of individual amino acids. A reduced alphabet approach
to building up protein profiles may improve our ability to detect
proteins with structural homology by leveraging our knowledge of
the chemical properities of the amino acids in building up a physical
picture of a fold.
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