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A Induction of Simple Repression with Multiple Promoters or
Competitor Sites

We made the choice to perform all of our experiments using strains in which a single copy of our simple
repression construct had been integrated into the chromosome. This stands in contrast to the methods
used by a number of other studies (Oehler et al. 1994; Setty et al. 2003; Oehler et al. 2006; Daber et al.
2009; Daber et al. 2011; Vilar and Saiz 2013; Shis et al. 2014; Sochor 2014), in which reporter constructs
are placed on plasmid, meaning that the number of constructs in the cell is not precisely known. It is also
common to express repressor on plasmid to boost its copy number, which results in an uncertain value for
repressor copy number. Here we show that our treatment of the MWC model has broad predictive power
beyond the single-promoter scenario we explore experimentally, and indeed can account for systems
in which multiple promoters compete for the repressor of interest. Additionally, we demonstrate the
importance of having precise control over these parameters, as they can have a significant effect on the
induction profile.

A.1 Chemical Potential Formulation to Calculate Fold-Change

In this section, we discuss a simple repression construct which we generalize in two ways from the scenario
discussed in the text. First, we will allow the repressor to bind to NS identical specific promoters whose
fold-change we are interested in measuring, with each promoter containing a single repressor binding site
(NS = 1 in the main text). Second, we consider NC identical competitor sites which do not regulate the
promoter of interest, but whose binding energies are substantially stronger than non-specific binding
(NC = 0 in the main text). As in the main text, we assume that the rest of the genome contains NNS

non-specific binding sites for the repressor. As in Appendix , we can write the fold-change Eq. (2) in the
grand canonical ensemble as

fold-change =
1

1 + �re���"RA
, (A1)

where �r is the fugacity of the repressor and �"RA represents the energy difference between the repressor’s
binding affinity to the specific operator of interest relative to the repressor’s non-specific binding affinity
to the rest of the genome.

We now expand our definition of the total number of repressors in the system, Rtot, so that it is
given by

Rtot = RS +RNS +RC , (A2)

where RS , RNS , and RC represent the number of repressors bound to the specific promoter, a non-specific
binding site, or to a competitor binding site, respectively. The value of RS is given by

RS = NS

�re���"RA

1 + �re���"RA
, (A3)

where NS is the number of specific binding sites in the cell. The value of RNS is similarly give by

RNS = NNS

�r

1 + �r

, (A4)

where NNS is the number of non-specific sites in the cell (recall that we use NNS = 4.6⇥ 106 for E. coli),
and RC is given by

RC = NC

�re���"C

1 + �re���"C
, (A5)

where NC is the number of competitor sites in the cell and �"C is the binding energy of the repressor to
the competitor site relative to its non-specific binding energy to the rest of the genome.

To account for the induction of the repressor, we replace the total number of repressors Rtot in
Eq. (A2) by the number of active repressors in the cell, pA(c)Rtot. Here, pA denotes the probability that
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the repressor is in the active state (Eq. (4)),

pA(c) =

⇣
1 + c

KA

⌘n

⇣
1 + c

KA

⌘n

+ e���"AI

⇣
1 + c

KI

⌘n . (A6)

Substituting in Eqs. (A3)-(A5) into the modified Eq. (A2) yields the form

pA(c)Rtot = NS

�re���"RA

1 + �re���"RA
+NNS

�r

1 + �r

+NC

�re���"C

1 + �re���"C
. (A7)

For systems where the number of binding sites NS , NNS , and NC are known, together with the binding
affinities �"RA and �"C , we can solve numerically for �r and then substitute it into Eq. (A1) to obtain a
fold-change at any concentration of inducer c. In the following sections, we will theoretically explore the
induction curves given by Eq. (A7) for a number of different combinations of simple repression binding
sites, thereby predicting how the system would behave if additional specific or competitor binding sites
were introduced.

A.2 Variable Repressor Copy Number (R) with Multiple Specific Binding
Sites (NS > 1)

In the the main text, we consider the induction profiles of strains with varying R but a single, specific
binding site NS = 1 (see Fig. 5). Here we predict the induction profiles for similar strains in which R
is varied, but NS > 1, as shown in Fig. A1. The top row shows induction profiles in which NS = 10
and the bottom row shows profiles in which NS = 100, assuming three different choices for the specific
operator binding sites given by the O1, O2, and O3 operators. These values of NS were chosen to mimic
the common scenario in which a promoter construct is placed on either a low or high copy number
plasmid. A few features stand out in these profiles. First, as the magnitude of NS surpasses the number
of repressors R, the leakiness begins to increase significantly, since there are no longer enough repressors
to regulate all copies of the promoter of interest. Second, in the cases where �"RA = �15.3 kBT for
the O1 operator or �"RA = �13.9 kBT for the O2 operator, the profiles where NS = 100 are notably
sharper than the profiles where NS = 10, and it is possible to achieve dynamic ranges approaching 1.
Finally, it is interesting to note that the profiles for the O3 operator where �"RA = �9.7 kBT are nearly
indifferent to the value of NS .

A.3 Variable Number of Specific Binding Sites NS with Fixed Repressor
Copy Number (R)

The second set of scenarios we consider is the case in which the repressor copy number R = 260 is held
constant while the number of specific promoters NS is varied (see Fig. A2). Again we see that leakiness
is increased significantly when NS > R, though all profiles for �"RA = �9.7 kBT exhibit high leakiness,
making the effect less dramatic for this operator. Additionally, we find again that adjusting the number
of specific sites can produce induction profiles with maximal dynamic ranges. In particular, the O1 and
O2 profiles with �"RA = �15.3 and �13.9 kBT , respectively, have dynamic ranges approaching 1 for
NS = 50 and 100.

A.4 Competitor Binding Sites

An intriguing scenario is presented by the possibility of competitor sites elsewhere in the genome. This
serves as a model for situations in which a promoter of interest is regulated by a transcription factor
that has multiple targets. This is highly relevant, as the majority of transcription factors in E. coli have
at least two known binding sites, with approximately 50 transcription factors having more than ten
known binding sites (Rydenfelt et al. 2014b; Schmidt et al. 2015). If the number of competitor sites
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Figure A1. Induction with variable R and multiple specific binding sites. Induction profiles
are shown for strains with variable R and �"RA = �15.3, �13.9, or �9.7 kBT . (A-C) The number of
specific sites, NS , is held constant at 10 as R and �"RA are varied. (D-F) NS is held constant at 100 as
R and �"RA are varied. These situations mimic the common scenario in which a promoter construct is
placed on either a low or high copy number plasmid.

Figure A2. Induction with variable specific sites and fixed R. Induction profiles are shown for
strains with R = 260 and (A) �"RA = �15.3 kBT , (B) �"RA = �13.9 kBT , or (C) �"RA = �9.7 kBT .
The number of specific sites NS is varied from 1 to 500.

and their average binding energy is known, however, they can be accounted for in the model. Here, we
predict the induction profiles for strains in which R = 260 and NS = 1, but there is a variable number
of competitor sites NC with a strong binding energy �"C = �17.0 kBT . In the presence of such a
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strong competitor, when NC > R the leakiness is greatly increased, as many repressors are siphoned into
the pool of competitor sites. This is most dramatic for the case where �"RA = �9.7 kBT , in which it
appears that no repression occurs at all when NC = 500. Interestingly, when NC < R the effects of the
competitor are not especially notable.

Figure A3. Induction with variable competitor sites, a single specific site, and fixed R.
Induction profiles are shown for strains with R = 260, Ns = 1, and (A) �"RA = �15.3 kBT for the O1
operator, (B) �"RA = �13.9 kBT for the O2 operator, or (C) �"RA = �9.7 kBT for the O3 operator.
The number of specific sites, NC , is varied from 1 to 500. This mimics the common scenario in which a
transcription factor has multiple binding sites in the genome.

A.5 Properties of the Induction Response

As discussed in the main body of the paper, our treatment of the MWC model allows us to predict
key properties of induction responses. Here, we consider the leakiness, saturation, and dynamic range
(see Fig. 1) by numerically solving Eq. (A7) in the absence of inducer, c = 0, and in the presence of
saturating inducer c ! 1. Using Eq. (A6), the former case is given by

Rtot

1

1 + e���"AI
= NS

�re���"RA

1 + �re���"RA
+NNS

�r

1 + �r

+NC

�re���"C

1 + �re���"C
, (A8)

whereupon substituting in the value of �r into Eq. (A1) will yield the leakiness. Similarly, the limit of
saturating inducer is found by determining �r from the form

Rtot

1

1 + e���"AI

⇣
KA
KI

⌘2
= NS

�re���"RA

1 + �re���"RA
+NNS

�r

1 + �r

+NC

�re���"C

1 + �re���"C
. (A9)

In Fig. A4 we show how the leakiness, saturation, and dynamic range vary with R and �"RA in
systems with NS = 10 or NS = 100. An inflection point occurs where NS = R, with leakiness and
dynamic range behaving differently when R < NS than when R > NS . This transition is more dramatic
for NS = 100 than for NS = 10. Interestingly, the saturation values consistently approach 1, indicating
that full induction is easier to achieve when multiple specific sites are present. Moreover, dynamic range
values for O1 and O2 strains with �"RA = �15.3 and �13.9 kBT approach 1 when R > NS , although
when NS = 10 there is a slight downward dip owing to saturation values of less than 1 at high repressor
copy numbers.

In Fig. A5 we similarly show how the leakiness, saturation, and dynamic range vary with R and �"RA

in systems with NS = 1 and multiple competitor sites NC = 10 or NC = 100. Each of the competitor
sites has a binding energy of �"C = �17.0 kBT . The phenotypic profiles are very similar to those for
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Figure A4. Phenotypic properties of induction with multiple specific binding sites. The
leakiness (A, D), saturation (B, E), and dynamic range (C, F) are shown for systems with number of
specific binding sites NS = 10 (A-C) or NS = 100 (D-F). The dashed vertical line indicates the point at
which NS = R.

multiple specific sites shown in Fig. A4, with sharper transitions at R = NC due to the greater binding
strength of the competitor site. This indicates that introducing competitors has much the same effect on
the induction phenotypes as introducing additional specific sites, as in either case the influence of the
repressors is dampened when there are insufficient repressors to interact with all of the specific binding
sites.

This section of the appendix gives a quantitative analysis of the nuances imposed on induction
response in the case of systems involving multiple gene copies as are found in the vast majority of
studies on induction. In these cases, the intrinsic parameters of the MWC model get entangled with the
parameters describing gene copy number.
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Figure A5. Phenotypic properties of induction with a single specific site and multiple
competitor sites. The leakiness (A, D), saturation (B, E), and dynamic range (C, F) are shown for
systems with a single specific binding site NS = 1 and a number of competitor sites NC = 10 (A-C) or
NC = 100 (D-F). All competitor sites have a binding energy of �"C = �17.0 kBT . The dashed vertical
line indicates the point at which NC = R.
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B Single-Cell Microscopy

In this section, we detail the procedures and results from single-cell microscopy verification of our flow
cytometry measurements. Our previous measurements of fold-change in gene expression have been
measured using bulk-scale Miller assays (Garcia and Phillips 2011a) or through single-cell microscopy
(Brewster et al. 2014). In this work, flow cytometry was an attractive method due to the ability to screen
through many different strains at different concentrations of inducer in a short amount of time. To verify
our results from flow cytometry, we examined two bacterial strains with different repressor-DNA binding
energies (�"RA) of �13.9 kBT and �15.3 kBT with R = 260 repressors per cell using fluorescence
microscopy and estimated the values of the parameters KA and KI for direct comparison between the
two methods. For a detailed explanation of the Python code implementation of the processing steps
described below, please see this paper’s GitHub repository. An outline of our microscopy workflow can
be seen in Fig. A6.

B.1 Strains and Growth Conditions

Cells were grown in an identical manner to those used for measurement via flow cytometry (see Methods).
Briefly, cells were grown overnight (between 10 and 13 hours) to saturation in rich media broth (LB)
with 100µg ·mL�1 spectinomycin in a deep-well 96 well plate at 37�C. These cultures were then diluted
1000-fold into 500µL of M9 minimal medium supplemented with 0.5% glucose and the appropriate
concentration of the inducer IPTG. Strains were allowed to grow at 37�C with vigorous aeration for
approximately 8 hours. Prior to mounting for microscopy, the cultures were diluted 10-fold into M9
glucose minimal medium in the absence of IPTG. Each construct was measured using the same range of
inducer concentration values as was performed in the flow cytometry measurements (between 100 nM
and 5mM IPTG). Each condition was measured in triplicate in microscopy whereas approximately ten
measurements were made using flow cytometry.

B.2 Imaging Procedure

During the last hour of cell growth, an agarose mounting substrate was prepared containing the
appropriate concentration of the IPTG inducer. This mounting substrate was composed of M9 minimal
medium supplemented with 0.5% glucose and 2% agarose (Life Technologies UltraPure Agarose, Cat.
No. 16500100). This solution was heated in a microwave until molten followed by addition of the IPTG
to the appropriate final concentration. This solution was then thoroughly mixed and a 500µL aliquot
was sandwiched between two glass coverslips and was allowed to solidify.

Once solid, the agarose substrates were cut into approximately 10mm⇥ 10mm squares. An aliquot of
one to two microliters of the diluted cell suspension was then added to each pad. For each concentration
of inducer, a sample of the autofluorescence control, the �lacI constitutive expression control, and the
experimental strain was prepared yielding a total of thirty-six agarose mounts per experiment. These
samples were then mounted onto two glass-bottom dishes (Ted Pella Wilco Dish, Cat. No. 14027-20)
and sealed with parafilm.

All imaging was performed on a Nikon Ti-Eclipse inverted fluorescent microscope outfitted with a
custom-built laser illumination system and operated by the open-source MicroManager control software
(Edelstein et al. 2014). The YFP fluorescence was imaged using a CrystaLaser 514 nm excitation laser
coupled with a laser-optimized (Semrock Cat. No. LF514-C-000) emission filter.

For each sample, between fifteen and twenty positions were imaged allowing for measurement of
several hundred cells. At each position, a phase contrast image, an mCherry image, and a YFP image
were collected in that order with exposures on a time scale of ten to twenty milliseconds. For each
channel, the same exposure time was used across all samples in a given experiment. All images were
collected and stored in ome.tiff format. All microscopy images are available on the CaltechDATA
online repository under DOI: 10.22002/D1.229.
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EXPONENTIAL GROWTH SINGLE-CELL MICROSCOPY SEGMENTATION

QUANTIFICATIONFOLD-CHANGE CALCULATION

[IPTG]

[IPTG]

x10-3

x10-2

10µm

x103

Figure A6. Experimental workflow for single-cell microscopy. For comparison with the flow
cytometry results, the cells were grown in an identical manner to those described in the main text. Once
cells had reached mid to late exponential growth, the cultures were diluted and placed on agarose
substrates and imaged under 100⇥ magnification. Regions of interest representing cellular mass were
segmented and average single-cell intensities were computed. The means of the distributions were used
to compute the fold-change in gene expression.

B.3 Image Processing

B.3.1 Correcting Uneven Illumination

The excitation laser has a two-dimensional gaussian profile. To minimize non-uniform illumination of a
single field of view, the excitation beam was expanded to illuminate an area larger than that of the camera
sensor. While this allowed for an entire field of view to be illuminated, there was still approximately
a 10% difference in illumination across both dimensions. This nonuniformity was corrected for in
post-processing by capturing twenty images of a homogeneously fluorescent plastic slide (Autofluorescent
Plastic Slides, Chroma Cat. No. 920001) and averaging to generate a map of illumination intensity at
any pixel IYFP. To correct for shot noise in the camera (Andor iXon+ 897 EMCCD), twenty images
were captured in the absence of illumination using the exposure time used for the experimental data.
Averaging over these images produced a map of background noise at any pixel Idark. To perform the
correction, each fluorescent image in the experimental acquisition was renormalized with respect to these
average maps as

Iflat =
I � Idark

IYFP � Idark
hIYFP � Idarki, (A10)

where Iflat is the renormalized image and I is the original fluorescence image. An example of this
correction can be seen in Fig. A7.

B.3.2 Cell Segmentation

Each bacterial strain constitutively expressed an mCherry fluorophore from a low copy-number plasmid.
This served as a volume marker of cell mass allowing us to segment individual cells through edge detection
in fluorescence. We used the Marr-Hildreth edge detector (Marr and Hildreth 1980) which identifies edges
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ORIGINAL IMAGE CORRECTED IMAGE

pixel intensity (a.u.)

Figure A7. Correction for uneven illumination. A representative image of the illumination
profile of the 512 nm excitation beam on a homogeneously fluorescent slide is shown in the left panel.
This is corrected for using equation Eq. (A10) and is shown in the right panel.

by taking the second derivative of a lightly Gaussian blurred image. Edges are identified as those regions
which cross from highly negative to highly positive values or vice-versa within a specified neighborhood.
Bacterial cells were defined as regions within an intact and closed identified edge. All segmented objects
were then labeled and passed through a series of filtering steps.

To ensure that primarily single cells were segmented, we imposed area and eccentricity bounds. We
assumed that single cells projected into two dimensions are roughly 2µm long and 1µm wide, so that
cells are likely to have an area between 0.5µm2 and 6µm. To determine the eccentricity bounds, we
assumed that the a single cell can be approximated by an ellipse with semi-major (a) and semi-minor
(b) axis lengths of 0.5µm and 0.25µm, respectively. The eccentricity of this hypothetical cell can be
computed as

eccentricity =

s

1�
✓
b

a

◆2

, (A11)

yielding a value of approximately 0.8. Any objects with an eccentricity below this value were not considered
to be single cells. After imposing both an area (Fig. A8(A)) and eccentricity filter (Fig. A8(B)), the
remaining objects were considered cells of interest (Fig. A8(C)) and the mean fluorescence intensity of
each cell was extracted.

B.3.3 Calculation of Fold-Change

Cells exhibited background fluorescence even in the absence of an expressed fluorophore. We corrected
for this autofluorescence contribution to the fold-change calculation by subtracting the mean YFP
fluorescence of cells expressing only the mCherry volume marker from each experimental measurement.
The fold-change in gene expression was therefore calculated as

fold-change =
hIR>0i � hIautoi
hIR=0i � hIautoi

, (A12)
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Figure A8. Segmentation of single bacterial cells. (A) Objects were selected if they had an
eccentricity greater than 0.8 and an area between 0.5µm2 and 6µm2. Highlighted in blue are the
regions considered to be representative of single cells. The black lines correspond to the empirical
cumulative distribution functions for the parameter of interest. (B) A representative final segmentation
mask is shown in which segmented cells are depicted in cyan over the phase contrast image.

where hIR>0i is the mean fluorescence intensity of cells expressing LacI repressors, hIautoi is the mean
intensity of cells expressing only the mCherry volume marker, and hIR=0i is the mean fluorescence
intensity of cells in the absence of LacI. These fold-change values were very similar to those obtained
through flow cytometry and were well described using the thermodynamic parameters used in the main
text. With these experimentally measured fold-change values, the best-fit parameter values of the model
were inferred and compared to those obtained from flow cytometry.

B.4 Parameter Estimation and Comparison

To confirm quantitative consistency between flow cytometry and microscopy, the parameter values of
KA and KI were also estimated from three biological replicates of IPTG titration curves obtained by
microscopy for strains with R = 260 and operators O1 and O2. Fig. A9(A) shows the data from these
measurements (orange circles) and the ten biological replicates from our flow cytometry measurements
(blue circles), along with the fold-change predictions from each inference. In comparison with the values
obtained by flow cytometry, each parameter estimate overlapped with the 95% credible region of our
flow cytometry estimates, as shown in Fig. A9(B). Specifically, these values were KA = 142+40

�34
µM

and KI = 0.6+0.1

�0.1
µM from microscopy and KA = 149+14

�12
µM and KI = 0.57+0.03

�0.02
µM from the flow

cytometry data. We note that the credible regions from the microscopy data shown in Fig. A9(B) are
much broader than those from flow cytometry due to the fewer number of replicates performed.
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Figure A9. Comparison of measured fold-change between flow cytometry and single-cell
microscopy. (A) Experimentally measured fold-change values obtained through single-cell microscopy
and flow cytometry are shown as white filled and solid colored circles, respectively. Solid and dashed
lines indicate the predicted behavior using the most likely parameter values of KA and KI inferred from
flow cytometry data and microscopy data, respectively. The red and blue plotting elements correspond
to the different operators O1 and O2 with binding energies �"RA of �13.9 kBT and �15.3 kBT ,
respectively (Garcia and Phillips 2011a). (B) The marginalized posterior distributions for KA and KI

are shown in the top and bottom panel, respectively. The posterior distribution determined using the
microscopy data is wider than that computed using the flow cytometry data due to a smaller fig
collection of data sets (three for microscopy and ten for flow cytometry).
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C Fold-Change Sensitivity Analysis

In Fig. 5 we found that the width of the credible regions varied widely depending on the repressor copy
number R and repressor operator binding energy �"RA. More precisely, the credible regions were much
narrower for low repressor copy numbers R and weak binding energy �"RA. In this section, we explain
how this behavior comes about. We focus our attention on the maximum fold-change in the presence of
saturating inducer given by Eq. (7). While it is straightforward to consider the width of the credible
regions at any other inducer concentration, Fig. 5 shows that the credible region are widest at saturation.

The width of the credible regions corresponds to how sensitive the fold-change is to the fit values of
the dissociation constants KA and KI . To be quantitative, we define

� fold-changeKA
⌘ fold-change(KA,K

fit

I
)� fold-change(Kfit

A
,Kfit

I
), (A13)

the difference between the fold-change at a particular KA value relative to the best-fit dissociation
constant Kfit

A
= 139⇥ 10�6 M. For simplicity, we keep the inactive state dissociation constant fixed at its

best-fit value Kfit

I
= 0.53⇥ 10�6 M. A larger difference � fold-changeKA

implies a wider credible region.
Similarly, we define the analogous quantity

� fold-changeKI
= fold-change(Kfit

A
,KI)� fold-change(Kfit

A
,Kfit

I
) (A14)

to measure the sensitivity of the fold-change to KI at a fixed Kfit

A
. Fig. A10 shows both of these quantities

in the limit c ! 1 for different repressor-DNA binding energies �"RA and repressor copy numbers R.
See our GitHub repository for the code that reproduces these plots.

To understand how the width of the credible region scales with �"RA and R, we can Taylor expand
the difference in fold-change to first order, � fold-changeKA

⇡ @ fold-change

@KA

�
KA �Kfit

A

�
, where the partial

derivative has the form

@ fold-change

@KA

=
e���"AI n

KI

⇣
KA
KI

⌘n�1

⇣
1 + e���"AI

⇣
KA
KI

⌘n⌘2

R

NNS

e���"RA

0

@1 +
1

1 + e���"AI

⇣
KA
KI

⌘n

R

NNS

e���"RA

1

A
�2

.

(A15)
Similarly, the Taylor expansion � fold-changeKI

⇡ @ fold-change

@KI

�
KI �Kfit

I

�
features the partial derivative

@ fold-change

@KI

= �
e���"AI n

KI

⇣
KA
KI

⌘n

⇣
1 + e���"AI

⇣
KA
KI

⌘n⌘2

R

NNS

e���"RA

0

@1 +
1

1 + e���"AI

⇣
KA
KI

⌘n

R

NNS

e���"RA

1

A
�2

.

(A16)
From Eqs. (A15) and (A16), we find that both � fold-changeKA

and � fold-changeKI
increase in

magnitude with R and decrease in magnitude with �"RA. Accordingly, we expect that the O3 strains
(with the least negative �"RA) and the strains with the smallest repressor copy number will lead to
partial derivatives with smaller magnitude and hence to tighter credible regions. Indeed, this prediction
is carried out in Fig. A10.

Lastly, we note that Eqs. (A15) and (A16) enable us to quantify the scaling relationship between the
width of the credible region and the two quantities R and �"RA. For example, for the O3 strains, where
the fold-change at saturating inducer concentration is ⇡ 1, the right-most term in both equations which
equals the fold-change squared is roughly 1. Therefore, we find that both @ fold-change

@KA
and @ fold-change

@KI

scale linearly with R and e���"RA . Thus the width of the R = 22 strain will be roughly 1/1000 as large
as that of the R = 1740 strain; similarly, the width of the O3 curves will be roughly 1/1000 the width of
the O1 curves.
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Figure A10. Determining how sensitive the fold-change values are to the fit values of the
dissociation constants.(A) The difference � fold-changeKA

in fold change when the dissociation
constant KA is slightly offset from its best-fit value KA = 139+29

�22
⇥ 10�6 M, as given by Eq. (A13).

Fold-change is computed in the limit of saturating inducer concentration (c ! 1, see Eq. (7)) where the
credible regions in Fig. 5 are widest. The O3 strain (�"RA = �9.7 kBT ) is about 1/1000 as sensitive as
the O1 operator to perturbations in the parameter values, and hence its credible region is roughly
1/1000 as wide. All curves were made using R = 260. (B) As in Panel (A), but plotting the sensitivity
of fold-change to the KI parameter relative to the best-fit value KI = 0.53+0.04

�0.04
⇥ 10�6 M. Note that

only the magnitude, and not the sign, of this difference describes the sensitivity of each parameter.
Hence, the O3 strain is again less sensitive than the O1 and O2 strains. (C) As in Panel (A), but
showing how the fold-change sensitivity for different repressor copy numbers. The strains with lower
repressor copy number are less sensitive to changes in the dissociation constants, and hence their
corresponding curves in Fig. 5 have tighter credible regions. All curves were made using
�"RA = �13.9 kBT . (D) As in Panel (C), the sensitivity of fold-change with respect to KI is again
smallest (in magnitude) for the low repressor copy number strains.
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D Applicability of Theory to the Oid Operator Sequence

In addition to the native operator sequences (O1, O2, and O3) considered in the main text, we were also
interested in testing our model predictions against the synthetic Oid operator. In contrast to the other
operators, Oid is one base pair shorter in length (20 bp), is fully symmetric, and is known to provide
stronger repression than the native operator sequences considered so far. While the theory should be
similarly applicable, measuring the lower fold-changes associated with this YFP construct was expected
to be near the sensitivity limit for our flow cytometer, due to the especially strong binding energy of Oid
(�"RA = �17.0 kBT ) (Garcia et al. 2011b). Accordingly, fluorescence data for Oid were obtained using
microscopy, which is more sensitive than flow cytometry. Appendix B gives a detailed explanation of
how microscopy measurements were used to obtain induction curves.

We follow the approach of the main text and make fold-change predictions based on the parameter
estimates from our strain with R = 260 and an O2 operator. These predictions are shown in Fig. A11(A),
where we also plot data taken in triplicate for strains containing R = 22, 60, and 124, obtained by
single-cell microscopy. We find that the data are systematically below the theoretical predictions.
We also considered our global fitting approach (see Appendix ) to see whether we might find better
agreement with the observed data. Interestingly, we findthat the majority of the parameters remain
largely unchanged, but our estimate for the Oid binding energy �"RA is shifted to �17.7 kBT instead
of the value �17.0 kBT found by Garcia and Phillips (2011a). In Fig. A11(B) we again plot the Oid
fold-change data but with theoretical predictions using the new estimate for the Oid binding energy from
our global fit and find substantially better agreement.

Figure A11. Predictions of fold-change for strains with an Oid binding sequence versus
experimental measurements with different repressor copy numbers. (A) Experimental data
is plotted against the parameter-free predictions that are based on our fit to the O2 strain with R = 260.
Here we use the previously measured binding energy �"RA = �17.0 kBT (Garcia and Phillips 2011a).
(B) The same experimental data is plotted against the best-fit parameters using the complete O1, O2,
O3, and Oid data sets to infer KA, KI , repressor copy numbers, and the binding energies of all
operators (see Appendix ). Here the major difference in the inferred parameters is a shift in the binding
energy for Oid from �"RA = �17.0 kBT to �"RA = �17.7 kBT , which now shows agreement between
the theoretical predictions and experimental data. Shaded regions from the theoretical curves denote the
95% credible region. These are narrower in Panel (B) because the inference of parameters was performed
with much more data, and hence the best-fit values are more tightly constrained. Individual data points
are shown due to the small number of replicates. The dashed lines at 0 IPTG indicate a linear scale,
whereas solid lines represent a log scale.

Fig. A12 shows the cumulative data from Garcia and Phillips (2011a) and Brewster et al. (2014), as
well as our data with c = 0µM, which all measured fold-change for the same simple repression architecture
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utilizing different reporters and measurement techniques. We find that the binding energies from the
global fit, including �"RA = �17.7 kBT , compare reasonably well with all previous measurements.

Figure A12. Comparison of fold-change predictions based on binding energies from
Garcia and Phillips and those inferred from this work. Fold-change curves for the different
repressor-DNA binding energies �"RA are plotted as a function of repressor copy number when IPTG
concentration c = 0. Solid curves use the binding energies determined from Garcia and Phillips (2011a),
while the dashed curves use the inferred binding energies we obtained when performing a global fit of
KA, KI , repressor copy numbers, and the binding energies using all available data from our work.
Fold-change measurements from our experiments (outlined circles) Garcia and Phillips (2011a) (solid
circles), and Brewster et al. (2014) (diamonds) show that the small shifts in binding energy that we infer
are still in agreement with prior data. Note that only a single flow cytometry data point is shown for
Oid from this study, since the R = 60 and R = 124 curves from Fig. A11 had extremely low fold-change
in the absence of inducer (c = 0) so as to be indistinguishable from autofluorescence, and in fact their
fold-change values in this limit were negative and hence do not appear on this plot.
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E Applications to Other Regulatory Architectures

In this section, we discuss how the theoretical framework presented in this work is sufficiently general to
include a variety of regulatory architectures outside of simple repression by LacI. We begin by noting
that the exact same formula for fold-change given in Eq. (5) can also describe corepression. We then
demonstrate how our model can be generalized to include other architectures, such as a coactivator
binding to an activator to promote gene expression. In each case, we briefly describe the system and
describe its corresponding theoretical description. For further details, we invite the interested reader to
read Bintu et al. (2005b) and Marzen et al. (2013).

E.1 Corepression

Consider a regulatory architecture where binding of a transcriptional repressor occludes the binding of
RNAP to the DNA. A corepressor molecule binds to the repressor and shifts its allosteric equilibrium
towards the active state in which it binds more tightly to the DNA, thereby decreasing gene expression
(in contrast, an inducer shifts the allosteric equilibrium towards the inactive state where the repressor
binds more weakly to the DNA). As in the main text, we can enumerate the states and statistical weights
of the promoter and the allosteric states of the repressor. We note that these states and weights exactly
match Fig. 2 and yield the same fold-change equation as Eq. (5),

fold-change ⇡

0

@1 +

⇣
1 + c

KA

⌘n

⇣
1 + c

KA

⌘n

+ e��"AI

⇣
1 + c

KI

⌘n

R

NNS

e���"RA

1

A

�1

, (A17)

where c now represents the concentration of the corepressor molecule. Mathematically, the difference
between these two architectures can be seen in the relative sizes of the dissociation constants KA and
KI between the inducer and repressor in the active and inactive states, respectively. The corepressor
is defined by KA < KI , since the corepressor favors binding to the repressor’s active state; an inducer
must satisfy KI < KA, as was found in the main text from the induction data (see Fig. 4). Much as was
performed in the main text, we can make some predictions about the how the response of a corepressor.
In Fig. A13(A), we show how varying the repressor copy number R and the repressor-DNA binding
energy �"RA influence the response. We draw the reader’s attention to the decrease in fold-change as
the concentration of effector is increased.

E.2 Activation

We now turn to the case of activation. While this architecture was not studied in this work, we wish to
demonstrate how the framework presented here can be extended to include transcription factors other
than repressors. To that end, we consider a transcriptional activator which binds to DNA and aids in
the binding of RNAP through energetic interaction term "AP . Note that in this architecture, binding
of the activator does not occlude binding of the polymerase. Binding of a coactivator molecule shifts
its allosteric equilibrium towards the active state (KA < KI), where the activator is more likely to be
bound to the DNA and promote expression. Enumerating all of the states and statistical weights of this
architecture and making the approximation that the promoter is weak generates a fold-change equation
of the form

fold-change =

1 +

⇣
1+

c
KA

⌘n

⇣
1+

c
KA

⌘n
+e��"AI

⇣
1+

c
KI

⌘n
A

NNS
e���"AAe��"AP

1 +

⇣
1+

c
KA
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⇣
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c
KA

⌘n
+e��"AI

⇣
1+

c
KI

⌘n
A

NNS
e���"AA

, (A18)

where A is the total number of activators per cell, c is the concentration of a coactivator molecule, �"AA

is the binding energy of the activator to the DNA in the active allosteric state, and "AP is the interaction
energy between the activator and the RNAP. Unlike in the cases of induction and corepression, the
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fold-change formula for activation includes terms from when the RNAP is bound by itself on the DNA
as well as when both RNAP and the activator are simultaneously bound to the DNA. Fig. A13(B)
explores predictions of the fold-change in gene expression by manipulating the activator copy number,
DNA binding energy, and the polymerase-activator interaction energy. Note that with this activation
scheme, the fold-change must necessarily be greater than one. An interesting feature of these predictions
is the observation that even small changes in the interaction energy (< 0.5 kBT ) can result in dramatic
increase in fold-change.

As in the case of induction, the Eq. (A18) is straightforward to generalize. For example, the relative
values of KI and KA can be switched such that KI < KA in which the secondary molecule drives the
activator to assume the inactive state represents induction of an activator. While these cases might
be viewed as separate biological phenomena, mathematically they can all be described by the same
underlying formalism.

Figure A13. Representative fold-change predictions for allosteric corepression and
activation. (A) Contrary to the case of induction described in the main text, addition of a corepressor
decreases fold-change in gene expression. The left and right panels demonstrate how varying the values
of the repressor copy number R and repressor-DNA binding energy �"RA, respectively, change the
predicted response profiles. (B) In the case of inducible activation, binding of an effector molecule to an
activator transcription factor increases the fold-change in gene expression. Note that for activation, the
fold-change is greater than 1. The left and center panels show how changing the activator copy number
A and activator-DNA binding energy �"AA alter response, respectively. The right panel shows how
varying the polymerase-activator interaction energy "AP alters the fold-change. Relatively small
perturbations to this energetic parameter drastically changes the level of activation and plays a major
role in dictating the dynamic range of the system.
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