
Supplemental Material

S1. Alignment of promoter sequences

Figure S1 shows the alignment of the promoter regions of the E. coli wild isolates

sequenced.

Figure S1. Promoter alignment of the sequenced strains. Highlighted bases di↵er
from the consensus sequence on top. Colored boxes indicate the relevant binding sites
for the Lac repressor (red), CRP (green) and RNAP (blue)

S2. 16S rRNA sequences

To confirm the identity of the strains we analyzed 490 bp of the 16S rRNA. Figure

S2 shows a schematic representation of the sequences. Colored basepairs represent

mutations with respect to the consensus sequence. All sequences were found to be

�99% similar to the reference E. coli MG1655 sequence.

Figure S2. 16S sequence alignment. Black lines represent mutations with respect to
the consensus sequence.
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S3. Model parameters

Table S1 shows the values of the reference parameters for MG1655 obtained from

di↵erent sources.

Table S1. Reference parameters for the strain MG1655.
Parameter Symbol Value Units Reference

O1 repressor operator binding energy �"O1
r -15.3 kBT [1]

O2 repressor operator binding energy �"O2
r -13.9 kBT [1]

O3 repressor operator binding energy �"O3
r -9.7 kBT [1]

Repressor copy number R 20 tetramer/cell Measured

Activator binding energy �"a -13 kBT [2, 3]

Number of active activators A 55 active molecules/cell [2]

RNAP binding energy for the lac promoter �"p -5.35 kBT [4]

RNAP copy number P 5500 active molecules/cell [5]

Number of nonspecific binding sites NNS 4.6⇥ 106 - GenBank: U00096.2

Looping free energy between O1 �O2 �Floop(l12) 4.7 kBT Fit to data from [6, 7]

Looping free energy between O1 �O3 �Floop(l13) 9 kBT [8]

Looping free energy between O2 �O3 �Floop(l23) 5.2 kBT Fit to data from [6, 7]

RNAP-CRP interaction energy �"ap -5.3 kBT [9, 2]

Lac repressor - CRP interaction energy �"ar -5.5 kBT Fit to data from [6, 7]

S4. Derivation of the repression level equation

Thermodynamic models of gene regulation consider that the gene expression level is

proportional to the probability of finding the RNAP bound to the promoter region

[3, 10, 11, 12]. This biologically simplistic but powerful predictive tool allows us to

study the e↵ect of di↵erent transcription factors in di↵erent promoter architectures. In

the case of the wild-type (WT) lac operon promoter architecture, where we have two

di↵erent transcription factors involved in the regulation - the activator CRP and the

Lac repressor.

The Lac repressor molecule, when bound to the main operator O1, blocks the poly-

merase from binding to the promoter region, stopping the transcription of the operon.

CRP plays a double role in the regulation of the operon, activating transcription by re-

cruiting RNAP to the promoter region, and as several experiments have shown, enhanc-

ing repression by facilitating the formation of the upstream loop between the O1 � O3

operators [13, 14, 15]. Enhanced repression by CRP is due to pre-bending the DNA

between 90� and 120� [16], thereby increasing the probability of looping by bringing the

lac operators closer together. The model captures this e↵ect by adding an interaction

term �"ar in the states where CRP is bound and the Lac repressor forms a loop between

operators O1 and O3.
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Assuming quasi-equilibrium conditions for the relevant processes involved in

transcription, we can use the Boltzmann distribution to compute the probability of

finding the RNAP bound to the promoter region, obtaining

GE _
P

NNS
e���"p

(
1 +

2R
NNS


e���"O2

r
+ e���"O3

r
⇣
1 +

A
NNS

e���"a
⌘�

+

4R(R�1)

N2
NS

e
��

⇣
�"O2

r +�"O3
r

⌘ ⇣
1 +

A
NNS

e���"a
⌘
+

A
NNS

e
��

⇣
�"a+�"ap

⌘ ✓
1 +

2R
NNS

e���"O2
r

◆)

Ztot
,

(1)

where GE stands for gene expression, Ztot represents the partition function for the

states shown in Figure 2 in the main text. The presence of CRP in the promoter re-

gion is not assumed to influence the kinetics of promoter escape, only the probability

of RNAP binding. Tagami and Aiba [17] found that the role of CRP in the activation

of the lac operon is restricted to the steps up to the formation of the open complex,

in other words, the interaction between CRP and the RNAP are not essential for tran-

scription after the formation of the open complex. In our model we capture this e↵ect

by including an interaction energy between CRP and the RNAP, �"ap, that has been

measured experimentally [2, 9].

In the activation mechanism proposed by Tagami and Aiba [17] CRP bends the

DNA and RNAP recognizes the CRP-DNA bent complex. This model would imply that

RNAP makes additional contacts with the upstream region of the promoter. Based on

this model we assume that the presence of the Lac repressor bound on the O3 operator

and CRP bound on its binding site (without forming a DNA loop between O1 � O3)

allows transcription to occur. Since the RNAP cannot contact the upstream region of

the promoter because of the presence of the repressor, the interaction energy between

CRP and RNAP is not taken into account in these states.

In order to quantify the influence of Lac repressor on expression levels, we measure

repression, which is the fold change in gene expression as a result of the presence of

the repressor. This metric has the benefit of normalizing to a strain with an identical

genetic background, thus isolating the role of the repressor in regulation. This relative

measurement is defined as

repression ⌘ gene expression (R = 0)

gene expression (R 6= 0)
, (2)

where R is the Lac repressor copy number. Computing this we obtain
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This can be further simplified, resulting in
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the expression we use to predict the repression level of the natural isolates.

S4.1. Estimating the number of active CRP molecules

The Catabolite Activator Protein, also known as cAMP-receptor protein (CRP) is a

global transcriptional regulator in E. coli [18]. As it exists in two forms, the cAMP-CRP

complex which is considered as the active state and the inactive state without cAMP

bound, the number of active molecules is a function of the cAMP cellular concentration.

From a thermodynamic perspective we can estimate this number as

[CRP � cAMP ] = [CRP ]
[cAMP ]

KcAMP + [cAMP ]
, (5)

where [CRP � cAMP ] is the concentration of active proteins, [CRP ] is the total con-

centration of this transcription factor, [cAMP ] is the cellular concentration of cAMP

and KcAMP is the in vivo dissociation constant of the cAMP-CRP complex.

Kuhlman et al. [2] reported the values for the CRP concentration ([CRP ] ⇡ 1500

nM) and the dissociation constant (KcAMP = 10 µM). Epstein et al. [19] measured

the intracellular cAMP concentration in di↵erent media, including minimal media with

glucose and casamino acids ([cAMP ] ⇡ 0.38µM). Using these values we calculate the

number of active CRP molecules as

A = 1500

✓
0.38µM

10µM + 0.38µM

◆
⇡ 55

molecules

cell
, (6)

where we used the rule of thumb that 1 nM⇡ 1molecule
E. coli

. This rule of thumb is enough

for our predictions since the repression level is predicted to be largely insensitive to the

activator copy number as shown in Figure 3 in the main text.

S4.2. Estimating the number of available RNAP

In order to estimate the available number of RNAP molecules, we appeal to the work

of Klumpp and Hwa [5] where they calculated the total number of RNAP molecules

as well as the fraction of these molecules available for transcription as a function of

the growth rate. Figure S3 shows the number of available RNAP as a function of the

doubling cycles per hour.

Using these results, we estimate 5500 RNAP
cell

for cells grown in 0.6% glucose + 0.2%

casamino acids (with a doubling time of ⇡ 30 min.). We interpolate between these data

to obtain the RNAP copy number for each of the natural isolates.
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Figure S3. Adapted from Klumpp and Hwa [5]. RNAP available for transcription as
a function of the number of doubling cycles per hour.

S4.3. Estimating CRP’s Binding energy

The activator binding energy was estimated as reported by Bintu et al. [3]. Using the

reported dissociation constants from the specific binding site, KNS
CRP , and nonspecific

sequences, KS
CRP , we can compute the binding energy as

�"a
kBT

= ln

✓
KNS

CRP

KS
CRP

◆
. (7)

Bintu et al. also reported the following values for both dissociation constants

(KNS
CRP = 104 nM and KS

CRP = 0.02 nM), which gives us �"a ⇡ �13 kBT .

S5. Fitting parameters and testing the model

The three unknown parameters, the looping energies for the O1 � O2 and O3 � O2

loops and the decrease in the looping free energy when CRP and Lac repressor are

bound at the same time, were inferred from the classic work of Oehler et al. [7, 6].

In these papers Oehler and collaborators measured the repression level of di↵erent lac

operon constructs with either mutagenized or swapped Lac repressor binding sites while

changing the repressor copy number. Because they reported the mutagenized sequences

for the repressor binding sites we used the sort-seq derived energy matrix to calculate

the residual energies of these modified binding sites. The three unknown parameters

were fitted by minimizing the mean square error of the measurements,

f(x⇤)  f(x) 8 x 2 R (8)

f(x⇤) =

(
min

NX

i=1

�
Yi (x)� Ȳi

�2

N
: x 2 R

)
(9)
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where Yi is the predicted value, Ȳi is the experimental repression level for each of the

constructs measured by Oehler et al. and x are the fitting parameters. Using this

method we fit for the values of �Floop(l
13

), �Floop(l
23

), and �"ar using the data from

references [7, 6]. The three parameter values are listed in Table S1.

S6. Testing the model with di↵erent data

We used the model to predict the repression level of constructs reported by Oehler et al.

[7, 6] and Müller et al. [20]. Figure S4 shows the comparison of the model predictions

and the experimental results. The calculations were done using the model whose states

are depicted in Figure 2, assuming a wild type repressor copy number of 10 repressors

per cell, and calculating all the residual binding energies with the Lac repressor sort-seq

derived energy matrix.
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Figure S4. Comparing the experimental data from Oehler et al. [7, 6] and Müller et
al. [20] with the model prediction.

S7. Error propagation

To calculate a confidence interval of the model, we used the law of error propagation [21]

where we compute the contribution of the uncertainty in parameters to the uncertainty

of the repression level as

�repression =

vuutX

i

✓
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@xi

◆2

�2
i , (10)
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where xi represents each of the parameters of the model (binding energies, transcription

factors copy number, looping energies, etc.) and �i represents the standard deviation of

each of these parameters.

Paradoxically, calculating the contribution of each parameter to the uncertainty of

the model requires “certainty” about the variability of these parameters. This means

that we can only include the uncertainty of the parameters whose uncertainty mea-

surements represents the natural variability in its value and not mostly error due to

experimental methods. Table S2 lists the uncertainty of the parameters considered in

this analysis given that the in vivo error was reported in the listed bibliography.

Table S2. Standard deviation of the parameters considered for the calculation of the
confidence interval.

Parameter Deviation Units Reference

R Measured for each strain LacI/cell -

�"O1

r ±0.2 kBT [1]

�"O2

r ±0.2 kBT [1]

�"O3

r ±0.1 kBT [1]

�"a ±1.1 kBT [2]

We used a customized Mathematica script (Wolfram Research, Champaign, IL) to

calculate the partial derivatives. Figure S5 reproduces Figure 7 from the main text,

including the predicted standard deviation.
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Figure S5. Comparison of the model prediction with the experimental measurement.
Vertical error bars represent the standard deviation of at least three independent
measurements each with three replicates. Horizontal error bars represent the 68%
confidence interval of the model calculated by using the law of error propagation with
the parameter uncertainties listed in Table S2.

S8. Measuring repression level decouples growth rate e↵ects in translation

from e↵ects in transcription

From previous work it was determined that one key regulatory parameter that is

influenced by growth rate is the RNAP copy number [22]. However other cellular

parameters such as ribosomal copy number and the dilution of mRNA concentration

due to growth are also impacted. These parameters will influence protein copy number

by influencing the e�ciency of mRNA translation. In a very simple dynamical model of

transcription, we can imagine that the change in the number of messenger RNA (mRNA)

is proportional to the transcription rate and the degradation rate of the mRNA,

dmRNA

dt
= kt · pbound � �mRNA ·mRNA, (11)

where kt is the maximum transcription rate when the operon is fully induced and pbound
is the probability of finding the RNAP bound to the relevant promoter, as derived using

statistical mechanics, �mRNA is the mRNA degradation rate and mRNA is the number

of transcripts of the gene per cell. This equation assumes that the most relevant e↵ect

for mRNA depletion is the degradation of the transcripts, compared with the dilution

e↵ect due to the growth rate. It is known that this degradation term is not strongly

a↵ected by the growth rate [22], so we assume that this term remains constant. In steady
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state, when cells are in the exponential growth phase, the concentration of mRNA is

mRNA =
kt · pbound
�mRNA

. (12)

The Miller assay (LacZ assay) quantifies the level of LacZ expression, and we assume that

the number of proteins is directly proportional to the mRNA copy number. Due to the

relatively fast doubling time we assume that dilution is the relevant e↵ect diminishing

protein copy number, leading us to

dLacZ

dt
= � ·mRNA� µ · LacZ, (13)

where � is the proportionality constant of how many proteins per mRNA are produced,

µ is the growth rate, and LacZ is the �-galactosidase enzyme copy number. � can be

a function of the growth rate due to the changes in the number of available ribosomes,

but still we argue that measuring the repression level should reduce the importance of

these e↵ects. If we substitute Equation 12 into 13 and assume steady state we obtain

LacZ =
� · kt · pbound
µ · �mRNA

. (14)

By computing the repression level as measured in the LacZ assay we obtain

repression =
LacZ(R = 0)

LacZ(R 6= 0)
=

pbound(R = 0, P )

pbound(R 6= 0, P )
. (15)

In this ratio �, kt, µ, and �mRNA cancel each other leaving only a ratio of pbound’s.

S9. Related microbial species lac operon phylogenetic tree
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Figure S6. lac operon phylogenetic tree of diverse species with a similar lac promoter
architecture done with the Neighbor-Joining algorithm. The scale bar represents the
relative number of substitutions per sequence.

S10. Epistasis Analysis

Epistasis can be defined as the e↵ect of mutations on the phenotypes caused by

other mutations. Our theoretical model explicitly ignores possible interactions between

mutations when calculating the transcription factor binding energies with the sort-seq

energy matrices; but the same cannot be directly assumed for the phenotypic output.

As shown in Figure 3 in the main text, the phenotypic response depends on the model

parameters in a highly non-linear way. Given this non-linear relation we decided to

perform an epistasis analysis on the data, where we defined epistasis as [23, 24]

" = Wxy �Wx ·Wy (16)

where " is the epistasis, Wxy is the repression value for the double mutant at positions

x and y normalized to the reference MG1655 repression level, and Wx and Wy are the

repression values for the single mutants in their respective positions also normalized

to the same reference value. This multiplicative epistasis model indicates the type of

interaction between mutations; " = 0 indicates no epistasis, " < 0 indicates antagonistic

epistasis and " > 0 indicates synergistic epistasis [23].

We calculated this epistasis metric for all the double mutants of the 134 base-pairs

considered in the regulatory region of the lac operon including the O2 downstream

repressor binding site. For each pair of bases we calculated the epistasis for the two nu-

cleotides with the biggest change with respect to our reference strain MG1655. Figure

S7 shows the distribution of the epistasis values for the 8911 possible double mutants.

As we initially assumed, most of the base-pairs do not interact with each other. Only

0.5% of the double mutants have an " < �0.5, and 1% have an " > 0.5.
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Figure S7. Epistasis level (Equation 16) distribution of all the possible double
mutants of the lac operon regulatory region.

In order to find the base-pairs in the regulatory region predicted to have the biggest

interactions Figure S8 shows the heat-map of the " values. It is interesting to note that

the few regions predicted to have significant epistasis fall mostly within a single binding

site, i.e., basically no interaction is predicted between mutations located in di↵erent

binding sites. The RNAP binding site is predicted to have antagonistic epistasis (" < 0),

while the CRP binding site is predicted to have strong synergistic epistasis (" > 0). The

O3 binding site also presents synergistic interactions. This predicted epistasis can be

attributed to the highly non-linear dependence of the repression level on these binding

energies. Since, for example, the linear regime of the O1 binding energy extends over a

larger range of values (Figure 3 on the main text) two mutations are unable to move this

parameter to the non-linear region and no epistasis would be expected at this binding

site. Interestingly the only interactions between di↵erent binding sites are predicted to

be between CRP and RNAP.
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Figure S8. Epistasis level heat-map for all the possible double mutants. The binding
sites positions are indicated with the lateral color bars.
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