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Abstract

The details of conformational changes undergone by transmembrane ion channels in response

to stimuli, such as electric fields and membrane tension, remain controversial. We approach this

problem by considering how the conformational changes impose deformations in the lipid bilayer.

We focus on the role of bilayer deformations in the context of voltage-gated channels because

we hypothesize that such deformations are relevant in this case as well as for channels that are

explicitly mechanosensitive. As a result of protein conformational changes, we predict that the

lipid bilayer suffers deformations with a characteristic free energy scale of 10 kBT . This free energy

is comparable to the voltage-dependent part of the total gating energy, and we argue that these

deformations could play an important role in the overall free energy budget of gating. As a result,

channel activity will depend upon mechanical membrane parameters such as tension and leaflet

thickness. We further argue that the membrane deformation around any channel can be divided into

three generic classes of deformation that exhibit different mechano-sensitive properties. Finally,

we provide the theoretical framework that relates conformational changes during gating to tension

and leaflet thickness dependence in the critical gating voltage. This line of investigation suggests

experiments that could discern the dominant deformation imposed upon the membrane as a result

of channel gating, thus providing clues as to the channel deformation induced by the stimulus.
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I. INTRODUCTION

The cell membrane is a richly inhabited landscape. Its undulating and dynamic terrain

is peppered with proteins regulating what enters and leaves the cell. Various classes of

membrane proteins interact with different environmental signals to determine when to allow

molecular species such as ions to pass through the membrane. For example, voltage-gated

ion channels are sensitive to millivolt-scale transmembrane electric potentials and respond

to these voltages by undergoing a conformational change that allows selected ions to pass.

A growing body of work [1–5] suggests that the properties of the membrane influence

the gating behavior of channels. In other words, the bilayer is not a passive bystander

in membrane protein function. This is demonstrated in the context of mechanosensitive

channels whose function is acutely sensitive to properties of the surrounding bilayer such

as lipid tail length, spontaneous curvature, and tension [2, 6, 7]. Previous theoretical work

has focused on the observed connection between channel function and membrane elastic

properties by examining membrane deformations at the protein-lipid interface [8–14].

Sensitivity to membrane mechanical properties is not unique to mechanosensitive chan-

nels. Voltage-gated ion channels also demonstrate sensitivity to applied membrane tension

[3, 4, 15–17] and intrinsic elastic properties such as membrane stiffness, which has been

shown to be correlated to deactivation of voltage-dependent sodium channels [7, 18]. There-

fore, it is well established that the physical properties of the membrane influence channel

gating, and in this work we exploit the channel-membrane interaction in the hope of learn-

ing about the structural changes of the channel itself. Our models are “coarse-grained”

in the sense that the channel-membrane interactions are represented by different classes of

membrane boundary conditions that replace the complex details of atomic-level motions.

A. Structure and function of voltage-gated ion channels

As an example of the type of problem this work addresses, we consider voltage-gated ion

channels as a case study. Although the crystal structure of the well studied Shaker family K+

channel Kv1.2 is available in the open conformation [19], no voltage-gated channel structure

has thus far been determined in both the closed and open conformations. The mechanism by

which voltage-gated ion channels open and close in response to changing electric potentials
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remains uncertain; the goal of this paper is to explore the implications of different classes

of structural models for membrane-protein interactions. The comparison is based on the

channel’s sensitivity to bulk membrane mechanical properties.

All the channel mechanisms we explore contain two critical features: a pore region re-

sponsible for selectively blocking and passing ions across the membrane, and sensor regions

that confer voltage sensitivity to the pore region. The voltage sensing motif is highly con-

served across voltage-gated channels and consists of a bundle of four transmembrane helices

[20]. At every third position on the fourth helix (named S4) there is a charged arginine or

lysine residue that is responsible for voltage sensitivity [21–23]. In Shaker family channels,

for example, these charged residues contribute 12 positive elementary charges per tetrameric

channel [24], or three for each subunit. The conformational change to the conducting state

decreases the electrostatic potential energy of these charged residues by a mechanism that

remains uncertain. The charges either move through the electric potential or the channel

manipulates and changes the electric field around them.

From the point of view of membrane deformations, the differences between the channel

gating models are best described in terms of how the sensor regions move during opening

and closing to modify the electrostatic environment of the charged residues. They may

swing across the plane of the membrane as a paddle [25], or they may undergo a more subtle

motion like a helical screw [26, 27]. Some models do not rely upon the sensor domain actively

transporting the charges across the membrane, but rather propose that its motion creates

crevices that control how far the surrounding ionic solution penetrates into the protein,

thus manipulating the electrostatic field itself. For a thorough description of various gating

models and comparisons to experimental results, see references [20], [26], and [28].

The energy associated with changing the electrostatic environment of the residues is the

voltage-dependent part of the gating energy, which we estimate using values for the Shaker

family K+ channels. Assuming simple two-state Boltzmann statistics in which all four

channel subunits occupy the same state at any given time, the probability that a channel is

in the open state is given by

Popen =
1

1 + e(ΔGtot/kBT )
, (1)

where kB is Boltzmann’s constant and T is temperature. In the absence of deactivation, the

conductance of the membrane is proportional to Popen. We define ΔGtot = Gopen − Gclosed,

the total free energy difference between closed and open states. We can write ΔGtot =
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ΔGelec + ΔGprot + ΔGmemb, where the terms represent the change in electrostatic gating

energy, internal protein conformation free energy and membrane deformation free energy,

respectively. We use a two-state model where “open” and “closed” describe the activation

state of the pore. This is sufficient provided the conformations of the sensors and membrane

are tightly correlated to that of the pore. Biological channels have many transition states

which we assume have insignificant thermodynamic weight. Therefore, the channel spends

little time in those states, and we do not include them in our equilibrium model.

The energies calculated below also inform the kinetics of opening and closing. The free

energy barriers for the kinetic transitions include membrane deformation energies of the tran-

sient states. The kinetics will therefore inherit membrane parameter dependence through the

membrane deformation energies. However, the many transition states may all have different

transient membrane deformations, and extracting the membrane parameter dependence of

any one transition would be difficult. Equilibrium statistics, however, would not depend

appreciably on these transient states.

We estimate the electrostatic energy using experimental results. The transmembrane

voltage at which Popen = 0.5 is defined as V0.5, where this half-activation voltage is typically

negative and on the order of tens of millivolts. From Eq. (1), this voltage coincides with

Gopen−Gclosed = 0, implying that at V0.5 the electrostatic gating energy, ΔGelec, balances the

sum of membrane deformation and protein free energies: ΔGelec = −(ΔGmemb +ΔGprot). In

other words, the internal energies of the system balance the energy supplied by the external

electric field. Direct measurements of gating current give the effective charge per channel

as Q = 12 eo [24], where eo is one positive elementary charge (i.e. eo = 1.6 x 10−19 C). We

estimate the total electrostatic gating energy as ΔGelec = −QV0.5; with V0.5 = −35mV as

a typical transmembrane voltage at half-activation for a potassium channel [24], one finds

that ΔGelec ≈ 16 kBT . Therefore, the combined membrane and protein contribution to the

gating free energy that balances the electrostatic contribution is −16 kBT . This value will

serve as a benchmark against which we will compare membrane energetic contributions.

B. Conformation changes during gating

To focus on how the channel protein causes membrane deformation, we consider a coarse-

grained model in which the protein is an axially symmetric shape that dictates the lipid-

5



a) Midplane Bending b) Compression c) Footprint Dilation

to
p

 vie
w

FIG. 1: Models of gating in terms of three types of deformation induced in the membrane. We

discard all molecular details of the channel and focus solely on how it deforms the membrane. The

types of deformation are: (a) bending of the midplane; (b) normal compression or stretching of

the bilayer; (c) enlarging or shrinking of the channel areal footprint (shown with top view). The

two rows represent protein shapes associated with different conformations. The figure exaggerates

the deformations and does not specifically associate deformations with either the closed or open

conformation because in general, deformations could be induced by either.

protein interface and creates deformations in the membrane. As the channel switches be-

tween open and closed states the membrane deforms and relaxes. We consider three types

of deformations, as described in Fig. 1. Any small membrane deformation can be expressed

as a combination of the three types. The deformed membrane may be associated with either

the open or closed channel, so we commit to neither case and investigate both possibilities.

A relaxed membrane, with no spontaneous curvature, lies flat when undisturbed. The

first type of deformation, called midplane bending, bends the bilayer away from the relaxed

planar configuration. This deformation is induced by an effective protein shape with sloped

sides (Fig. 1a) [29]. Such a shape could arise from a non-cylindrical protein structure, such

as a truncated cone. The next type of deformation compresses or stretches the membrane

leaflets from their equilibrium thickness. This is referred to as compression deformation

and is induced by dictating a non-equilibrium bilayer thickness at the membrane-protein

boundary (Fig. 1b). A difference in hydrophobic thickness between protein and lipid-bilayer,

called hydrophobic mismatch, causes this type of deformation [11, 30]. The last type of

deformation accompanies changes in the cross sectional area of the protein. As the channel

opens and closes, its areal footprint in the membrane may change, thus yielding to or pulling

against the mechanical tension in the lipid bilayer. We refer to this as footprint dilation

(Fig. 1c). These three scenarios make the implicit assumption that the membrane shape

is enslaved to the protein conformation. Although not mandatory, it is clear that some

6



amount of frustration accompanied by an energy cost will result from a mismatch between

the protein conformation and the natural lipid order. Our assumptions frame the simplest

way to investigate the effect of this frustration on the channel activity.

C. Modeling strategy

The effective protein shape is, in principle, related to the atomistic details of the protein.

It is determined by the geometry of the protein boundary and the locations and orientations

of the hydrophobic and hydrophilic residues. However, the atomistic detail of the protein

in the closed state is one of the unresolved issues, and we therefore avoid those details.

Instead, we focus exclusively on the membrane deformations outlined in Fig. 1 and ask

i) Which deformation types contribute an energy that is relevant in the total free energy

budget? and ii) How does gating couple to membrane parameters? We will demonstrate

that those parameters which can be tuned experimentally, such as mechanical bilayer tension

and thickness, can be used as tools to determine if there is a dominant mode of deformation

during gating.

Thus far, we have proposed a simple model of the protein. In Sec. II we model the bilayer

as a continuous elastic sheet and describe deformations in terms of functions giving the height

and thickness of the bilayer. This formulation allows us to concentrate on estimating the

energy while discarding the details of individual lipids and their interactions. Section IIA

discusses the energy functionals for the deformations. In Sec. III we utilize analytic methods

to find the deformation profiles that minimize the energy functionals subject to the boundary

conditions imposed by the protein shapes in each deformation type. We then use these

results and membrane parameter values from the literature to compute equilibrium energies.

Section IV interprets these results in terms of membrane parameter dependence in V0.5, and

makes predictions for a new set of experiments.

II. ELASTIC PROPERTIES OF MEMBRANES

Utilizing well-developed models of membrane elasticity, we find the deformation energies

by treating the bilayer as a fluid elastic sheet [8, 9, 31, 32]. The local shape of the membrane

can be characterized by two unique functions, one describing the membrane thickness and
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one the midplane height or deviation from a flat reference plane. We assume the protein has

axial symmetry and work in cylindrical coordinates where r is the distance from the center of

the channel (Fig. 2). We also assume that the membrane deformations are sufficiently small,

i.e. the derivatives in the midplane slope and compression are small, so that all energies can

be expressed at their lowest (quadratic) order.

In midplane bending deformations, h(r) is the deviation of the bilayer midplane from

the flat reference plane. The protein shape fixes the slope of the membrane midplane at

the membrane-protein interface. Therefore, in our small-deformation approximation, the

boundary condition is ∂h
∂r
|r=R = −tan(θ) � −θ, where R is the radius of the protein and θ

is the angle formed by the midplane with the perpendicular at the protein-lipid interface.

For compression deformations, u(r) is the compression of each leaflet from the reference

thickness do, the equilibrium hydrophobic thickness at zero tension far from the protein

(Fig. 2b). Positive values of u indicate leaflet compression for which the leaflet is thinner

than do, whereas negative values indicate leaflet extension, where the leaflet is thicker than

do. In compression deformations, the protein fixes the thickness of the membrane along its

edge, imposing the boundary condition u(R) = Uo. Footprint dilations are characterized by

the protein radius R, which can vary between the open and closed states.

A. Elastic free energies for the three deformation types

Having characterized the deformation of the membrane in terms of boundary conditions

induced by the protein and the shape functions h(r) and u(r), we write free energy function-

als for the three deformation types. Each functional includes contributions from different

free energy sources, which are illustrated schematically in Fig. 3. Deviations from the equi-

librium area per lipid, lipid tilt (relative to the midplane), and leaflet thickness all cost free

energy. In Sec. III we solve for the shape functions h(r) and u(r) that minimize the free

energy.

Elastic moduli measured in bulk membranes may not accurately describe the small scale

deformations along the protein-lipid interface. When packed against a protein, individual

lipids lose degrees of freedom and therefore the free energy of the lipids depend upon their

proximity to the protein. There are various ways to model this effect in terms of membrane

deformations. These include utilizing radially dependent elastic moduli [33], adding an
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a)

b)

FIG. 2: Definition of the variables that characterize midplane bending and compression deforma-

tions. (a) h(r) describes the deviation of the midplane from the flat reference plane as a function

of r, the distance from the center of the pore. R is the radius of the channel, and changes during

footprint dilations. θ is a coarse-grained representation of the angle formed by the midplane at

the protein-lipid interface. (b) u(r) describes the compression of the bilayer and do is the reference

thickness of a leaflet. The size of the deformations in this schematic have been exaggerated for

clarity.

)b)a

d)c)

compression / extension

bending

{

channel dilation couples to tension

ΔAprot

FIG. 3: Schematic representation of sources of deformation energy. (a) A bilayer in the undeformed

state. (b) Elastic compression/stretch leads to an increase in free energy that is accompanied by a

change in leaflet thickness from its equilibrium value. (c) Yielding to membrane tension decreases

free energy. This is modeled as a loading force applied to the edge of the membrane by weights

hanging over pulleys. As the protein increases in size, the weights lower, thereby decreasing the

total energy. (d) Bending deformations in the membrane are caused by torques on the membrane.
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additional line energy term along the protein [34, 35], or fixing the interface angle produced

between the protein and the lipids [11]. These techniques can be tuned to give similar

behavior [33]. Given that in this work we are most interested in an estimate of the magnitude

of the deformation energy and how the free energy scales with the parameters, we choose

the last technique for its simplicity.

The first type of deformation, midplane bending, has energy contributions from bending

the bilayer and from the addition of membrane area due to the bending. We write the free

energy as

Gbend =

∫
M′

d2r
κb

2
(2Cmean − Cb

o )2︸ ︷︷ ︸
bending

+ α ΔA︸ ︷︷ ︸
area change

, (2)

where the integral is over the deformed membrane surface, M′, α is the applied bilayer

tension and ΔA is the total bilayer area change due to the deformation. We define the free

energy of an undeformed membrane (i.e. h(r) = 0), with no spontaneous curvature, as zero.

The first term represents energy of curvature, where κb is the elastic curvature modulus of

the bilayer. The energy depends upon the difference between the mean curvature Cmean,

and the spontaneous curvature of the bilayer, Cb
o . To simplify calculations and analysis,

we assume that the two leaflets of the bilayer are compositionally similar in which case

Cb
o vanishes. Whereas this can be the case in pure artificial bilayers, biological systems

and some artificial bilayers possess compositional asymmetry which leads to a non-zero Cb
o

[36, 37]. The second term represents the work done against mechanical tension when the

bilayer area is modified. The change in area, ΔA, originates from a sloped midplane which

has more area than a flat membrane with the same projection. Tension in artificial lipid

bilayers is controlled by factors such as a pressure difference across the bilayer, the geometry

of the bilayer and the material interfaces along the bilayer boundary, whereas the membrane

tension of cells is thought to be regulated [38]. We use a single tension that is constant across

the bilayer, because to a good approximation a simple bilayer acts as a two dimensional fluid

with no shear stresses. This approximation breaks down in more complex systems such as

a crowded membrane with structures of varying mobility.

For small deformations without spontaneous curvature, Eq. (2) can be rewritten as

Gbend =
1

2

∫
M

d2r [ κb(∇2h(r))2 + α(∇h(r))2], (3)

where the integral is now over the flat reference plane, M.
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The compression deformation type involves additional energy contributions and the com-

bined free energy for both leaflets (assuming small deformations) is

Gcomp =

∫
M′

d2r

⎡
⎢⎢⎢⎣κe

(
u(r)

do

)2

︸ ︷︷ ︸
compression

−α
u(r)

do︸ ︷︷ ︸
area

+ κc(∇2u(r) − Co)
2︸ ︷︷ ︸

bending

+κgr(∇u(r))2

⎤
⎥⎥⎥⎦ . (4)

The first term represents deviations from the equilibrium leaflet thickness where κe is the

elastic stretch modulus per leaflet [8, 11, 14]. Energy contributions are quadratic in this

compressive strain. Although κe is typically applied to in-plane membrane stretch, thickness

variations cause variations in total area because lipid bilayers largely conserve volume [39,

40]. Therefore, a small deformation in thickness results in a fractional change in area,

δA ≈ u
do

. This also couples with the external tension and yields the second term. The third

term represents the energy of curvature in each leaflet, where Co is the leaflet spontaneous

curvature and κc is the leaflet bending modulus. The final term represents the free energy

cost of imposing a gradient in u(r), which imposes a slight asymmetry in the shape of each

individual lipid molecule and increases the lipid-solvent interfacial area. We estimate a lower

bound for the modulus κgr as the interfacial surface tension (not to be confused with the

applied bilayer tension α) between the hydrophilic solvent layer and the hydrophobic tails.

For the purposes of our estimates, we set κgr to this lower bound (see Table I).

An applied tension thins the membrane according to d̃o = do(1 − α
2κe

). The thickness

deformation is therefore shifted, and can be represented by rescaling u according to

ũ(r) = u(r) − do
α

2κe
. (5)

The thinning is accompanied by a rescaling of the compression at the channel-membrane

interface from Uo to Ũo = Uo − do
α

2κe
. These effects are shown schematically in Fig. 4. We

can rewrite the free energy functional in terms of the new compression variable ũ(r) as,

Gcomp[ũ(r)] =

∫
M

d2r

[
κe

(
ũ(r)

do

)2

+ κc(∇2ũ(r) − Co)
2 + κgr(∇ũ(r))2

]
+ D, (6)

where the constant D, representing the energy spent to attain the initial thickness d̃o, is

unimportant because we are only interested in changes between channel states at constant

membrane tension. Note that we have eliminated the second term, thus simplifying the

energy functional.
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positive tension

Uo ao

zero tension

do
Uo

do

FIG. 4: Schematic demonstrating tension-induced thinning. Under tension, the bilayer (light gray

region) thins, whereas the thickness along the protein (dark gray rectangle) remains unchanged.

The membrane thickness decreases from do to d̃o, and the boundary compression changes from Uo

to Ũo. The effect is exaggerated in the figure for clarity.

The free energy associated with footprint dilation is more straightforward. If the protein

area increases, the membrane yields to the external tension α (as in Fig. 3c). Therefore, we

can express the footprint dilation contribution to ΔGtot in terms of the absolute change in

channel area, ΔAprot = Aopen − Aclosed,

ΔGpore = −α ΔA︸ ︷︷ ︸
area

. (7)

III. ENERGIES OF EQUILIBRIUM MEMBRANE PROFILES

In the previous section we presented the free energies associated with deformed mem-

branes characterized by the shape functions h(r) and u(r). At equilibrium, the membrane

will adopt a profile that minimizes the free energy and satisfies the boundary conditions

imposed by the embedded protein. The different protein conformations impose different

boundary conditions, and therefore each conformation is associated with a unique profile

and free energy. In this section, we calculate the free energy costs for the three types of

deformation and examine how these free energies might differ between the open and closed

states.

The energy costs will depend upon the membrane parameters that appear in each func-

tional. To compare the calculated deformation energies with phenomenological gating ener-

gies, we construct a reference membrane by choosing a value for each model parameter. Our

reference values, given in Table I, are chosen to represent a “typical” phospholipid bilayer

and the channel protein Kv1.2. The choice of a “typical” value, however, depends heavily

upon the context. For example, the tension in a bilayer patch sealed against the inside of
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a pipette (as in a patch-clamp setup) could be very different from the tension in a living

cell’s membrane. In the former, the tension is determined by external forces and the geom-

etry of the glass-bilayer interface [6, 41], and is on the order of 1 kBT/nm2 (equivalent to 4

mN/m)[11]. In the latter, the tension is determined by a combination of cytoskeletal and

exoskeletal structures, geometry, and osmotic pressure across the membrane [42, 43]. Ten-

sions in isolated plant membranes have been measured to be ≈ 0.03 kBT/nm2 [44], whereas

membrane tether force experiments give resting tensions in molluscan neurons an order of

magnitude lower [45]. Vesicle micropipette aspiration techniques, in which suction is ap-

plied by a micropipette against a lipid vesicle, can tune and measure tensions of 3 x 10−4 to

3 kBT/nm2. Note that the upper range is close to lytic tension for most lipid bilayers [46].

We choose 0.3 kBT/nm2, or roughly 1.2 mN/m, as a reference tension for its applicability

to experimental situations. As discussed above, we choose the interfacial surface tension

between solvent and lipid as a lower estimate for κgr. We expect κc to be at most one-half

the bilayer bending modulus κb. These reference values will provide estimates of the defor-

mation energy. For further discussion of the values chosen, see the references cited in the

table, and for an extended discussion of the range of these values, we direct the reader to

[47] and [48].

A. Midplane bending

The free energy functional in Eq. (3) is minimized with respect to h(r), subject to the

boundary conditions ∂h(r)/∂r|r=R = −θ, and h(r → ∞) = 0. The minimization problem

and the resultant free energies are solved in Appendix A and in [8, 9, 11, 12, 14]. The

solutions for h(r) are Bessel functions with a tension dependent characteristic decay length

of λ =
√

κb/α ≈ 8 nm. The minimizing free energy is

Gbend = κbπθ2

(
R

λ

) K0(R/λ)

K1(R/λ)
, (8)

where Kn is the modified Bessel function of the second kind of order n.

We estimate the free energy difference between open and closed states using the parameter

values in Table I and assuming a range of small deformations at the protein boundary

of 0.1 < θ < 0.5. The upper end of this range is consistent with structural models for

the bacterial mechanosensitive channel MscS [51]. The free energy difference between the
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TABLE I: Parameters for a reference bilayer used to provide estimates of the contributions to

membrane deformation energy.

Symbol Parameter Value

R open channel radius 5 nm [49]

α applied bilayer tension 0.3 kBT/nm2 a

κb bilayer bending modulus 22 kBT [46]b

κe leaflet stretch modulus 30 kBT/nm2 [46]

do leaflet thickness at zero tension 1.5 nm [46]

Uo boundary compression at zero tension 0.15 nm c

κgr compression mode gradient term modulus 5 kBT/nm2 [47]a

κc compression mode leaflet bending modulus 11 kBT a

aSee text for further discussion.
bExperimental values are for C18:0/1 (1-oleoyl-2-stearoyl-sn-glycero-3-phosphocholine).
cAssumed 10% of thickness

deformed state and an undeformed state (θ = 0) is ΔGbend = G(θ = 0)−G(θ) which adopts

values ranging from -1 to -30 kBT for our reference membrane, a range comparable to our

electrostatic benchmark energy.

B. Compression deformation

Next we turn to the case of compression deformations and minimize the energy given by

Eq. (6) with respect to the compression profile ũ(r), subject to two boundary conditions. In

addition to the condition ũ(R) = Ũo, we set ∂ũ
∂r
|r=R = 0. As discussed in Sec. IIA, we fix the

slope of the leaflets at the inclusion to model the packing of the lipids against the protein.

This simplifies the problem and the mathematics while maintaining the essential parameter

dependences and energy scales. In gramicidin, for example, the choice of zero slope predicts

the correct channel lifetimes [32]. Furthermore, the zero-slope boundary condition yields a

free energy that does not depend upon the spontaneous curvature, Co [12, 14].

As expected from the axial symmetry, the minimizing function ũ(r) is of the form ũ(r) =

Ũof(r), where f(r) is a combination of Bessel functions given in Appendix B, and Ũo is the
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compression at the boundary after tension rescaling. As shown in the Appendix (similar

calculations are given in [8, 11, 14, 32, 52, 53]), the minimizing free energy for both leaflets

is given by Gcomp = ΩŨ2
o , where Ω ≈ 700 kBT/nm2, assuming the parameters in Table I.

Therefore, the free energy Gcomp inherits the tension dependence of Ũo explicit in Eq. (5)

resulting in

Gcomp = Ω

(
Uo − do

α

2κe

)2

. (9)

Note that a protein-lipid interface for which Uo = 0 yields a non-zero energy at non-zero

tension. This result stems from the applied tension creating a deformation at the protein-

lipid interface by thinning the bulk of the membrane. We write the difference in energy per

leaflet between deformed and undeformed states as

ΔGcomp = Gcomp(0) − Gcomp(Uo) = Ω

(
Uodo

α

κe

− U2
o

)
, (10)

where one state does not deform the membrane at zero tension and we have assumed that the

radius of the channel is constant. We find that the free energy difference between deformed

and undeformed states is linear in bilayer tension α. Note that if Uo is positive, there exists a

tension α for which the “deformed” state has zero free energy. The bilayer thins sufficiently

so its thickness in the bulk matches that at the protein interface. We use the above equations

to evaluate ΔGcomp for our reference membrane and find a typical value of roughly −14 kBT .

Given the previous discussion, the leaflet slope at the boundary u′(R) may be non-

zero. In that case, there is an additional free energy term proportional to the leaflet

bending modulus and the spontaneous curvature Co [11, 14]. Spontaneous curvatures of

DOPE/DOPS mixtures in the H‖ hexagonal lattice phase have been measured to be be-

tween −0.3 nm−1 and 0.07 nm−1 depending on the mixture [54, 55]. Given a small incident

slope of u′(R) = 0.1, we make a free energy estimate of 4 kBT for a mixed composition

leaflet of nominal Co = 0.13 nm−1. This term could account for the observed channel

activity dependence on spontaneous curvature [7, 18, 52].

C. Footprint dilation

The free energy associated with the channel area is found by simply substituting the area

into Eq. (7). Again, we are interested only in the free energy difference between open and
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closed states, which is

ΔGpore = απ(R2
closed − R2). (11)

Rclosed is the unknown radius of the channel in the closed conformation. Assuming a small

5% decrease from the open state radius the corresponding free energy change is -2.3 kBT . In

general the radius could increase upon closing, giving a closed state with higher free energy.

In the analysis of midplane and thickness deformations, we assume the radius of the

channel R is held constant. However, under footprint dilations the energetic contributions

from midplane and thickness deformations increase with the circumference, even if those

deformations are constant throughout the gating (i.e. Uo and θ are not state dependent).

The deformations induce a line tension along the circumference resisting the dilation. This is

precisely the mechanism studied in mechanosensitive channels such as MscL and MscS[2, 51].

This implies that the footprint dilation mode inherits membrane parameter dependence from

state independent membrane deformations (those deformations that do not change as the

channel opens and closes). Equation (11) must be modified to account for this additional

energy.

Midplane deformations and compression deformations impose line tensions Fbend and

Fcomp, respectively. These are dependent upon both membrane parameters and channel

radius. However, assuming the change in radius during gating is small, we neglect the

radial dependence and approximate the line tensions as constant during dilation. Adding

the additional terms to Eq. (11) gives a total energy shift between dilation states of

ΔGpore = απ(R2
closed − R2) + 2π(Rclosed − R)(Fbend + Fcomp). (12)

For the model membrane parameters and a change in radius of 5%, we estimate the total

free energy change to now be -2.9 kBT . With the additional terms, ΔGpore is no longer

strictly linear in tension. It inherits the quadratic dependence of Eq. (9) and the square

root dependence of Eq. (8). However, this effect is small, and the energy remains linear in

α to a good approximation (see Fig. 5).
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IV. IMPLICATIONS FOR CHANNEL GATING

A. V0.5 is a function of membrane energy

Electrophysiological experiments performed on voltage-gated ion channels typically mea-

sure the transmembrane current as a function of transmembrane voltage, and thus measure

the conductivity of the composite membrane-protein system. If the channels are sufficiently

dilute in the membrane, we ignore any possible cooperativity or frustration between channels

and use the two-state Boltzmann statistics of Eq. (1).

In the preceding section, we showed that our benchmark gating energy of 16 kBT is

comparable to the magnitude of the membrane deformation energies alone. Therefore, the

sample membrane deformations considered (≈ 10% change in area or hydrophobic mismatch,

or θ ≈ 0.3) are energetically relevant when compared to electrostatic and protein conforma-

tion contributions. Therefore, the voltage at half-activation, V0.5 ∝ (ΔGmemb + ΔGprot), is

sensitive to the membrane deformation energy. We can probe the sensitivity by measuring

a shift in V0.5 in response to a shift in applied tension,

ΔV0.5(α0, α1) = V0.5(α1) − V0.5(α0) =
1

Q
[ΔGmemb(α0) − ΔGmemb(α1)] , (13)

where α0 and α1 are experimentally determined initial and shifted values of membrane

tension, respectively.

B. Membrane parameters are probes of the relevant deformations

In Sec. III we showed that membrane energy varies with bilayer tension differently for

different deformation types. Above, we argue that V0.5 is sensitive to membrane tension.

Experiments can probe this dependence to distinguish which deformation types of the three

may be dominant during gating. Figure 5a and b give expected shifts in V0.5 as a function of

applied membrane tension. To generate these plots, we use reference membrane parameters

and the analytic solutions of Sec. III. The upper plot a assumes closed channels deform the

membrane and open channels leave the membrane undisturbed, whereas the lower plot b

assumes the converse.

Experiments such as those described in [15–17] have demonstrated tension dependence in

peak current by inducing pressure across the membrane. The results suggest that increasing
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the stretch of the membrane, and therefore the tension, increases the open channel prob-

ability. These papers explore stretch dependence in activation and deactivation kinetics,

which, as discussed above, could involve membrane deformation. Unfortunately, the current

literature does not yield quantitative measurements of tension, so establishing accurate re-

lationships between tension and V0.5 is not possible with available data. Furthermore, the

analysis we suggest requires channel conductivity without the interference of deactivation, as

can be derived from time traces of the current [17]. To calculate tension from the measured

pressure, the patch clamp technique utilized in the experiments [15–17] must be combined

with measurements of the geometry of the membrane and the membrane-pipette interface

[2, 57–59]. Unfortunately, as noted in [17], visualization of the interface is very difficult

given physical limitations on the pipette and hardware.

Nevertheless, using a comparison between observed rupture pressures on the order of

100 mmHg and rupture tensions of about 4 kBT/nm2 [60], the study by Morris & Juranka

demonstrates that tensions on the order of 0.4 kBT/nm2 are consistent with shifts in V0.5 of

2-3 mV in voltage-gated sodium channels. These measurements are smaller than the voltage

shifts calculated for our model membrane system (see Fig. 5), and perhaps correspond to

smaller deformations.

The above discussion centers on tension dependence in the gating free energy. The energy

also depends upon material membrane parameters, such as leaflet thickness and bending

modulus. These parameters are not independent but rather interrelated. For example, the

ratio of bending modulus to stretch modulus is observed to vary quadratically with leaflet

thickness [46]. Therefore, in addition to influencing compression deformations, variations

in leaflet thickness influence midplane bending deformations via kb [14] as well as footprint

dilations via Fbend and Fcomp. Over a range of hydrophobic thickness from 1.2 nm to 1.7 nm,

Rawicz and coauthors find that κe changes by less than 10% whereas κb changes by over

100%. We ignore changes in κe and let the bending modulus scale as κ′
b = κb(d

′
o/do)

2 where

the prime indicates the value for modified thickness (the compression mode leaflet bending

modulus κc scales identically). In this way we calculate expected critical voltage shifts as a

function of bilayer thickness for each deformation type, and plot them in Fig. 5 c and d.
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FIG. 5: Expected shifts in half-activation voltage as functions of tension (a,b) and bilayer thickness

(c,d) for the three deformation types. ΔV0.5 is expressed as a shift from V0.5 at the reference tension

and thickness in mV. The solid gray lines represent compression deformations, the dotted gray lines

represent footprint dilations, and the solid black lines represent midplane bending deformations.

Plots a and c assume the closed channel state deforms the bilayer, whereas b and d assume the

open channel deforms the bilayer. We present our results as though one type of deformation were

dominant, though a physiological system may lack a dominant deformation type, existing as a

mixture of different types.

V. CONCLUSIONS AND OUTLOOK

We have argued that the lipid membrane is not a passive bystander in the functioning

of ion channels. The membrane envelopes the channel, and as such, is intimately coupled

to conformational changes of the channel protein. In the case of voltage-gated ion channels,

the role and location of the S4 helix in the protein structure and evidence that the helix

moves during gating [61] implies protein motion at the protein-lipid interface. It follows
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that the conformation change during opening must induce local deformations in the lipid

membrane. To change conformation, the channel must pay the energetic cost of bending

and compressing the bilayer.

Our estimates above place the cost of membrane deformations on the order of 10 kBT

for the representative deformations. This is comparable to experimental estimates of total

energies that drive the gating. As a result, we claim that the energetics of membrane

deformations should not be ignored. Furthermore, the membrane’s influence upon gating

can be exploited to learn about the channel conformational change. Varying the applied

bilayer tension and leaflet thickness modifies gating energetics which are observable through

open channel statistics. This suggests a class of experiments in which the half-activation

voltage is measured as a function of those membrane parameters:

• The model predicts a systematic shift in half-activation voltage with applied tension. A

square-root dependence indicates midplane deformation is dominant, whereas a linear

shift indicates footprint dilation or bilayer compression is dominant. The sign of the

slope indicates whether the open or closed conformation deforms the membrane.

• The model also predicts a shift in half-activation voltage with lipid tail length. Sup-

plemented with the understanding of how the elastic moduli depend upon the lipid

tail length, the model distinguishes among deformation types based upon how the

half-activation voltage shifts with tail length. Bending deformations are least sensitive

to leaflet thickness, whereas compression deformations are very sensitive and exhibit

the most non-linear dependence.

This line of investigation could therefore place constraints on how the protein conformation

changes during gating. By tuning membrane parameters, we can exploit the information

stored in the membrane’s deformation and probe the protein itself.
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APPENDIX A: MIDPLANE BENDING EQUILIBRIUM SOLUTIONS

To find the equilibrium solutions for the bilayer profile under midplane bending deforma-

tions, we begin by writing the bending energy functional of Eq. (3) in dimensionless units.

By factoring out the length scale λ =
√

κb

α
and the energy scale κb we obtain

ḡ[h̄(s)] =
1

2

∫
M

d2s
[
(∇2h̄)2 + (∇h̄)2

]
, (A1)

where ḡ = g/b, h̄ = h/λ and s = r/λ. The Euler-Lagrange equation is 0 = ∇4h̄ − ∇2h̄,

where ∇2 ≡ ∂2

∂x̄2 + ∂2

∂ȳ2 [11]. With cylindrical symmetry and the boundary conditions applied,

the solutions that are finite at large distances satisfy

∇2K0(k±s) = k2K0(k±s), (A2)

where Kn is the modified Bessel function of the second kind. Solving for k yields k± = {1, 0}
and the height function is of the form

h̄(s) = A+K0(s) + A−K0(0). (A3)

Demanding the height function is finite at the protein interface fixes A− = 0, whereas

the imposed slope condition at the interface sets the other constant via ∂h̄(s)
∂s

|s=R̄ = −θ =

−A+K1(R̄), where R̄ = R/λ. The equilibrium height function that satisfies all boundary

conditions is

h̄(s) =
θ

K1(R̄)
K0(s). (A4)

We now calculate the deformation energy given our height profile Eq. (A4) by evaluating

Eq. (A1) using partial integration. The Laplacian squared term is evaluated as∫
∇2h∇2h =

∫
∇4h −

∮
(∇2h∇h − h∇3h) · dn̂ =

∫
∇4h, (A5)

where we evaluate the boundary term using the Euler-Lagrange relationship. Likewise, the

gradient squared term is ∫
∇h∇h = −

∫
∇2h +

∮
h∇h · dn̂. (A6)
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Combining the two results yields

ḡ =
1

2

∫
d2s(∇4h̄ −∇2h̄) +

1

2

∮
dn̂ · h̄∇h̄, (A7)

where we have adopted our scaled coordinates and again utilized the Euler-Lagrange relation

to remove the first term. The remaining boundary integral is easily solved using the height

profile of Eq. (A4) and evaluating along the inclusion boundary. After restoring units, the

energy is

g = κbπθ2

(
R

λ

) K0(R/λ)

K1(R/λ)
. (A8)

APPENDIX B: COMPRESSION DEFORMATION EQUILIBRIUM SOLUTIONS

We begin by writing the Hamiltonian for compression deformations, Eq. (6), in a dimen-

sionless form by factoring out a length scale ς =
√

κc

κgr
and energy κc:

ḡ[ū(s)] =

∫ ∞

0

dr
[
(∇2ū)2 − 2∇2ūC̄o + (∇ū)2 + βū2

]
, (B1)

where the overbars indicate scaling out ς or κc, s = r/ς and β ≡ κeκc

κ2
grd

2
o
. Since Co is indepen-

dent of the conformation of the channel, we have removed the C2
o term. The Euler-Lagrange

equation, 0 = ∇4ū −∇2ū + βū, yields solutions of the form

ū(s) = A+K0(λ+s) + A−K0(λ−s), (B2)

where

λ± ≡
√

1 ±√
1 − 4β

2
. (B3)

Complex values of λ± are allowed because the physical quantity ū(s) remains real. By

restoring units to ū(s) we uncover a second length scale, γ =
(

κcd2
o

κe

)1/4

. The physical decay

length of the Bessel functions is a combination of these two length scales. We now impose

the boundary conditions ū(s)|S = Ūo and ∂ū
∂s
|S = 0, where S = R/ς. We solve for A±:

A± =
ŪoK1(λ∓S)λ∓

K0(λ±S)K1(λ∓S)λ∓ −K0(λ∓S)K1(λ±S)λ±
. (B4)

This solution applied to Eq. (B1) gives the equilibrium energy. Alternatively, we can utilize

the same trick as with midplane deformations where partial integration upon the free energy
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functional results in a boundary integral along the inclusion. The unitless energy turns out

to be

ḡ =

∮
(∇2ū∇ū − ū∇3ū + ū∇ū − 2Co∇ū) · dn̂, (B5)

where assuming cylindrical symmetry and the boundary condition ∇ū|S = 0 yields

ḡ = 2πS(−ū∇3ū) · −dŝ|s=S. (B6)

This expands to

ḡ = 2πSū

(
∂3

s ū +
1

s
∂2

s ū − 1

s2
∂sū

)
|s=S, (B7)

which we evaluate along the inclusion of radius R = ςS and boundary deformation ςŪo =

Ũo = Uo − do
α

2κe
. We then restore the energy g = ḡκc.
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