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Circular domains in phase separated lipid vesicles with symmetric leaflet composition commonly exhibit
three stable morphologies: flat, dimpled, and budded. However, stable dimples (i.e., partially budded domains)
present a puzzle since simple elastic theories of domain shape predict that only flat and spherical budded do-
mains are mechanically stable in the absence of spontaneous curvature. We argue that this inconsistency arises
from the failure of the constant surface tension ensemble to properly account for the effect of entropic bending
fluctuations. Formulating membrane elasticity within an entropic tension ensemble wherein tension represents
the free energy cost of extracting membrane area from thermal bending undulations of the membrane, we cal-
culate a morphological phase diagram that contains regions of mechanical stability for each of the flat, dimpled,
and budded domain morphologies.

The importance of choosing an appropriate thermodynamic
ensemble to account for different constraints imposed during
a given experiment has been well recognized since the work of
Gibbs [1]. For instance, in protein unfolding kinetics, recent
single molecule studies underscore the differences between
force-controlled and displacement-controlled ensembles [2].
Here we examine the effect of loading ensemble on the sta-
bility of domain morphologies in phase separated lipid mem-
branes. In several ternary mixtures of lipids and cholesterol,
two fluid phases coexist below a transition temperature [3],
such that lipid domains form and can be observed with fluo-
rescence microscopy [4–6]. These domains typically display
one of three distinct morphologies with occasional transitions:
flat, dimpled (partially budded), or fully budded. Equatorial
views of phase separated giant unilamellar vesicles (GUVs)
are shown in Fig. 1, as examples of the flat, dimpled, and fully
budded domains that are routinely observed [7].

A simple elastic model accounts for the free energy dif-
ferences responsible for transitions between flat and spher-
ically budded domains [8–10]. The bending energy of the
membrane competes with an interfacial free energy per unit
length (line tension) at the domain phase boundary, tending
to drive the domain toward curved shapes that decrease the
boundary length while preserving domain area. This model
predicts that above a critical size (or line tension) an initially
flat domain deforms spontaneously into a completely spheri-
cal bud with an infinitesimal domain boundary, and that par-
tially budded (dimpled) domains are mechanically stable only
with non-zero spontaneous curvature. This latter prediction
is inconsistent with experimental observations of dimpled do-
mains in GUVs with no apparent spontaneous curvature [11].
Stable dimpled domains are crucial to the mechanical inter-
actions between domains that arrest coalescence and spatially
organize domains in a phase separated membrane [11].

In the absence of spontaneous curvature, we hypothesize
lateral membrane tension as a plausible candidate mechanism
for stabilization of dimpled domains. This surface tension is

often introduced as a Lagrange multiplier conserving the total
area of the (nearly incompressible) membrane [e.g., 11–13],
and is determined by an interplay between membrane bend-
ing and convserved vesicle volume. Accordingly, observing
that a nonspherical vesicle has an “excess” area greater than
a spherical vesicle of the same volume, Yanagisawa, et al.
[6] argue that domain budding could be halted once the do-
main deformations exhaust all excess area. For what appear
optically to be spherical vesicles, this qualitative explanation
does not identify the source of the extra area, nor how mem-
brane area plays a role in the membrane energetics that govern
morphology. Recent work by Semrau, et al. [13] showed that
linear elastic stretching of the membrane provides a form of
mathematical regularization that stabilizes dimpled domains.
However, membrane stretching becomes significant only at
tensions larger than ∼ 10−2kBT/nm2 [14], which is roughly
two orders of magnitude larger than tension estimates in ex-
periments that observe dimpled domains [4, 7, 11, 16]. This
lower tension regime is dominated by the entropy of micro-
scopic undulations that store excess membrane area [14]. Ac-
cordingly, we refer to this as the entropic tension regime. For
large GUVs, the entropic tension is often assumed to be con-
stant [3], consistent with the idea that small deformations ex-
tract only minimal area from a large (effectively infinite) reser-
voir of thermal fluctuations. However, as implied by previ-
ous studies [3], and as we show explicitly here, prescribing
a fixed lateral tension does not produce stable dimples, but
rather only adjusts the relative stability of the flat and budded
domain morphologies.

This array of clues suggests the need for some form of
mathematical regularization other than constant tension to halt
the budding of domains. While the linear elastic tension-area
term added by Semrau, et al. [13] is mathematically sufficient,
it is physically inappropriate for vesicles at low tension. Here
we resolve this puzzle of the stability of partially budded do-
mains by a more careful treatment of the effect of thermal
fluctuations on tension. Specifically, in place a membrane at
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FIG. 1: Domain morphologies on vesicles. (a) A phase-separated
GUV showing domains (red) that are flat with respect to the vesicle
(blue). (b) Dimpled domains on a GUV. (c) A dimple-to-full bud
transition indicated by the red arrows. Scale bars are 10 µm. [7]

constant tension, we consider the more realistic choice of a
finite reservoir of thermal fluctuations. Incorporating the cor-
responding tension-area equation of state into the free energy
of the simple elastic model, we calculate the phase diagram
as a function of domain size and excess (thermal) membrane
area, showing that the entropic tension ensemble renders all
three domain morphologies stable in parameter ranges consis-
tent with experiments.

Our model system is an initially flat circular domain embed-
ded in a membrane matrix of a different phase, subject to a (for
now, constant) far-field tension τ . We assume the domain is
much smaller than the average radius of the vesicle, such that
the ‘background curvature’ of the vesicle is negligible. The
boundary of the domain experiences a line tension γ due to
the unfavorable interaction at the interface of the two phases.
The free energy of the domain-matrix system as it deforms
is the sum of the bending energy of the membrane, the inter-
face energy from the line tension γ, and the work done by the
membrane against tension as the domain deforms [8, 9, 15],
and is given by

G = Gbend +Gline +Gtension

=
κ

2

∫
M

(2H)2
d2A+ 2πγ (r − rd) + τ∆A, (1)

where κ is the bending modulus, H is the mean curvature,M
is the domain and matrix membrane, r is the interface radius
of the deformed domain, and rd is the initial radius of the flat
domain. ∆A is the area required to deform the domain and
surrounding matrix membrane from an initially flat state. For
simplicity, we assume κ is the same for the two phases, and we
neglect the effects of Gaussian curvature, noting however that
it can become important when the Gaussian moduli of the two
phases differ significantly as compared to κ [16]. Equation
(1) can be written in closed analytic form by assuming that
the domain deforms spherically while the matrix membrane
remains flat [8, 9], which, after normalizing the deformation
energy by the bending energy of a sphere, 8πκ, and the lengths
by the so-called invagination length, ξ = κ/γ, takes the non-
dimensional form

Ĝ ≡ G

8πκ
=
(

1 +
σρ2

d

8

)(
1− ρ2

ρ2
d

)
+

1
4

(ρ− ρd) , (2)

where ρd = rd/ξ and ρ = r/ξ are the normalized initial and
deformed interfacial radii, and σ = τξ2/κ is the normalized
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FIG. 2: Energies and shapes of deformation. (a) Normalized free en-
ergy of a budding membrane as a function of normalized domain ra-
dius ρ relative to the flat radius ρd, in the constant membrane tension
ensemble, for a few values of domain size ρd and normalized surface
tension σ. The solid lines are the numerical results; the dashed lines
correspond to the simplified analytical model. Sketches at ρ/ρd =
0, 0.5, and 1 show corresponding analytical shapes. (b) Meridional
curves from axisymmetric finite element numerical minimization of
free energy for σ = 0.25. The domain is in red, and the matrix is
in blue. Clockwise from upper left: equilibrium deformed configu-
rations for ρ/ρd = {1, 3
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membrane tension. The model predicts that stable conforma-
tions occur only for the two limits: ρ = ρd (flat) and ρ = 0
(spherical). Note that larger values of the dimensionless do-
main size ρd stabilize the spherical domain relative to the flat
domain, while increasing the dimensionless membrane ten-
sion σ has the opposite effect.

To confirm that instability of partial buds (0 < ρ/ρd < 1)
is not simply an artifact of the assumptions on the deformed
membrane geometry [21], we also performed numerical min-
imization of the shape free energy of eqn. (1) by discretiz-
ing the domain and matrix with axisymmetric finite elements
[17], and holding fixed the areas of the domain and matrix
using the augmented Lagrange method [18]. Figure 2(a)
shows the numerical minimum free energy as a function of
deformed domain radius for systems with select values of do-
main size ρd and membrane tension σ. Figure 2(b) shows
meridional curves of the finite element model obtained by
quasi-Newton numerical minimization of the free energy at
several prescribed values of the deformed domain radius with
σ = 0.25. For typical lipid membranes with κ = 25 kBT and
ξ = 50 nm, the values of ρd and σ used in the calculations
correspond to domain sizes 25 nm ≤ rd ≤ 500 nm and mem-
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brane tensions 2.5 × 10−6kBT/nm2 ≤ τ ≤ 10−2kBT/nm2,
as compared to experimental values of ∼ 10−5kBT/nm2 [4].
For comparison, the results of the simplified analytical model,
eqn. (2), are plotted as dashed lines, demonstrating that the er-
rors of the simplified analytical model are small, and more im-
portantly, that the instability of the partially budded domains
is not an artifact of the geometric assumptions.

Note that the closed analytical form of eqn. (2) clarifies
the scaling of the energy sources, where the quadratic term
represents the combined energy of bending and surface ten-
sion, while the linear term represents the line energy of the
domain boundary. Since the quadratic term enters with a neg-
ative sign, it is clear that to find a stable dimple the energy
requires additional terms with higher-order dependence on ρ,
so as to produce a local energy minimum at some intermedi-
ate radius (0 < ρ/ρd < 1). The failure, in this regard, of
the constant surface tension ensemble foreshadows the need
to consider mechanisms that alter surface tension as a func-
tion of membrane deformation.

At finite temperature, a finite amount of excess area is
stored in the thermal undulations of the membrane. This ex-
cess area can be accessed by the deforming membrane at ex-
ponentially increasing membrane tension. For a membrane
with actual area A, the thermal undulations are superimposed
on the projected, or measurable area, Ap, so that Ap < A.

Experimentally, for vesicles near the surface area to volume
ratio of a sphere, changes in vesicle volume with fixed area
controlAp, whereas changes in vesicle area with fixed volume
control A. To model the coupling between entropic tension
and membrane deformation, imagine the domain and matrix
membrane are at zero temperature and initially flat, but are
coupled to a “thermal reservoir” at temperature T > 0 that
has a projected area Ap and total area A, as shown in the
schematic of Fig. 3. A straightforward but tedious calculation
gives the entropic equation of state for the surface tension of
the thermal reservoir as [19]

τ ' π2κ

ao
e
− 8πκ
kBT

“
A−Ap−∆A

Ap

”
, (3)

where a0 ≈ 0.7 nm2 is the area per lipid molecule for a
typical lipid bilayer [20]. As the zero-temperature domain-
matrix system deforms at constant projected area, it pulls in
an area ∆A from the thermal reservoir. The projected area of
the thermal reservoir, Ap, remains unchanged, but its actual
area decreases from A to A − ∆A. Integrating eqn. (3), we
obtain the free energy of the reservoir as

Gent =
∫ ∆A

0

τd [∆A′]

=
ApπkBT

8ao
e
− 8πκ
kBT

A−Ap
Ap

(
e

8πκ
kBT

∆A
Ap − 1

)
, (4)

which collapses to the constant tension ensemble for
∆A/Ap � kBT/8πκ.

The contributions from membrane bending and phase
boundary line tension remain unchanged from eqn. (2), and

FIG. 3: Schematic of the entropic tension ensemble. The thermal
reservoir (left) at a finite temperature T has an actual area A−∆A
and a projected area Ap, while the deformed domain-matrix system
(right) is at T = 0. The small pipe represents a perfect thermal in-
sulator that permits the flow of lipid from one region to the other,
where the total amount of lipid in the ensemble is conserved, result-
ing in equal tension in both regions.

the normalized total free energy of membrane deformation in
the entropic ensemble is

Ĝ =
(

1− ρ2

ρ2
d

)
+

1
4

(ρ− ρd)

+
NkBT

64κ
e
− 8πκε
kBT

[
e

8πκα
kBT

(
1− ρ

2

ρ2
d

)
− 1
]
, (5)

whereN = Ap/ao is the system size (∼ the number of lipids),
ε = (A−Ap) /Ap is the excess area fraction stored in the
membrane undulations, and α = πr2

d/Ap = Ad/Ap is the
domain area fraction.

The free energy of eqn. (5) is then a function of three inde-
pendent variables: the system size N , the domain area frac-
tion α, and the relative excess membrane area ε, noting that
when the reservoir is at zero tension ε achieves a maximum
value proportional to ln(N). The entropic reservoir supplies
the higher-order dependence on ρ necessary to overcome the
bending energy’s negative ρ2 dependence to yield stable dim-
ples. Accordingly, the set of equilibrium shapes includes vari-
ous combinations of flat, dimpled, and budded domains de-
pending on location within the three-dimensional (N,α, ε)
phase-space.

To illustrate, we plot in Fig. 4 two 2D slices through the
3D phase diagram for system sizes N = 4.5 × 108 and
N = 7× 107, corresponding to larger, Ap = π(10µm)2, and
smaller, Ap = π(4µm)2, vesicles, respectively. Both of these
2D phase diagrams show regions where each of the flat, dim-
pled, and fully budded morphologies are stable. In addition,
regions of metastable morphologies appear where transitions
between two or even three (for N = 7 × 107) conformations
may occur.

Figure 4(a) shows a slice through this three parameter
(N,α, ε) phase diagram containing one and two phase re-
gions, while Fig. 4(b) contains all phases except the flat-
dimple coexistence regime. As an illustration of the energy
landscape in the tri-stable region of Fig. 4(b), we plot the nor-
malized free energy Ĝ along with the individual contributions
from bending, line tension, and entropic surface tension in
Fig. 4(c) for N = 7 × 107, α = 0.01, and ε = 0.026. In this
region the dimple state is the global energy minimum, while
the flat and budded morphologies are local minima. Figure
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FIG. 4: Morphological phase diagrams for (a)N = 4.5×108 and (b)
N = 7×107. The letters ‘F’, ‘D’, and ‘B’ represent the flat, dimpled,
and fully budded domains. Regions with more than one letter indi-
cate metastability, with the letters ordered in increasing free energy.
Solid lines are “hard” phase boundaries, across which morphologies
appear or disappear. Dashed lines are “preference” boundaries, indi-
cating changes in the energetic ranking of metastable morphologies.
The vertical grey lines are the excess area fraction in the reservoir at
zero tension. (c) The free energy G/8πκ as a function of ρ/ρd for
N = 7× 107, Ad/Ap = 0.01, and ε = 0.026. The (lowest-energy)
equilibrium state at ρ/ρd ' 0.76 is a dimple (close-up view in inset),
while flat and full buds are metastable.

4(c) shows how the Gaussian form of Ĝent(ρ) offsets the neg-
ative curvature of Ĝbend(ρ) to yield a local energy minimum at
an intermediate value of ρ/ρd in Ĝ(ρ). For this case, the en-
ergy barrier between the dimpled and flat states is≈ 6.6 kBT ,
while the barrier between the dimpled and fully budded states
is ≈ 640 kBT .

For the phase diagrams shown in Fig. 4, the range of
0.01 < ε < 0.03 translates to a range of lateral tensions
0.66 kBT/nm2 > τ > 2×10−6 kBT/nm2, with experimental
values on the order of∼ 10−5 kBT/nm2 (the nominal rupture
tension of a membrane is ∼ 5 kBT/nm2).

The existence of stable regions for each of the morpholo-
gies over this range is consistent with the fact that all three
morphologies are observed in experimental systems. It is
noteworthy that both α and ε are control parameters that can
be manipulated in experiments. For instance, ε can be ad-
justed either by micropipette aspiration [14] or by controlled
thermal expansion of the membrane. On the other hand,
increases in α occur passively as pairs of domains sponta-
neously coalesce into a single larger domain. As complete
phase-separation into two simply connected domains is the
thermodynamic ground state, it is expected in experiment to
observe generally an “upward” flow through the phase dia-
grams in Fig. 4, although trajectories are not entirely vertical
due to the conserved vesicle volume. As an example of a pos-
sible trajectory, one can imagine an initially small, flat domain
coalescing with a flat domain, crossing the horizontal prefer-
ence line in the phase diagram to yield a budded domain. That
domain might coalesce with another causing traversal into the
dimpled region of the phase diagram. Indeed, such sequences
of coalescence that link to domain morphology have been ob-
served experimentally [7].

We close by acknowledging that the static model of domain
mechanical stability and corresponding morphological phase
diagrams are an initial step toward an understanding of do-
main dynamics in vesicles in vitro and cell membranes in vivo.
A more complete picture will require an accounting of the ef-
fects of the coupled 2D lipid hydrodynamics and 3D solvent
hydrodynamics, the chemical kinetics of phase coalescence,
and the potential roles of proteins in lipid organization.
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