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 A B S T R A C T

Is a herd of wildebeest better thought of as a series of individual animals, each with its own glorious and 
unmanageable volition, or as a field of moving arrows? Are the morphogen gradients that set up the coordinate 
systems for embryonic anterior–posterior patterning a smooth and continuous concentration field or instead 
a chaotic collection of protein molecules each jiggling about in the haphazard way first described by Robert 
Brown in his microscopical observations of pollen? Is water, the great liquid ether of the living world, a 
collection of discrete molecules or instead a perfectly continuous medium with a density of ≈1000 kg/m3? In 
this article, I will argue that these questions pose a false dichotomy since there are many different and powerful 
representations of the world around us. Different representations suit us differently at different times and it 
is often useful to be able to hold these seemingly contradictory notions in our heads simultaneously. Indeed, 
mathematics is not only the language of representation, but often is also the engine of reconciliation of such 
disparate views. In a letter to Alfred Russel Wallace on 14 April 1869, Charles Darwin noted that Lord Kelvin’s 
‘‘views on the recent age of the world have been for some time one of my sorest troubles’’. Here, I will argue 
that one of the highest attainments of the scientific enterprise is a coherent picture of the world, a picture in 
which our stories about the geological age of the Earth are coherent with our stories of how whales populated 
the oceans, our understanding of the living jibes with our understanding of the inanimate, our insights into 
the dynamics of genes and molecular structures are consonant with our physical understanding of the laws 
of statistical physics. The underpinnings of such coherency are often best revealed when viewed through the 
lens of mathematics.
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‘‘Do I contradict myself?

Very well then I contradict myself,

(I am large, I contain multitudes.)’’

- Walt Whitman, Song of Myself, 51

E-mail address: phillips@pboc.caltech.edu.

1. Darwin and Kelvin reconciled

The natural sciences encounter the mystery of the world around us 
with an apparently limitless collection of ‘‘I wonder’’ questions. The 
age of the Earth is one such question that has tantalized and troubled 
people for millennia [1–3]. In parallel, others have wondered how 
the largest animals to have ever graced our planet moved from their 
ancestral life on land to ‘‘people’’ the world’s oceans [4–6]. The tools 
of science allow us to little by little pull back the shroud which hides the 
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scientific understanding of these mysteries. This special volume asks a 
deep question about the modern conception of the living world: ‘‘when 
should mathematical models be used in biology?’’ My plan is to extend 
the scope of that question by thinking more broadly about the role of 
mathematics in the natural sciences, illustrating that as in cases such as 
the Kelvin–Darwin debate, it is inevitable that seemingly quite distinct 
areas of science can and must be reconciled. Often, that reconciliation 
is a quantitative one based upon careful measurements and equally 
careful mathematical reasoning. The basis of such reconciliations in 
part derives from the philosophical requirement that quantitative data 
such as the age of the Earth or the timing of the loss of genes for 
enamel synthesis in whales demands quantitative models. The dictum 
of ‘‘quantitative data demands quantitative models’’, applies as much 
to the theory of the dynamics of the conversion of uranium to lead as 
to the theory of the molecular clock that ticks off the divergence of 
molecular sequences such as the pseudogenes found in the whale [7].

Let us dig a little more deeply into this question of quantitative 
representations and reconciliations, starting with more of the details on 
how Kelvin produced one of Darwin’s ‘‘sorest troubles’’. I do not believe 
it is controversial to argue that our understanding of biological evolu-
tion and geology need to be self consistent. In the 19th century, Lord 
Kelvin’s article ‘‘On the Age of the Sun’s Heat’’ made several attempts to 
work out the age of the Sun, exploring multiple hypotheses including 
imagining the Sun as a giant chemical furnace. Kelvin concluded on 
that faulty hypothesis that by burning fuel with an energy density 
of ≈107 J/kg (typical numbers for materials from foods to fuels): 
‘‘The chemical theory is quite insufficient, because the most energetic 
chemical action we know, taking place between substances amounting 
to the whole Sun’s mass, would only generate about 3000 years’ heat’’. 
He brought these same quantitative sensibilities to bear on the question 
of the age of the Earth. For the science of his time, his hypothesis 
making and corresponding mathematics were on the mark. However, 
because of missing out on both radioactivity and the fact that there 
is internal heat convection within the Earth, his estimates were way 
off — thus the ‘‘sore troubles’’ of Darwin [1,2,8]. More recently, these 
same kinds of questions played out in fascinating ways in the context 
of the Galapagos Islands of Ecuador which dates the oldest islands as 
roughly 4.5 million years old [9], but with the divergence time of the 
famed tortoises from their South American relatives even farther in the 
past [10].

My first thesis in this paper is that mathematics is often a powerful 
engine of reconciliation. One such reconciliation that we all take so 
for granted that we do not even notice it is analytic geometry, the 
marriage of space and number we carry out every time we make a 
graph. Often, these graphs are made in response to some measure-
ment such as the speed of a molecular motor as a function of ATP 
concentration [11–13] or the level of gene expression as a function 
of inducer concentration [14]. Hence, a framing of the question that 
is the basis of this present issue is to note that one of the paths to 
making scientific knowledge is by making measurements. I am defi-
nitely opposed to a narrow and one-dimensional view of the scientific 
process, sometimes dogmatically canonized in high-school caricatures 
as the scientific method. For example, there are times when simple 
unfettered observation, neither with an ambition for measurement or 
hypothesis making can still engender deep scientific insight [15]. Here, 
by way of contrast, I argue that the moment we make a measurement, 
we have invited mathematics in the front door. When we make graphs 
relating some variable 𝑥 to another variable 𝑦, we have made a full 
mathematical embrace of the unification of geometry and number 
canonized by Déscartes now many centuries ago, and the theories 
used to describe such data must respond in the language of space and 
number as well.

We can construct a long list of examples where in my opinion, 
quantitative biological data requires us to respond mathematically, 
not verbally. Already decades ago now, single-molecule biophysicists 
began to characterize both the load and ATP dependence of motor 
2 
velocities (for examples, see Refs. [11–13,16]), properties that are 
at the core of how these motors conspire to build structures such 
as the spindle that segregates chromosomes. In a different corner of 
biology, beautiful amputation experiments have been performed in 
which one flagellum of Chlamydomonas is removed with the result 
that the amputated flagellum starts to grow back while the uncut 
flagellum shrinks [17]! Amazing advances in fluorescence microscopy 
now make it possible to count the number of mRNAs in individual 
cells and from it to determine the mRNA distribution [18,19]. Here too 
such histograms are no longer the province of verbal descriptions and 
instead call for a theory of the transcriptome. Measurements change 
the conversation. The graphs, spreadsheets and databases of modern 
biology, whether of transcriptomes [20,21] and proteomes [22,23] or 
migratory patterns of marine mammals (see the Movebank Database 
and Happywhale for several examples), require us to respond in kind 
by developing quantitative hypotheses and using mathematics to work 
out their experimental implications.

There are many facets to the question of how to think about the 
use of mathematics in the study of the living. Here I will focus on 
the twin pillars of representation and reconciliation as the basis of 
thinking about the place of mathematics in the study of the living. 
In this paper I am going to focus on the ‘‘mathematics’’ side of the 
question. My sense is that there is so much we can learn by trying 
to better understand what mathematics is and does. As noted by 
mathematician Alain Connes in his article ‘‘Advice to the Beginner’’ in 
the Princeton Companion to Mathematics, ‘‘Mathematics is the backbone 
of modern science and a remarkably efficient source of new concepts 
and tools to understand the ‘reality’ in which we participate’’. As a 
tool for understanding the natural world, mathematics provides a way 
to sharpen our hypotheses and their implications [24]. In the case of 
Kelvin and Darwin, it took nearly a century for the different threads 
to come together in such a way that our quantitative understanding 
of the ages of the Earth and the Sun could be said to align with our 
quantitative understanding of the evolution of life on Earth.

Throughout this article I will make reference to many distinct 
examples, providing a quantitative catalog of sorts, with the hope that 
they will reveal the unexpected ways that ideas within mathematics 
are linked in inspiring ways. In turn, perhaps even more surprising, is 
when those ideas reach beyond their home in traditional mathematics 
to form the basis of insights in the natural sciences.

2. A language whose characters are triangles

Before fully embracing the animating question of ‘‘when should 
mathematical models be used in biology?’’ we first explore a vision 
of how we might think of the role of mathematics in the study of the 
natural world more broadly. Whenever we can, we will let mathemati-
cians speak for themselves. More than four centuries ago, Galileo was 
struck by the quantitative character of his discoveries such as that the 
incremental distance traveled by a falling body in successive instants 
goes as the odd integers [25–28]. That is, after one second, the object 
has fallen a distance 𝛥𝑠 ≈ 5 m, in the next second, the object falls a 
distance 3𝛥𝑠, in the next second the object falls a distance 5𝛥𝑠. With 
the allied insight that the sum of the first 𝑛 odd integers is 𝑛2, Galileo 
articulated the idea that we now know in the formula 
𝑠 = 1

2
𝑔𝑡2, (1)

a formula that is in modern pedagogy tied to the plug-and-chug phi-
losophy of elementary physics exams rather than the confluence of 
experimental acumen and surprising hypothesis making which char-
acterized its origins. Indeed, so moved was he by his various insights 
into the mechanics of the world, both celestial and terrestrial, Galileo 
asserted: ‘‘[The universe] cannot be read until we have learnt the 
language and become familiar with the characters in which it is written. 
It is written in mathematical language, and the letters are triangles, 
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Fig. 1. A language whose characters are triangles. (A) Newtonian orbits as a succession of triangles. In his Principia Mathematica (figure on the right), Newton 
proved Kepler’s law on equal areas being swept in equal times (i.e. 𝐴1 = 𝐴2) by showing the equality of triangles, two of which are shown in green and blue here. 
(B) Pascal’s triangle and the dynamics of binary choices. Diffusion of transcription factors along DNA can be thought of as a random walk with the probabilities 
of different positions after different times dictated by the entries in Pascal’s triangle. (C) The Laplacian denoted by an upside down triangle is used in many of 
the partial differential equations of mathematical physics including the heat equation shown here. The page from Joseph Fourier’s ‘‘Analytical Theory of Heat’’ 
offers his solution to the heat equation shown at the top using what we now call a Green function.
circles and other geometrical figures, without which means it is hu-
manly impossible to comprehend a single word’’. (Galileo Galileo Opere 
Il Saggiatore p. 171) With tongue in cheek, Fig.  1 shows just how right 
Galileo was with three disparate examples of the way in which triangles 
have figured centrally in the mathematical description of nature.

Similar sentiments to those articulated by Galileo were expressed 
centuries later in a now famous article by Eugene Wigner [29] in 
his piece on ‘‘The Unreasonable Effectiveness of Mathematics in the 
Natural Sciences’’ which highlights the many unexpected ways that 
mathematics insinuates itself into the way we think and talk about the 
world around us. Wigner tells a humorous story of the presence of 𝜋 in 
the famed Gaussian distribution 

𝑝(𝑥) = 1
√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 . (2)

Wigner admits that it is indeed remarkable that a number that quan-
tifies the ratio of the circumference and the diameter of a circle could 
make such an unexpected announcement in the context of a problem 
such as the distribution of some variable of interest such as human 
height.

Most of the time when using mathematics, we are fully aware that 
our treatment of the question of interest is approximate. In his won-
derful book ‘‘Mathematics: A Very Short Introduction’’, famed math-
ematician Timothy Gowers takes stock of the difference between the 
perception of mathematics and its reality [30]. ‘‘Most people think of 
mathematics as a very clean, exact subject. One learns at school to 
3 
expect that if a mathematical problem can be stated succinctly, then 
it will probably have a short answer, often given by a simple formula. 
Those who continue with mathematics ⋯ soon discover that nothing 
could be further from the truth... most of the time one must settle for 
a rough estimate instead. Until one is used to estimates, they seem 
ugly and unsatisfying. However, it is worth acquiring a taste for them, 
because not to do so is to miss out on many of the greatest theorems 
and most interesting unsolved problems of mathematics’’. The second 
main thesis of my article is that mathematical approximations are the 
lifeblood of the physical modeling of the natural world too. Fig.  2 
provides a glimpse into the power of mathematical representations and 
approximations. There we see the master craftsman Isaac Newton at 
work during one of the multiple times he computed ln (1 + 𝑥) for 
𝑥 = 1∕10. In particular, we see Newton approximate the logarithm (also 
the area under the curve 𝑦 = 1∕𝑥 we can see in the top left of the figure) 
using the series 

ln(1 + 𝑥) = 𝑥 − 𝑥2

2
+ 𝑥3

3
− 𝑥4

4
+ 𝑥5

5
+⋯ . (3)

For the special case of 𝑥 = 1∕10, this takes the beautiful form 

ln
(

1 + 1
10

)

= 1
10

− 1
200

+ 1
3000

− 1
40, 000

+ 1
500, 000

+⋯ . (4)

The two downward pointing triangular pyramids of numbers seen in the 
figure reveal Newton separately computing the positive and negative 
terms in his approximate answer out to more than 50 decimal places.
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Fig. 2. Representing functions by polynomials and series. (A) Newton’s ‘‘College Notebook’’ features a huge variety of examples of the explorer in action. Here 
he relates the area of the hyperbola and the logarithm to a series. The series for ln (1 + 𝑥) is highlighted and Newton chooses 𝑥 = 0.1 and proceeds to calculate 
an approximate value of ln (1 + 𝑥) to more than 50 decimal places. There are several examples of these calculations in the Newton papers including MS Add. 
4000 - 20r and MS Add. 3958 - 78v. (B) Three examples of replacing functions (blue) with corresponding second-order polynomials (red), meaning that each 
such function is entirely defined by three numbers!
3. Mapmaking: Representations and approximations

Timothy Gowers is not the only one who had deep insights into the 
always approximate way in which we represent the world around us. 
Virtuoso master craftsman of the imagination and the written word, 
the Argentinian Jorge Luis Borges, wrote a short story masterpiece that 
is only a paragraph long entitled ‘‘On Exactitude in Science’’ which 
reports on an empire in which the cartographer’s guild made maps 
that were the size of the empire. The occupants of Borges’ empire ‘‘saw 
that that vast map was useless’’. Like Borges, Picasso understood the 
importance of representation and approximation as evidenced by his 
eleven 1945 lithographs entitled ‘‘The Bull’’. These inspiring drawings 
celebrate abstraction and force us to wonder what are the minimalistic 
ways we can find of representing the super complex world we all 
wander around in. Mathematics is one of the most important ways we 
have of constructing maps that are not the size of the empire itself. Fig. 
2 shows how using only three numbers in the form of the coefficients 
𝑎0, 𝑎1 and 𝑎2 in the representation 𝑦 = 𝑎0+𝑎1𝑥+𝑎2𝑥2, we can represent 
the functions ln(1 + 𝑥), 𝑒𝑥 and 𝑠𝑖𝑛 𝑥, about which we will have more to 
say below.

One of our most compelling witnesses for the transformative power 
of mathematics for our thinking is William Thurston. In a series of in-
spiring essays and online posts (see Thurston on mathoverflow), he gave 
a beautiful rendering of his views on the nature of mathematics [31]. 
One way in which he crystallized his thinking might surprise many 
people — he took issue with the idea that mathematics is only about 
proving theorems [32] — rather, holding that mathematics is a way 
of thinking that formalizes the search for formal patterns. But perhaps 
more importantly, Thurston argues that the necessity of the mathemati-
cal mindset derives from the fact that: ‘‘The world does not suffer from 
an oversupply of clarity and understanding’’, and mathematics offers 
a path to both. One of the central arguments of this essay is the idea 
that how we represent biological systems can alter how we think about 
them. To see how different representations can alter our perceptions 
both conceptually and psychologically, we begin with a nonbiological 
childhood example of ‘‘long division’’. On this topic, Thurston notes: 
‘‘I remember as a child, in fifth grade, coming to the amazing (to me) 
4 
realization that the answer to 134 divided by 29 is 134/29 (and so 
forth). What a tremendous labor saving device. To me, ‘134 divided by 
29’ meant a certain tedious chore while 134/29 was an object with no 
implicit work’’. Let us really take Thurston seriously. I invite the reader 
to first stare at the representation 

29
)

134
(5)

and to think about how that feels and what it means to you. Like 
Thurston, to me, this expression immediately conjures labor and hard 
thinking and mental gymnastics and trial and error. For most of us 
this symbolic representation conveys an algorithm, a specific prescrip-
tion for creating a decimal representation of a particular fraction, 
namely, 4.620689655172413793..., . Alternatively, let us stare at the 
completely different 
134
29

. (6)

The latter representation is a fraction and either a position somewhere 
along the real number line, or taking the fraction 1/29 and stacking it 
up against itself 134 times.

As we muse on the relationship between mathematics and biology 
it is important that we embrace the approximate and at first blush, 
apparently contradictory ways in which we represent the world around 
us. The importance of our point of view is especially evident when we 
use maps such as that of Manhattan shown in Fig.  3. Few cities are 
so noted for such a spectacularly orderly Cartesian coordinate system 
with its orthogonal grid of avenues and streets. In that figure, we 
choose an origin of coordinates at the intersection of Avenue of the 
Americas and Central Park South. The blue vector points to an address 
somewhere on the East Side not far from Rockefeller University. We 
can defiantly turn our backs on the convenient Cartesian coordinates of 
the end point of that vector, instead deciding to specify all New York 
City addresses with polar coordinates (𝑟, 𝜃) as a bird might. There is 
nothing wrong with such a description, but it is decidedly inconvenient 
for human navigation and travel. A more serious example of the price 
we pay for approximate representations in our maps comes from a 
careful study of a world map. The geographical reality, despite the 
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Fig. 3. A map of Manhattan and a coordinate system gone terribly wrong. The 
Cartesian coordinate system is more natural in terms of the rectangular grid 
of streets. However, in either Cartesian or polar coordinates, the blue vector 
points to a destination and that vector is indifferent to the coordinates used 
to describe it.

evidence of what we see on this distorted planar representation, is that 
the area of the United States and Canada are both approximately 10 
million km2, while that of Greenland is roughly 5 times smaller at ≈ 2
million km2. That said, it is not a particularly nuanced take on such 
maps to call them ‘‘wrong’’ since for generations mathematicians have 
formulated theorems that they understand very well that tell us about 
the distortions that must be present if we adopt a planar representation 
of objects (such as continents) on a sphere. Holding a more refined idea 
of representation and approximation can guard us against falling into 
the knee-jerk and dismissive trap of referring to models of biological 
phenomena as ‘‘wrong’’, which is often neither helpful nor even true. 
Many of these models are ‘‘wrong’’ in a similar way that a Mercator 
Projection is wrong.

As an introduction to the simultaneous ambiguity and precision of 
different representations, Fig.  4 provides a gallery of examples. On a 
light note, we begin by thinking about the way we and others represent 
ourselves. It is intriguing to imagine that certain personality tests 
such as the Enneagram attempt to embody the entirety of a human’s 
personality in a single scalar parameter. The famed Briggs–Myers test 
used in some job interviews increases that complexity by considering 
a person as a four component vector. A much more nuanced, but 
perhaps biased view of ourselves might be provided either in the form 
of an autobiography or a biography, characterized by a roughly 106
dimensional vector of letters, punctuation marks and spaces.

An equally surprising and perhaps more successful representation 
shown in the second panel of the figure characterizes the distribution of 
prime numbers. This example is meant to both inspire our readers and 
to clarify the perhaps surprising realization of how often mathematics 
concerns itself with approximations. We can represent the primes by a 
function which increases by one every time we hit the next prime as 
we walk along the 𝑥-axis, a function sometimes denoted the staircase 
of primes and shown in red in the figure [33]. To put the problem 
in perspective, we do best to quote from a beautiful article by Don 
Zagier [34] who says ‘‘There are two facts about the distribution of 
prime numbers of which I hope to convince you so overwhelmingly 
that they will be permanently engraved in your hearts. The first is 
5 
that, despite their simple definition and role as the building blocks of 
the natural numbers, the prime numbers grow like weeds among the 
natural numbers, seeming to obey no other law than that of chance, 
and nobody can predict where the next one will sprout. The second 
fact is even more astonishing, for it states just the opposite: that the 
primes exhibit stunning regularity, that there are laws governing their 
behavior, and that they obey these laws with almost military precision’’. 
Some of that military precision is revealed statistically in the figure 
where we see how the mathematicians Legendre, Gauss and Riemann 
provided beautiful and approximate representations of the staircase of 
primes [33,35,36].

In the early 1800s, Joseph Fourier set himself the problem of doing 
nothing less for the study of heat than Newton before him had done 
for the study of motion. His resoundingly successful approach to these 
problems appeared in his ‘‘Théorie analytique de la chaleur’’ (Analytical 
Theory of Heat), a page of which was already shown in Fig.  1(C). 
As part of that enterprise, Fourier introduced ways of representing 
mathematical functions that we now refer to as Fourier series and 
Fourier integrals (or Fourier transforms). The representation shown in 
the figure both in equation and graphical form is that we can represent 
any sufficiently well behaved periodic function as a superposition of 
sines and cosines.

The next example that teaches us how to hold many representations 
of the same thing in our mind at one time is offered by the symmetry 
of an equilateral triangle. Here we opt for the minimal symmetry of 
rotations about the center, noting that the three operations of leaving 
the triangle alone (𝐼), rotating by 120 degrees (𝑅120) and rotating by 
240 degrees (𝑅240) leaves the triangle ‘‘unchanged’’. Further, as seen 
in the ‘‘multiplication table’’ we can take two operations in succession 
and this will leave us with an equivalent representation of the triangle. 
Such a closed set of operations is known as a group in mathematics, 
and the matrices in the figure show different ‘‘representations’’ of the 
group of rotations describing the symmetry of an equilateral triangle.

Our next example is the fascinating way in which we can arbitrarily 
deform a solid material and represent the geometry of that deformation 
by imagining a 3 × 3 symmetric matrix known as the strain tensor 
which lives at every point within the material. As seen in the figure, 
such a material can undergo a uniform volume expansion, a shear 
deformation or even a twist, and in all of these cases, the elements of 
the strain tensor tell us about the relative motions of material points 
within the materials.

Finally, in thinking about the motility of a parasite such as Toxo-
plasma gondii several different representations can be used simultane-
ously. First, the shape of the cell as measured using X-ray tomography 
can be written in terms of the so-called spherical harmonics. But 
then given that approximate representation of the shape, a second 
representation using the finite element method can be used to describe 
the spatial distribution and motion of the actin filaments that drive that 
motility [37]. What all of these examples share in common is that some 
part of the world is represented mathematically, and there are multiple 
distinct representations of the same thing.

The list shown in Fig.  4 only scratches the surface of the great 
diversity of mathematical representations that have been invented and 
discovered for representing the world around us. As seen above, the 
shapes of Toxoplasma cells can be represented using spherical harmon-
ics. Alternatively, the vibrations of the drums used by a drummer such 
as Chad Smith of the Red Hot Chili Peppers can be represented using 
Bessel functions. There are many legendary and intimidating names 
such as Fourier, Bessel, Legendre, Airy, Laguerre, Hermite, Chebyshev 
and many others each of which is attached to the special functions of 
mathematical physics [38]. Before the era of computers, these special 
functions were the subject of enormous tables [39], calculated labo-
riously using the kinds of tricks we saw in the hands of Newton in 
Fig.  2. But another way of thinking of these special functions with 
their intimidating names is as the ‘‘right’’ basis vectors for representing 
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Fig. 4. A variety of examples of representations that formalize patterns and compress topics that might otherwise be described with words. The first row shows 
different attempts to represent a human being in terms of vectors of different dimensions. The second row shows different treatments of the distribution of prime 
numbers. The third row shows the all-important representation of a sawtooth function as an example of much broader ‘‘Fourier decomposition’’ of functions. The 
next row captures the symmetries of an equilateral triangle by three symmetry operations that are closed under multiplication. The next-to-last row shows how 
we can use the strain tensor to describe the deformations of a solid material. Finally, we show two distinct representations of the shape and concentration field 
of actin in a parasite cell.
functions in situations with high symmetry such as cubes (Fourier), 
spheres (Legendre) and cylinders (Bessel).

The advent of the computer has been a complete game changer 
redefining what we consider a useful or viable representation, with 
6 
methods such as the finite element method and the composition of func-
tions represented in neural networks making it possible to reimagine 
what we mean by a representation. The special functions of classical 
mathematics and mathematical physics are beautiful and powerful, but 
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Fig. 5. A new generation of basis functions that are convenient to use on the computer. These basis functions fit squarely within the long history of mathematical 
approximation and interpolation [40] (A) One dimensional shape functions for representing a function 𝑓 (𝑥) in the form 𝑓 (𝑥) = ∑

𝑖 𝑓𝑖𝑁𝑖(𝑥). The two-dimensional 
example shows the generalization of tent functions for two-dimensional interpolation. (B) Representation of functions using composition of functions. Several 
approaches to constructing a ‘‘step function’’ using simple Fermi functions and ReLU functions are illustrated schematically. Given a ‘‘step function’’ we can 
construct a ‘‘delta function’’ in turn [41].
painfully restrictive in the geometries they consider. By way of contrast, 
with the advent of computational ‘‘shape functions’’ we now live in a 
world of very simple basis functions that permit a huge variety in the 
situations that can be treated. Writ large, these shape functions tell us 
that if we want to represent some vector field 𝐮(𝐱) we can do so by 
defining the field at ‘‘nodes’’ with value 𝐮𝑖 on the 𝑖th node and between 
the nodes, we represent the field strictly by interpolation of the form 

𝐮(𝐱) =
𝑁
∑

𝑖=1
𝐮𝑖𝑁𝑖(𝐱), (7)

where 𝑁𝑖(𝐱) is the shape function associated with the 𝑖th node. Fig. 
5(A) makes these ideas concrete by showing one- and two-dimensional 
examples of finite element shape functions. In the one-dimensional 
example, the shape functions 𝑁𝑖(𝑥) adopt a tent like shape centered 
on each node. If we wanted to represent a concentration field 𝑐(𝑥), 
we would do so as 𝑐(𝑥) =

∑𝑁
𝑖=1 𝑐𝑖𝑁𝑖(𝑥), where 𝑐𝑖 is the discretized 

value of the concentration at the 𝑖th node. To find the concentra-
tion elsewhere, the shape functions imply nothing more than linear 
interpolation between the nodes. Simple but highly effective!

So far we have seen that we can represent functions in many 
different ways. We can add up sines and cosines or add up shape 
functions that look like tents, and in many cases, both of them work! 
But now in keeping with this theme of the power unlocked by the 
computer in totally novel kinds of representations, we explore a second 
class of ‘‘simple’’ basis functions with an unprecedented power of 
‘‘representation’’ as shown in Fig.  5(B) [41–43]. In this discussion, we 
arrive with openness to the unexpected ways in which mathematics that 
appears to have nothing to do with questions about the natural world 
end up mattering very much to those endeavors. Machine learning is 
all the range, leaving no corner of the study of life untouched. And 
yet, at its core, one of its principal features is that of mathematical 
representation. In many cases when we use these modern algorithms, 
just beneath the surface are a series of ‘‘weights’’ that tell us how 
much we are going to ‘‘mix’’ basis functions like those shown in Fig. 
5(B). Those weights are numbers inside of those descriptions and those 
numbers describe mappings in exactly the same way that the tiny three-
dimensional vectors (0, 1,−1∕2), (1, 1, 1∕2) and (0, 1, 0) were introduced 
to capture the essences of 𝑙𝑛 (1+𝑥), 𝑒𝑥 and 𝑠𝑖𝑛 𝑥, respectively, as shown 
in Fig.  2 for small 𝑥.
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How does it work? As shown in Fig.  5(B), the functions that we use 
as the basis of our representations have traditionally assumed several 
forms [43]. One of them is known in physics as the Fermi function in 
honor of the way that Enrico Fermi showed how to construct a quantum 
mechanical theory of a monatomic gas. However, that functional form 
is of much wider significance and is given by 

𝜎(𝑥) = 1
1 + 𝑒−𝑥

(8)

with the characteristic sigmoidal shape seen in the figure. A second 
even simpler functional form is given by 
ReLU(𝑥) = 𝑥+ = max(𝑥, 0) (9)

which as shown in the figure is a function that rises linearly as long 
as 𝑥 is greater than zero. Though our language here is overly casual, 
for our present purposes the key insight is to recognize that we can 
construct steps and spikes out of either the Fermi or ReLU elements. 
For example, we can make a ‘‘spike’’ from 𝑤1𝜎(𝑥) + 𝑤2𝜎(𝑥 − 𝜖) where 
the ‘‘weights’’ are given by 𝑤1 = −𝑤2 = 1. In the context of some 
‘‘hidden layer’’ between an input vector 𝐱𝑘 and the output 𝐯𝑘 we have 
a nonlinear transformation built using the basis functions shown above 
an described by the equation 
𝒗𝑘 = 𝐹𝑘

(

𝒗𝑘−1
)

= ReLU
(

𝐴𝑘𝒗𝑘−1 + 𝒃𝑘
)

. (10)

This input–output function takes in the vector 𝒗𝑘−1, performs the linear 
transformation 𝐴𝑘𝒗𝑘−1 + 𝒃𝑘 and finishes by imposing the nonlinear 
transformation made by the ReLU function.

Nowhere that I know of is the magic of machine learning better 
explained than by Gilbert Strang who argues: ‘‘Here is the indispensable 
ingredient in the learning function 𝐹 . The best way to create complex 
functions from simple functions is by composition [43]’’. Just as the 
finite element representation of functions provides a powerful way 
of representing functions on beautifully complex geometries by using 
simple interpolation, a second kind of numerical representation based 
upon composition of functions is equally impressive in its simplicity 
and its reach. In particular, the composition of which Strang speaks is 
given by 
𝐹 (𝒗) = 𝐹𝐿

(

𝐹𝐿−1
(

…𝐹2
(

𝐹1(𝒗)
)))

. (11)

One of the most fascinating aspects of these representations is that we 
can use this composition of functions to create a spike (more formally 
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known as a delta function). The reason this is so important was long 
ago demonstrated in the context of the so-called Green function shown 
in Fig.  1(C) which tells us how to build up solutions by adding up the 
contributions due to individual spikes.

Here we have only scratched the surface of the myriad of different 
ways that we can represent our understanding of the world around us 
using mathematics. Always in the back of my mind, I hold dear both 
the Borges story and the Picasso lithographs, both focused on finding 
abstract, approximate and reduced descriptions of the world we see 
around us. When writing approximate mathematical descriptions of the 
natural world this is not naivete or ignorance or laziness, it is the height 
of sophistication. Maps the size of the empire are not helpful.

4. Success stories in biological representation

One of the delights of exploring the world from a mathematical 
perspective is both the unexpected origins of some of our most funda-
mental mathematical ideas and the almost bizarre way in which those 
ideas end up in places we would not expect. The great mathematicians 
Blaise Pascal and Pierre de Fermat carried on a prolonged correspon-
dence about seemingly trivial games of chance, only for us to realize 
centuries later that as noted by ET Jaynes, probability is the language of 
science [44]. The utter seriousness of the mathematics of these games 
of chance really came into its own in the hands of Pierre Simon de 
Laplace who was so confident in his estimates of the mass of Jupiter 
and Saturn he was willing to make a bet [45]. In particular, speaking 
of the estimate of a certain M. Bouvard on the mass of Saturn, Laplace 
notes: ‘‘His calculations give him the mass of Saturn equal to the 3512th 
part of that of the Sun. Applying to them my formulae of probability, I 
find that it is a bet of 11,000 against one that the error of this result is 
not 1/100 of its value, or that which amounts to almost the same - that 
after a century of new observations added to the preceding ones, and 
examined in the same manner, the new result will not differ by 1/100 
from that of M. Bouvard’’. Amazing (and he was right). In modern 
times, this mathematics has become the basis of much of the enterprise 
of exploring, comparing and understanding genomes.

Another apparently idle amusement in the early 1700s was a game 
one might have contemplated on a Sunday afternoon. As told by Euler 
in his paper that launched modern graph theory [46]: ‘‘The problem 
which I am told is widely known, is as follows: in Königsberg in Prussia, 
there is an island A, called the Kneiphof ; the river which surrounds it 
is divided into two branches, as can be seen in Fig.  6(A), and these 
branches are crossed by seven bridges, a, b, c, d, e, f and g. Concerning 
these bridges, it was asked whether anyone could arrange a route in 
such a way that he would cross each bridge once and only once’’. In a 
daring act of graph theory abstraction, Euler showed that try as they 
might, no one out on a Sunday afternoon stroll would ever succeed in 
meeting this challenge.

Roughly one hundred years later with the advent of an ever improv-
ing phenomenological understanding of the input–output properties of 
electrical circuits such as the schematic shown in Fig.  6(B), Gustav 
Kirchhoff articulated the laws of such circuits that now bear his name 
and with it extended the subject of graph theory to include the matrix 
tree theorem. Little could he know that a century and a half later those 
ideas would become what I think of as a candidate for one of the 
most profound unifying insights for the mathematicization of much of 
modern biology [47–49]. In particular, one of the ways we can frame 
many problems in biology is as questions of input–output functions of 
the form 
𝐯 = 𝐠(𝐱), (12)

where 𝐱 is some vector of ‘‘inputs’’, 𝐯 is some vector of outputs and 𝐠(𝐱)
is the input–output function itself. Interestingly, by linking ideas from 
statistical physics and graph theory, one can write down mathematical 
descriptions of response functions for situations ranging from enzyme 
action to the response of membrane proteins such as ligand-gated 
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ion channels and chemotaxis receptors to the genetic circuits that 
preside over much of cellular physiology such as the one shown in Fig. 
6(C) [50]. For the cases of interest here, these response functions can 
be written as rational functions of the form 

Response(𝑥) = 𝐹 (𝑥)
𝐺(𝑥)

=
𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯ 𝑎𝑁𝑥𝑁

𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 +⋯ 𝑏𝑀𝑥𝑀
(13)

requiring a theory of the coefficients 𝑎0, 𝑎1 ⋯ and 𝑏0, 𝑏1 ⋯ like those 
we saw in the very low-dimensional context in Fig.  2 where we rep-
resented quadratic polynomials as three-vectors of the form (𝑎0, 𝑎1, 𝑎2). 
Interestingly, graph theory gives a very clean and transparent way of 
determining the probabilities of each of the states (i.e. the nodes on the 
graph), and hence of the response function in Eq.  (13) [48,51].

More than a century of brilliant efforts on input–output functions 
have resulted in a variety of different models for the coefficients 𝑎0, 
𝑎1 ⋯ and 𝑏0, 𝑏1 ⋯. One of the classic case studies concerns the oxygen 
binding proteins myoglobin and hemoglobin. We know that the degree 
of saturation of the myoglobin and hemoglobin molecules in a sperm 
whale is a function of the oxygen partial pressure as it takes its last 
breath before a dive. More than 100 years ago, Archibald Hill wrote 
down a description of this binding that we now know as the Hill 
function which for hemoglobin he wrote as 

𝑝𝑏𝑜𝑢𝑛𝑑 (𝑥) =

(

𝑥
𝐾

)𝑛

1 +
(

𝑥
𝐾

)𝑛 , (14)

where 𝑥 is the concentration of O2 and 𝐾 is its allied dissociation 
constant. As Hill himself tells us, this functional form provides a sum-
mary of the occupancy of hemoglobin (the example he used, though it 
has been applied much more broadly). If we think of the huge topic 
of input–output functions in biology, then the kind of characteristics 
embodied in the Hill approach include a representation of leakiness 
(the amount of output even in the absence of input, 𝑝𝑏𝑜𝑢𝑛𝑑 (0)), dynamic 
range, 𝐸𝐶50 (the concentration at which the output reaches half its 
maximum, 𝐸𝐶50 = 𝐾) and the sensitivity as measured by the slope 
of the input–output curve (usually in logarithmic variables) at the mid-
point. It is instructive to hear Hill himself commenting on his thinking: 
‘‘My object was rather to see whether an equation of this type can 
satisfy all the observations, than to base any direct physical meaning 
on 𝑛 and 𝐾 [52]’’. He goes further in his 1913 paper noting [53] ‘‘In 
point of fact 𝑛 does not turn out to be a whole number, but this is due 
simply to the fact that aggregation is not into one particular type of 
molecule, but rather into a whole series of different molecules: so that 
Eq. (1) (our Eq.  (14)) is a rough mathematical expression for the sum of 
several similar quantities with 𝑛 equal to 1, 2, 3, 4 and possibly higher 
integers’’. We think it important to remember that the Hill function is a 
phenomenological description of equilibrium binding. In that sense, the 
measured binding curves of some macromolecule such as hemoglobin 
are an abstract representation of our understanding of the function of 
that molecule.

Hill’s work was just the beginning. One of the great advances of 
20th century biophysics was the Monod–Wyman–Changeux model of 
allostery [50,54–58] which gave its own description of the binding of 
oxygen to hemoglobin [59–61]. In this case, the average number of 
bound O2 molecules per hemoglobin can be written precisely in the 
form of Eq.  (12) as 

⟨𝑁([O2])⟩ = 4
𝑒−𝛽𝜀 [O2]

𝐾𝑅
(1 + [O2]

𝐾𝑅
)3 + [O2]

𝐾𝑇
(1 + [O2]

𝐾𝑇
)3

e−𝛽𝜀(1 + [O2]
𝐾𝑅

)4 + (1 + [O2]
𝐾𝑇

)4
. (15)

Here we use angular brackets ⟨thing⟩ to represent the average of the 
thing within the brackets, and hence, 𝐯 = ⟨𝑁([O2])⟩, is the average 
number of O2 molecules per hemoglobin and 𝐱 = [O2]. The allosteric 
model of hemoglobin recognizes two conformational states of the pro-
tein known as tense (𝑇 ) and relaxed (𝑅) and those two states each have 
their own 𝐾 s labeled by 𝐾  and 𝐾 , respectively.
𝑑 𝑇 𝑅



R. Phillips Seminars in Cell and Developmental Biology 175 (2025) 103646 
Fig. 6. The rise of graph theory and its biological implications. (A) Figure from Euler’s original paper on the problem of the bridges of Königsberg. (B) Current 
flow in circuits can be computed on the basis of Kirchhoff’s laws. (C) The decoration of a promoter by polymerase and attendant proteins such as transcription 
factors can be thought of as a graph with each node in the graph corresponding to one particular state of occupancy. Transitions between these states are the edges 
of the graph and associated with rate constants as shown in the figure. This part of the figure is inspired by many articles by J. Gunawardena and collaborators.
Fig. 7. Graph theory treatment of a triangular reaction network. (A) The states of the system and the rate constants describing the transitions between those 
states are defined. (B) The rooted spanning trees for all three nodes of the graph. Each row shows all the rooted spanning trees at that node as well as their 
statistical weights. (C) Fundamental ratio that reveals whether detailed balance is broken around the cycle.
The graph theory ideas of Kirchhoff’s matrix tree theorem, like the 
MWC model, are of great generality. All the states of a biochemical net-
work are nodes on the graph as shown in Fig.  6(C). For the special case 
of a triangular network, those nodes are shown in Fig.  7(A). The edges 
on the graph correspond to biochemical transitions between states. 
Often, the goal of studying such a biochemical network is to obtain the 
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steady-state probabilities. This is especially pertinent for biology since 
the conception of equilibrium states so prevalent in physics need here 
to be replaced by the more general notion of nonequilibrium steady 
states. The matrix tree theorem tells us how to write these probabilities 
in terms of the so-called rooted spanning trees as highlighted in Fig. 
7(B) and resulting in state probabilities. By using the statistical weights 
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𝑝𝐴 =
𝑘𝐵𝐶𝑘𝐶𝐴 + 𝑘𝐶𝐴𝑘𝐵𝐴 + 𝑘𝐶𝐵𝑘𝐵𝐴

𝑘𝐵𝐶𝑘𝐶𝐴 + 𝑘𝐶𝐴𝑘𝐵𝐴 + 𝑘𝐶𝐵𝑘𝐵𝐴 + 𝑘𝐴𝐵𝑘𝐶𝐵 + 𝑘𝐴𝐶𝑘𝐶𝐵 + 𝑘𝐶𝐴𝑘𝐴𝐵 + 𝑘𝐵𝐶𝑘𝐴𝐶 + 𝑘𝐴𝐵𝑘𝐵𝐶 + 𝑘𝐵𝐴𝑘𝐴𝐶
. (16)

Box I. 
that are obtained by summing the weights from each spanning tree as 
shown in Fig.  7(B), we can write the steady-state probability as in Box 
I. A more transparent rendering of this result is gotten by dividing top 
and bottom by the numerator resulting in 

𝑝𝐴 = 1

1 +
𝑘𝐴𝐵

(

𝑘𝐶𝐵+
𝑘𝐴𝐶 𝑘𝐶𝐵𝑘𝐵𝐴

𝑘𝐴𝐵𝑘𝐵𝐴
+𝑘𝐶𝐴

)

𝑘𝐵𝐴
(

𝑘𝐶𝐵+
𝑘𝐵𝐶 𝑘𝐶𝐴𝑘𝐴𝐵

𝑘𝐵𝐴𝑘𝐴𝐵
+𝑘𝐶𝐴

) +
𝑘𝐴𝐶

(

𝑘𝐵𝐶+
𝑘𝐴𝐵𝑘𝐵𝐶𝑘𝐶𝐴

𝑘𝐴𝐶𝑘𝐶𝐴
+𝑘𝐵𝐴

)

𝑘𝐶𝐴

(

𝑘𝐵𝐴+
𝑘𝐶𝐵𝑘𝐵𝐴𝑘𝐴𝐶

𝑘𝐶𝐴𝑘𝐴𝐶
+𝑘𝐵𝐶

)

. (17)

This result has several important features. First, as noted by examining 
Fig.  7(C), there is a very special ratio that measures the extent to which 
the biochemical circuit is driven out of equilibrium. Further, for the 
case in which 𝛾+∕𝛾− = 1, the terms with parentheses all cancel out and 
we recover the very simple functional form found when the network is 
in equilibrium.

In the remainder of this section, we explore several biological 
phenomena, each of which can be thought of as requiring theories of 
the coefficients in Eq.  (13). For our present purposes, we will specialize 
to the case in which the output is a scalar that describes the magnitude 
of some output function such as the level of gene expression or the 
amplitude of some signaling response. In the case of the activity of 
chemotaxis receptors, using the tools of statistical mechanics, we can 
write the activity of the molecular circuit of interest as 

𝑝𝑎𝑐𝑡𝑖𝑣𝑒(𝑐) =
(1 + 𝑐

𝐾𝐴
)

(1 + 𝑐
𝐾𝐴

) + 𝑒−𝛽𝛥𝜀(1 + 𝑐
𝐾𝐼

)
, (18)

where 𝐾𝐴 is the dissociation constant for binding in the active state 
and 𝐾𝐼  is the dissociation constant for binding in the inactive state. As 
it stands, as shown in the top left panel of Fig.  8, a more sophisticated 
variant of this equation [62] can be used to characterize a variety of 
chemotaxis mutants. But the description really reveals its power when 
we rewrite the equation as 

𝑝𝑎𝑐𝑡𝑖𝑣𝑒 =
1

1 + e−𝛽(𝜀𝐼−𝜀𝐴)
1 +

(

𝑐∕𝐾𝐼
)

1 +
(

𝑐∕𝐾𝐴
)

. (19)

which invites the interpretation 

𝑝𝑎𝑐𝑡𝑖𝑣𝑒 =
1

1 + 𝑒−𝛽𝐹𝑒𝑓𝑓
, (20)

where 𝐹𝑒𝑓𝑓  is an effective free energy that measures the relative free 
energy of the microscopic states of the system and is defined as 

𝐹𝑒𝑓𝑓 = 𝛥𝜖 + 𝑘𝐵𝑇 ln

(

1 + 𝑐
𝐾𝐼

)

(

1 + 𝑐
𝐾𝐴

) . (21)

Though we will not enter into all of the details here, a similar analysis 
can be performed in the context of inducible transcription factors as 
shown in the right panel of the figure.

Note that in both of the cases shown in Fig.  8, these are not fits! 
They are a reflection of real understanding [62,63]. This understanding 
implies not only that we think we know how to compute the input–
output properties of some molecular pathway, but further, that we 
know how to figure out which variables the cell cares about, as opposed 
to the variables manipulated by the person doing the experiment. If 
the reader gets nothing more out of this article than coming away with 
an appreciation for the deep insights that come from performing data 
collapses such as those shown in Fig.  8, the article will have been a 
success.
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5. Embracing the magic

The central argument of this paper is that mathematics is one of 
the most powerful languages we have for describing the living world. 
It allows us to vividly see things that in many cases would remain 
unseen. The fact that mathematics has been a huge part of the success of 
our description of the physical world is well known. But mathematics 
has already proven its unreasonable effectiveness in the study of the 
living world too [64–68]. Some of my own favorite Hall of Fame 
examples include: the use of the binomial theorem as a tool to uncover 
the mechanism of carboxysome segregation in cyanobacteria [69], the 
development of differential equation analyses of the antenna model of 
microtubule depolymerization by molecular motors [70], the use of 
dynamical systems theory to provide deep insights into the stability of 
genetic circuits and oscillators [71–73], the use of reaction–diffusion 
models to characterize spatial patterning [74] or the use of the math-
ematics of coin flips to describe the neutral evolution of eye color 
in flies [75]. One deeply troubling reaction to these kinds of models 
is a strange obsession with the times in which they are ‘‘wrong’’, 
with the even more bizarre urge to declare that if one does not use 
mathematics that confers a kind of immunity against making faulty 
hypotheses [76], a statement so at odds with history it barely deserves 
being countenanced by a response.

The mathematical frontiers of biology require buying into and 
embracing the magic that comes on the heels of forcing ourselves to 
represent our thinking in mathematical form. What is this magic? It 
is the revelation of surprising and unexpected connections [33,77]. 
Though this is an essay about biology, just consider this equation 
∞
∑

𝑛=1

1
𝑛𝑠

=
∏

𝑝 prime 
1

1 − 𝑝−𝑠
. (22)

To make sure there is no confusion about notation, let us expand both 
the sum and the product as
1
1𝑠

+ 1
2𝑠

+ 1
3𝑠

+ 1
4𝑠

+⋯

=
⎛

⎜

⎜

⎝

1
1 − 1

2𝑠

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1 − 1

3𝑠

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1 − 1

5𝑠

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1 − 1

7𝑠

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1 − 1

11𝑠

⎞

⎟

⎟

⎠

⋯ (23)

On the left side, we sum the reciprocals of all of the integers raised to 
the power 𝑠. On the right side, a fascinating product is formed involving 
the reciprocals of the prime numbers raised to the power 𝑠. Using a 
shockingly simple argument, Euler showed the equivalence of these two 
expressions [78,79] (see ‘‘Various observations about infinite series’’ 
by Euler as article 32 of the book by Sandifer). Why bring this up 
in a paper that is ostensibly about the study of living organisms? My 
reason is that the act of mathematicizing our thinking can have the 
very surprising side effect of revealing completely unexpected, even 
freakish connections such as that exhibited in the formula above. As 
mathematician David Mumford notes (see his post Math & Beauty & 
Brain Areas on his excellent Archive for Reprints, Notes, Talks, and 
Blog): ‘‘Such links suggest that the world has a hidden unity, previously 
concealed from our mortal eyes but blindingly beautiful if we stumble 
upon it’’.

None of us are surprised anymore by Descartes’ brilliant linkage 
between algebra and geometry. But every time we say something about 
the biological world using an x–y plot for example, we are tapping into 
the magic of a mathematical representation of our topic. However, in 
other cases, these hidden connections remain but a topic of conjecture. 
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Fig. 8. A gallery of natural variables. Chemotaxis receptors respond to chemoattractants such as methyl aspartate (MeAsp). Different mutants of the receptors 
have different activity curves, though all such curves fall onto one master curve when plotted with respect to their natural variable as explained in the text. 
Similarly, the induction of a gene by the inducer IPTG depends upon control variables such as the copy number of the inducible transcription factor or the 
strength of binding of that transcription factor to the DNA. However, when plotted with respect to their natural variables as explained in the text, there is a 
universal response.
Mathematics is at peace with conjectures and some of the most famous 
problems for centuries have been precisely about such conjectures. In 
our own lifetimes some of the most famous ones such as Fermat’ last 
theorem or the Poincare conjecture have been settled. Others such as 
the Goldbach conjecture, the twin-prime conjecture or the Riemann 
hypothesis remain unresolved. When applied to the natural world our 
mathematical conjectures become a call to experimental action, telling 
us not only about useful new representations of our problems, but also 
suggesting new directions in the laboratory.

To my mind, one of the biggest blights on modern science is the 
supposed dichotomy between different fields and the constant attempts 
to defend one field over another, or worse yet, to convince us that some 
particular approach is the most important or most useful in the study 
of the living. Far more important than the dichotomy between different 
fields is their coherency and their capacity to demand coherency. This 
special issue is focused on the ways in which mathematical models will 
help us better understand the nature of the living. My answer to the 
question behind all the articles in this special issue is: we should use 
all the tools at our disposal all the time to try to answer interesting 
questions about the natural world. However, I also hold true to the 
idea that our models and theories need to offer a proportional response 
to our measurements. If people are going to go to all the trouble of 
providing us with 20,000 dimensional vectors (i.e. transcriptomes), 
then we better find a way to make a quantitative theory of those 20,000 
dimensional vectors. But in the spirit of the famed quote from John F 
Kennedy, let us not only consider what mathematics and physics can do 
for biology, but also what biology can do for them. History has shown 
again and again that whenever those fields turn themselves to new 
domains of enquiry (such as Fourier’s incredibly productive analysis of 
the phenomena of heat which fell outside of the purview of Newtonian 
mechanics), they are always enriched not only with fascinating new 
problems, but invariably with new principles. My hope and sense is that 
the study of the nature of life using the language of mathematics will 
catapult both biology and physics forward in the best of ways revealing 
both new phenomena and new principles.
11 
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