
Modeling in Engineering—The Challenge of Multiple Scales
by Rob Ph i l l i p s

hether we consider the
design of a new genera-
tion of airliners such as
the Boeing 777 or the

development of the latest micro-
p rocessors, engineering re l i e s
i n c reasingly on the use of mathe-
matical models to characterize
these technologies. In the case of
the 777, sophisticated models of
the fluid mechanics of air flow over
the wings were an integral part of
the design process, just as stru c-
tural mechanics models ensure d
that flight in turbulence leads to
nothing more grave than passenger
d i s c o m f o rt .

Models of complex materials
that make up our modern technolo-
gies also pose a wide range of sci-
entific challenges. Indeed, many of
the most important recent advan-
ces in the study of materials re s u l t-
ing in entirely new classes of mate-
rials such as the famed oxide high-
t e m p e r a t u re superconductors or

f u l l e renes, and their structural part-
ners known as carbon nanotubes,
have engendered a flurry of model-
ing eff o rts. 

I m p o rtant problems that such
modeling must confront are those
of an intrinsically multiscale nature .
What this means is that analysis of
a given problem re q u i res simulta-
neous consideration of several spa-
tial or temporal scales. This idea is
well re p resented in drawings made
m o re than 500 years ago by
L e o n a rdo da Vinci, in which the
turbulent flow of a fluid is seen to
involve vortices within vort i c e s
over a range of scales. This sketch
(see Fig. 1) serves as the icon for
the new Caltech center known as
the Center for Integrative Multi-
scale Modeling and Simulation
(CIMMS) [see article on page 10].
CIMMS brings together faculty
members from several diff e re n t
Options and Divisions including
P rofessors K. Bhattachary a

(Mechanical Engineering), 
E. Candes (Applied & Compu-
tational Mathematics), J. Doyle
( C o n t rol & Dynamical Systems,
Electrical Engineering, and
Bioengineering), M. Gharib
( A e ronautics and Bioengineering),
T. Hou (Applied & Computational
Mathematics), H. Mabuchi (Physics
and Control & Dynamical Systems),
J. Marsden (Control & Dynamical
Systems), R. Murray (Control &
Dynamical Systems and Mechan-
ical Engineering), M. Ort i z
( A e ronautics and Mechanical
Engineering), N. Pierce (Applied 
& Computational Mathematics), 
R. Phillips (Mechanical Engineer-
ing and Applied Physics) and 
P. Schröder (Computer Science 
and Applied & Computational
Mathematics). The aim of multi-
scale modeling is to construct mod-
els of relevance to macro s c o p i c
scales usually observed in experi-
ment and tailored in the engineer-
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ing process without losing sight of
the microscopic processes which
may dictate processes at the
m a c roscale. Although the re l a t i o n
between force and extension can
be observed macro s c o p i c a l l y, it is
often complex m i c ro s c o p i c p ro c e s s e s
that give rise to the macro s c o p i c
f o rce-extension curves. Examples
include the breaking of hydro g e n
bonds during protein deform a t i o n ,
and the motion of defects in the
d e f o rmation of crystalline solids.

key outcome of the use of
computers in science and
engineering has been the
ability to solve pro b l e m s
of ever- i n c reasing com-

p l e x i t y. Whereas the tools of nine-
t e e n t h - c e n t u ry mathematical
physics emphasized geometries of
high symmetry (such as sphere s
and cylinders, each of which is
aligned with a set of special func-
tions such as the Legendre polyno-
mials or Bessel functions), curre n t
modeling is aimed at considering
p roblems in their full thre e - d i m e n-

sional complexity. The key advance
enabling such calculations is high-
speed computation. As a re p re s e n-
tative case study of the high level
to which such models have been
taken, Fig. 2 shows the computa-
tional grid (finite-element mesh)
used to model a human kidney
when subjected to ultrasonic shock
waves. The aim is to degrade kid-
ney stones (shock-wave lithotripsy).
As noted above, no assumptions
a re re q u i red concerning the sym-
m e t ry of the body. The level of spa-
tial resolution needed to constru c t
models of systems of interest may
v a ry from one position in the sys-
tem to another. Indeed, the finite-
element method serves as a power-
ful tool in the multiscale modeling
arsenal. Eff o rts in the Phillips gro u p
and that of Michael Ortiz are aimed
at bringing these methods to bear
on problems ranging from the
d e f o rmation of dense metals such
as tungsten to the fragmentation of
human bone to the deformation of
individual pro t e i n s .

One of the precepts which pre-
sides over the field of computation-

al science and engineering is
M o o re ’s law, which calls for a dou-
bling in the number of transistors
per integrated circuit every 18
months. For those of us who exploit
computers to solve complex pro b-
lems, this enables ever- i n c re a s i n g
computational re s o u rces. Fro m
many perspectives, Moore ’s law
should be seen as an expression of
unbridled optimism which has set
the agenda respected in the semi-
conductor technology ro a d m a p
(h t t p : / / p u bl i c . i tr s . n e t). It serves as a
guide to understanding the way in
which the re s o u rces of computa-
tional scientists have incre a s e d
since the first models were solved
on primitive vacuum-tube 
computers. 

On the other hand, for those
i n t e rested in bru t e - f o rce atomic-
level calculation of the pro p e rties of
materials (or any of a wide range of
other problems occurring in fluid
mechanics, meteoro l o g y, computa-
tional biology, etc.), Moore ’s law
paints an altogether more gloomy
p i c t u re. To see this, we need only
remark that the number of atoms in
a cubic micron of material is ro u g h-
ly 101 0 since about 3,000 atoms will
fit onto each edge of such a cube.
Calculations of this size are at least
t h ree orders of magnitude larg e r
than the 10 million atoms re a c h e d
on today’s best supercomputers in
the case of the simplest materials.
Worse yet, this is but one facet of
the problem. Just as the maximum
size accessible by direct numerical

Fi g u re 1. Ske tch by Le o n a rdo da Vinci illus-

t rates the sense in which turbulent flow of a

fluid is a multiscale phenomenon. Pa rcels of

fluid in a turbulent flow with a net ro t at i o n ,

vo rt i ce s, a re org a n i zed hiera rc h i cally in such a

way that there are vo rt i ces within vo rt i ce s.
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calculation is too small, so too are
the intervals of time being simulat-
ed, with the current standard being
that a nanosecond worth of simula-
tion time (10- 9 seconds) re p re s e n t s
l o n g simulation time. To drive home
this point, we note that if our inter-
est is in the simulation of semicon-
ductor processing, we will need to
simulate micron size regions for
times much in excess of the

nanosecond simulation times
described above. Similarly, should
our interest be in simulating the
p ro p e rties of the basic building
blocks of life, what Francis Crick
re f e rred to as the “two great poly-
mer languages,” nucleic acids and
p roteins, there too we are faced
with the simulation of scales in
both space and time that will con-
tinue to defy our current bru t e -
f o rce computational schemes.

As an antidote to this scourg e
on the face of computational sci-
ence, workers from a host of diff e r-
ent fields ranging from applied
mathematics to meteorology to
computational biology are engaged
in work that has been dubbed
“multiscale modeling.” From a com-
putational perspective, the pre m i s e
of multiscale modeling is that new
methods must be developed in
which alternatives to the full bru t e -
f o rce ideas described above are
examined. Though this vibrant field
has been hyped by giving it a spe-

cial name, I suggest that multiscale
modeling is really as old as science
itself and was being practiced by
Newton when he treated the Eart h
as a point mass, by Hooke when he
t reated a spring as an elastic con-
tinuum, by Bernoulli in the devel-
opment of the kinetic theory of
gases, by Lorentz in his early
and primitive models of the
absorption of light in cry s-
talline solids, and by Einstein
in his treatment of both
B rownian motion in liquids
and specific heats of cry s t a l l i n e
solids. What all of these modeling
e ff o rts have in common is the idea
of starting with a picture of the
material of interest which is
o p p ressively complex and finding a
way to replace that complexity

with a “coarse grained” model. Said
d i ff e re n t l y, such models can be
thought of as viewing the pro b l e m
of interest with lower re s o l u t i o n .
An example from everyday experi-
ence is gained by looking out the
window of an airplane when flying
at 30,000 feet. At this re s o l u t i o n ,
f o rests are smeared out and the
various topographical features with
a scale less than several meters are
no longer observable. Nevert h e l e s s ,

f rom the perspective of understand-
ing the overall forestation and
topography of a given re g i o n ,
understanding at this level of re s o-
lution is likely m o re useful than a
m o re accurate rendering with re s o-
lution at the meter scale.

i s t o ry is replete with
beautiful examples in
which multiscale model-
ing ideas have been used
to characterize a range of

p roblems. One such example is
related to the following question:
given that a gas is a collection of
atoms, is it possible to re p l a c e
models of the gas which acknowl-
edge the underlying graininess of
matter by those in which the atom-
ic degrees of freedom are smeare d
out into continuous fields such as
d e n s i t y, temperature, and pre s s u re ?
Of course, it is well known that the
answer to this query can be posited
in the aff i rmative. Furt h e r, it is
t h rough the multiscale vehicle of
the kinetic theory of gases that this
t r a n s f o rmation in perspective is
made. 

As illustrated in Fig. 3, a gas
may be thought of as a collection of
molecules, each engaged in its own
jiggling dance until, by chance, one
molecule collides either with anoth-
er molecule or the surro u n d i n g
walls. The realization of the early
t h e rmodynamicists was that the
accumulation of all such collisions
per unit time corresponds to our
m a c roscopic impression of the
p re s s u re exerted on the walls by all
of the gas molecules. Through a
well-defined statistical form a l i s m ,
statistical mechanics and the
kinetic theory of gases instruct us

Fi g u re 3. Il l u s t ration of the re l ation be twe e n

molecular and co ntinuum descriptions of the

i nte rnal state of a gas. This figure comes fro m

the original paper of Daniel Be rn o u l l i , one of

the deve l o pers of the multiscale mod e l i n g

p a radigm kn own as the kinetic theory of

g a s e s.

Fi g u re 2. Co m p u t ational mesh used to eva l u-

ate the mechanical re s ponse of a ki d n ey to

u l t rasonic shock waves (co u rtesy of Kerstin

We i n be rg and Michael Ort i z ) .
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how to compute the macro s c o p i c
average quantities measured in the
lab as a function of the underlying
molecular coordinates. For the
p resent argument, the key point is
that by evaluating the molecular
mechanics of the various collisions
between molecules, it is possible to
compute parameters such as vis-
c o s i t y, which show up in higher
level continuum descriptions of the
fluid. The existence of simple
parameters (such as viscosity) cap-
t u re the details of the underlying
m i c roscopic collisions and allow us
to replace these micro s c o p i c
details with continuum notions, an
example of multiscale modeling at
its best.

Work in the same vein as the
kinetic theory of gases has contin-
ued unabated and now re p resents a
c o rnerstone of the modern ap-
p roach to understanding materials
ranging from steel to proteins. In
the remainder of this article, we
examine one corner of this vast
field which has understanding as
its first objective and, later, design-
ing and controlling the response of
materials when they are subjected
to an applied force. 

ne of the key ways to
understand diff e rent mate-
rials is to subject them to
d i ff e rent external stimuli

and watch their attendant re s p o n s-
es. One classic example of this
strategy is embodied in the form u-
lation of the laws of elasticity.
Using experimental apparatus like
that shown in Fig. 4, Robert Hooke
m e a s u red the extension of material
bodies as a function of the imposed
load and thereby formulated his
justly famous law which he
e x p ressed as an anagram C E I I-
I NO S S ITTU V, which when

unscrambled reads Ut te n s i o , s i c
v i s—“As the extension, so is the
f o rce.” In modern parlance, this is
written σ = Eε : s t ress is pro p o rt i o n-
al to strain with the constant of
p ro p o rtionality given by the
Yo u n g ’s modulus, E. This basic
idea jibes with our intuition: the
h a rder you pull on something, the
m o re it stretches. Similar pro p o r-
tionalities have been formulated for
material response in other settings
such as the relation between cur-
rent and voltage (Ohm’s law) and
that between diffusion and the
chemical gradient (Fick’s law). In

each of these cases, the basic idea
can be couched in the following
t e rm s :

response = material parameter x stimulus

H o w e v e r, as one might guess,
once the driving force (i.e., the
stimulus) becomes too large, the
simple linear relation between forc e
and response breaks down and
calls for more sophisticated analy-
sis. A particularly compelling
example of these ideas is pre s e n t e d
in the emerging field of single-mol-
ecule biomechanics in which the
f o rce-extension curves for individ-
ual molecules such as the pro t e i n
titin found in muscle are measure d
using the atomic-force micro s c o p e .
An example of such a curve is
shown in Fig. 5. The vertical axis in
this curve shows the applied forc e
( m e a s u red in piconewtons) while
the horizontal axis shows the
extension of the molecule (meas-
u red in nanometers). What is

remarkable is that the molecule
goes through a series of pro c e s s e s
in which the load increases (corre-
sponding to the elastic stre t c h i n g
of the various domains) followed by
a precipitous drop in the load (cor-
responding to the breaking of col-
lections of hydrogen bonds in one
of the globular domains of the pro-
t e i n ) .

A second example of this same
type of massively nonlinear defor-
mation is revealed by the pro c e s s
used to create the tungsten fila-
ments that light our homes every
evening. In this case, a cylindrical
specimen of tungsten, roughly a
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Fi g u re 4. E x pe ri m e ntal apparatus used by

Ro be rt Hoo ke in his elucidation of the laws of

e l a s t i c i ty.
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meter long and several centimeters
in diameter, is put through a series
of deformation steps in which the
tungsten is pro g ressively elongat-
ed. By the end of this process, the
tungsten rod of original length on
the order of a meter has now been
s t retched to a length of h u n d re d s o f
kilometers. This process takes
place without changing the overall
volume of the rod. We leave it to
the reader to work out what this
implies about the final diameter of
the tungsten filament.

The nonlinear deformation of
either proteins or tungsten (and
most everything in between) is an
intrinsically multiscale pro b l e m
because in each case the macro-
scopic force response is engen-
d e red by microscopic processes. 
In the case of the deform a t i o n
of a protein like that shown in
Fig. 5, it is the breaking of
p a rticular sets of hydro g e n
bonds that give rise to steep
d rops in the forc e - e x t e n s i o n
c u rve, bonds which are character-
ized by a length scale of 10-10 m
and not the 10-8 m typical of the
m e a s u red force-extension curv e s .
S i m i l a r l y, in the deformation of
tungsten, it is the motion of atom-
ic-scale defects known as disloca-
tions that give rise to the overall
plastic deformation. As a result, in
both of these cases a bridge is
re q u i red which allows for a model-
ing connection to be made
between the “micro s c o p i c ”
p rocesses such as bond bre a k i n g
and the macroscopic observ a b l e s
such as the force-extension curv e .

E ff o rts in the Phillips group and
that of Michael Ortiz have been
aimed at constructing multiscale
models which are sufficiently gen-
eral to be able to treat the forc e -
extension curves in materials rang-
ing from proteins to tungsten.

n intriguing alternative to
the atom-by-atom simula-
tion of forc e - e x t e n s i o n
c u rves like those dis-

cussed above has been the devel-
opment of new techniques in
which high resolution is kept only
in those parts of the material where
it is really needed. We close this
essay with a brief exposition of the
use of these methods to examine
the way in which defects give rise
to plastic deformation in strained
materials, and how by virtue of
entanglements of these defects,
such materials are hard e n e d .
Without entering into a detailed
exposition of the character of
defects that populate materials, we
note again that the plastic defor-

mation of materials is often mediat-
ed by defects known as disloca-
tions. Roughly speaking, disloca-
tions are the crystal analog of the
trick one might use to slide an
e n o rmous carpet. If we imagine
such a carpet and we wish to slide
it a foot in some direction, one way
to do so is by injecting a bulge
f rom one side as shown schemati-
cally in Fig. 6. Hence, rather than
having to slide the whole carpet
h o m o g e n e o u s l y, we are faced
instead with only having to slide a
little piece with a width equal to
that of the bulge. Nevertheless, the
net result of this action is overall
translation of the carpet. This same
basic idea is invoked in the setting
of stressed crystals where the slid-
ing of one crystal plane with
respect to another is mediated by a
line object (like the bulge described
above) on which atomic bonds are
being re a rranged. 

One of the key features of
d e f o rmed crystals is the fact that
the defects described above can
encounter other such defects
which exist on diff e rent cry s t a l
planes. The net result is the form a-
tion of a local entanglement known
as a dislocation junction. The for-
mation of such entanglements has
the observable consequence that
the crystal is harder—the critical
s t ress needed to perm a n e n t l y
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Fi g u re 5. S c h e m atic of the fo rce - exte n s i o n

c u rve measure m e nt proce d u re and the fo rce -

extension curve for the muscle pro tein titin.

As shown in (A), the molecule is stre tc h e d

using the ato m i c - fo rce micro s co pe and leads

to (B), a fo rce - extension spe ct rum which is a

m e c h a n i cal fingerp ri nt for the molecule of

i nte rest (co u rtesy of Julio Fe rn a n d ez) .

Fi g u re 6. The sliding of a ca rpet by inject i n g

a bulge is analogous to defo rm ation of crys-

tals by injecting dislocat i o n s.
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d e f o rm the material (i.e., the plastic
t h reshold) is raised by the pre s e n c e
of junctions. Although this entan-
glement is ultimately and intrinsi-
cally a particular configuration of
the various atoms that make up a
material, by exploiting ideas fro m
elasticity theory it is possible to
re p resent all of this atomic-level
complexity in terms of two inter-
acting lines. For present purposes,

the replacement of the all-atom
perspective by an elastic theore t i-
cal surrogate is exactly the type of
multiscale analysis argued for earli-
er in this essay.

F i g u re 7 shows the stru c t u re of
such a dislocation junction as com-
puted not by considering the atoms
that make up the material, but
rather as a collection of interacting
lines. Just as the various molecules
that make up a gas can be elimi-
nated from consideration by invok-
ing an equation of state and
exploiting hydrodynamics, so too in
the context of modeling the defor-
mation of materials may we re p l a c e

defects that are intrinsically
atomistic by elastic surro g a t e s
which allow us to answer the
multiscale challenge of material
response. As a result of exploiting
the correspondence between the
atomic-level and elastic description
of junctions, we have been able to
evaluate the critical stress needed
to disentangle the two dislocations
that make up a given dislocation

junction. One example pre s e n t e d
h e re (that of interactions between
dislocations), ferrets out the nature
of the conspiracy between the vari-
ous defects such as dislocations,
grain boundaries, and cracks that
make up materials and that are
responsible for observed macro-
scopic material response. Some of
the other problems we have exam-
ined using multiscale models are
the nucleation of dislocations at
crack tips, the interactions of dislo-
cations with grain boundaries, and
the response of proteins to extern a l
f o rcing (Fig. 5).

his essay has attempted to
convey some of the excite-
ment that has arisen
because of the advent of

the ability to build models of sys-
tems of interest to scientists and
engineers that intrinsically involve
multiple scales in either space or
time or both. Though we have
a rgued that multiscale modeling
has always been a part of the theo-
retical arsenal used to investigate
p roblems ranging from turbulent
flow to the magnetic pro p e rties of
materials, high-speed computation
has led to a re s u rgence of intere s t
in the construction of coarse-
grained models. This re p resents an
amusing twist of fate since naively
one might have expected that such
computational re s o u rces would
allow for the “first principles” simu-
lation of processes without the
need for theoretical surrogates. On
the other hand, I have argued that
as it has always been, the develop-
ment of compelling models of the
world around us must be based
upon the realization of a tasteful
distinction between those feature s
of a system which are really neces-
s a ry and those that are not. This
idea served as a cornerstone in
many of the great historical exam-
ples of multiscale modeling and
s e rves as an embodiment of
E i n s t e i n ’s dictum that “Things
should be made as simple as possi-
ble—but not simpler. ”
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Fi g u re 7. A junction be tween two disloca-

tions as modeled using the same theory of

e l a s t i c i ty first deve l o ped by Ro be rt Hoo ke

and deri ved using the ex pe ri m e ntal appara-

tus of Fi g. 4.
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