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1 Abstract
All cells respond to changes in both their internal milieu and the environment around them through

the regulation of their genes. Despite decades of effort, there remain huge gaps in our knowledge of both
the function of many genes (the so-called y-ome) and how they adapt to changing environments via
regulation. Here we describe a joint experimental and theoretical dissection of the regulation of a broad
array of over 100 biologically interesting genes in E. coli across 39 diverse environments, permitting
us to discover the binding sites and transcription factors that mediate regulatory control. Using
a combination of mutagenesis, massively parallel reporter assays, mass spectrometry and tools from
information theory and statistical physics, we go from complete ignorance of a promoter’s environment-
dependent regulatory architecture to predictive models of its behavior. As a proof of principle of the
biological insights to be gained from such a study, we chose a combination of genes from the y-
ome, toxin-antitoxin pairs, and genes hypothesized to be part of regulatory modules; in all cases, we
discovered a host of new insights into their underlying regulatory landscape and resulting biological
function.

2 Introduction
The discovery in the early 1960s that there are genes whose job it is to control other genes and how
that control is exercised through environmental influences was heralded as “the second secret of life,” [1,
2] vastly expanding the original conception of the gene itself. It has now been more than sixty years
since Jacob and Monod ushered in their repressor-operator model and the allied discovery of allosteric
regulation [3, 4]. And yet, although more than 1017 bases have been deposited in the Sequence Read
Archive (SRA) database [5], we are still extremely far from understanding how all of the genes of any
organism are regulated, or even what the functions of all of those genes might be. The regulatory
landscape of the genome requires building a bridge between its base pairs, the molecules that bind
to them, and its environmental context. This is the language we wish to learn how to speak, read,
and write. However, despite a prodigious effort in the case of Escherichia coli [6–13], one of biology’s
best studied model organisms, for roughly 60% of its genes, databases lack any description of their
regulatory architectures [14, 15]. Note that we use the words “regulatory architecture” to imply that
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the binding site positions are known with base pair resolution and which transcription factors bind
those binding sites is explicitly known, meaning that simple cartoons like those shown in the upper
right of Figure 1(A) can be assembled. Further, for roughly 35% of its genes we lack sufficient evidence
to report their function. These genes of unknown function have been christened the y-ome [16, 17] since
many of them have names that begin with the letter y, dating back to the first complete annotation
of the E. coli genome [18]. There is yet another crucial challenge to understanding the regulation-
based physiology and evolution of these organisms, namely, our vast ignorance of the ways in which
genes are coupled to environmental stimuli. A beautiful demonstration of the often hidden influence
of environment on phenotype was carried out more than a decade ago [19]. Just as the y-ome is a
powerful and concise nomenclature for our ignorance of the functional properties of the proteome, the
“allosterome” refers to our ignorance of the ways in which environmental signals couple to those very
same proteins, changing their activity [20]. Said differently, different proteins “care” about different
environmental perturbations. Making progress on all of these fronts is essential to a modern, genome-
based understanding of the physiology and evolution of all organisms.

The goal of our work is to systematically address these questions by providing a simultaneous
promoter-by-promoter and high-throughput quantitative dissection of a variety of biologically inter-
esting genes, as well as genes whose function or context have not yet been discovered. We place
particular emphasis on the all-important question of how genes are regulated in response to a myriad
of different environmental conditions. In contrast to the painstaking and hugely successful gene-by-
gene dissections of classical molecular biology (for several excellent examples from a huge literature,
see [21–28]), our aim is to determine promoter function and regulation for many genes, in the presence
of a broad canvas of distinct environments, all in a single experiment. By using a combination of
mutagenesis, massively parallel reporter assays (MPRAs), mass spectrometry and statistical physics,
we can go from complete ignorance of a promoter’s regulatory architecture to predictive models based
upon thermodynamic or kinetic models of gene expression (Figure 1(A)). Our work builds on and is
inspired by many brilliant studies using MPRAs [29–35]. In particular, the present work is founded
upon the MPRA studies known as Sort-Seq [7, 29, 30] and Reg-Seq [9], which share the philosophy of
using mutated promoters and gene expression measurements in conjunction with information theory
to generate high-throughput hypotheses for binding site locations. In conjunction with these binding
site hypotheses, both experimental and computational approaches are then used to determine which
transcription factors bind them. For reasons we will explain in detail later in the paper, we note that
the problem of figuring out which transcription factors bind to which binding sites is very challenging.
Here, we developed and exploited a next generation version of Reg-Seq, including a streamlined proto-
col and genome integrated reporters, to study the regulatory architecture of more than 100 promoters
in 39 different growth conditions, while paving the way to study the entire regulatory genome of an
organism in one experiment. A detailed discussion of related methods and literature can be found in
the Supplementary Information S1.

Our ultimate objective is to carry out a systematic analysis for every gene in E. coli (and later
other organisms such as P. aeruginosa) under a broad array of environmental conditions. To achieve
such a condition-dependent dissection of the regulatory landscape, we adopt the protocol shown in
Figure 1(B). Briefly, the procedure entails first using massively parallel reporter assays in conjunction
with information theory and simple probabilistic models to generate hypotheses for the locations of
binding sites. These binding sites are then used as a fishing hook for DNA chromatography and
mass spectrometry to identify bound transcription factors (see lower right of Figure 1(B)) or used
for computational motif scanning [36] in which we compare our putative binding sites to databases
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Figure 1. Discovering regulatory architectures. (A) High level strategy for complete characterization of
the regulatory architecture of a previously uncharacterized gene. The procedure starts with genes of unknown
regulatory architecture and aims for a quantitative analysis of the input-output properties of the regulatory
network. (B) Experimental procedure for characterizing a previously uncharacterized gene. The six elements
shown here provide a schematic of the steps needed to go from an uncharacterized promoter to one in which
we have a well-defined, environmentally-dependent model of the binding sites, the allied transcription factors,
and the energy matrix (shown under the information footprints) describing their binding interaction.
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of known binding sites. In addition to identifying which transcription factors bind these putative
binding sites, the goal is to ultimately infer a nucleotide-by-nucleotide binding energy matrix (for a
deep analysis of this approach see [37]) as we have done in the past [7, 9, 29, 38], which predicts a
promoter’s input-output function based on statistical mechanics [38–42].

As a proof of principle of the biological insights to be garnered from a study that carries out high-
throughput and quantitative promoter discovery across a large diversity of environmental conditions,
we chose a suite of genes of wide biological significance. In particular, we focus on 104 promoters that
struck us as particularly exciting. We explored these promoters in 39 growth conditions, where we
perturb the environment in varying ways (see upper middle of Figure 1(B)), ranging from providing
cells with a variety of carbon sources to the presence of antibiotics to growth in anaerobic conditions. 16
of the promoters were chosen as so called “gold standards.” These genes have well-defined regulatory
architectures and have been studied in detail in previous experiments [7, 9], many as famous case
studies. Including these gold-standard genes in our repertoire is important because it allows us to
compare the approaches presented in this work to previous studies of these promoters and verify the
results, as well as to discover refinements or contradictions with the results present in databases of
regulatory knowledge.

Of course, despite the great interest in recapitulating decades of molecular biology experiments on
gene regulation in a high-throughput fashion, our approach shows its real power when brought to bear
on previously unexplored promoters. To that end, 18 genes were chosen that display sensitivity to their
environmental contexts as discovered in a seminal mass spectrometry proteome study in E. coli [43].
In those experiments, cells were grown under 22 different growth conditions and the copy numbers
of roughly half the ≈ 4500 genes were measured and summarized in a fascinating giant spreadsheet.
The 18 genes here were chosen because their copy numbers were found to be highly variable across
conditions in that mass spectrometry census. This high variation in copy number suggests that in
certain environmental conditions, these genes are under strong regulatory control. We performed a
systematic analysis of this data which makes it abundantly clear how different conditions can yield
very different protein copy numbers [44]. For example, carbon transporters for sugars other than
glucose reveal large changes in copy number only in the presence of the carbon source they specifically
transport. Of the 18 high-variance genes we considered from that mass spectrometry study, 9 had no
function annotated at the time of this study, meaning that not only were they interesting candidates
from a regulatory perspective, but they were also part of the y-ome [16].

We expanded our analysis of y-ome genes by choosing another 13 such genes lacking any functional
description from EcoCyc [17]. We hypothesize that these genes offer an interesting opportunity for
discovering new regulatory networks and gene functions, since the identification of transcription factor
binding sites offers clues as to which pathways these genes are involved in, and acts as a starting point
to discover their function. As another proof-of-principle biological category, we chose 18 genes that
are part of toxin/anti-toxin systems. Expression of toxin genes can have drastic effects on cellular
physiology and can be triggered by various stresses [45], requiring tightly controlled regulation. Since
one of our primary biological emphases here is on the mapping between environmental conditions and
regulatory architecture, toxin-antitoxin systems provide a ready-made case study in regulatory response
to environmental dynamics. Our next set of biologically interesting case studies focused on the recent
introduction of the so-called iModulons in the work of Lamoureux et al. [46, 47]. They dubbed groups
of genes that are controlled by the same transcription factor iModulons. We chose two newly identified
groups, responding to the putative transcription factors YmfT and YgeV, respectively. Including these
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sets of genes is an interesting opportunity to investigate how genes respond to environments as a
collective. Additionally, both iModulons contain even more y-ome genes. We rounded out our list
of case studies by choosing 6 genes that are part of gene regulatory networks with feedforward loop
motifs, which present a compelling starting point for discovering how pertubations in the environment
are transmitted through gene networks [48–51]. The entire list of genes that serve as the basis of our
study can be found in Table 1.

We note that much beautiful earlier work has provided deep genome-wide insights into how an
organism responds to specific environments. We summarize some of these results in Section S1. Here we
switch the narrative to a perspective that focuses on a smaller set of genes than the whole genome, but
with the objective of rigorously characterizing the way in which the environment alters the regulatory
landscape. To that end, the remainder of the paper is organized to illustrate how we carried out
these case studies. In the next section, we provide a wide-ranging exploration of the principal results
of our study. There we present both general conclusions as well as specific biological descriptions of
particularly interesting genes. The Supplemental Information goes much further by providing both the
summary data and a description of each of the more than 100 genes that were the object of our study.
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group gene group gene group gene

gold Standard antibiotic/toxin incoherent feed forward, type 4
rspA tisB ihfA (X)
araA blr ompR (Y)
araB gyrA (z) ompF (Z)
znuB ghoT
znuC emrA
xylA emrB
xylF yagB
dicC yjjJ
relE prlF
relB yhaV
ftsK acrB
lacI acrZ
marR ldrD
dgoR rdlD
dicA tabA
araC ratA

dinQ
tolC

Schmidt et el. Schmidt et el. uncharacterized incoherent feed forward, type 1
hdeA cusF crp (X)
aceA yjbJ galS (Y)
ecnB elaB mglB (Z1)
mcbA yncE galE (Z2

tnaA yqjD
mglB ybaY
gatA ygiW
lpp zapB
tmaR ybeD

YmfT imodulon YgeV imodulon uncharacterized protein (y-ome)
fur ybiY yacC
sulA rcsB yacH
intE xdhA yadG
xisE xdhB yadI
ymfH xdhC yadE
ymfJ ygeW yadM
ymfT ygeX yadN
ymfL ygeY yadS
ymfM hyuA ykgR
ymfN ygfK yahC
beeE ssnA yahL
jayE ygfM yahM
ymfQ xdhD yqaE
stfE ygfT
icdC uacT
recN cpxR

Table 1. Genes subjected to Reg-Seq study. A total of 104 genes were chosen for this study that can be
classified into different groups as seen in the nine categories. The gold standard genes were chosen because
they have been well characterized in the past [7, 9]. A group of genes were chosen because of their role in
antibiotic resistance or toxin/anti-toxin systems. Two feed-forward loops were chosen. Two groups were
chosen from the dataset by Schmidt et al., 2016 [43] by identifying genes with strongly varying expression
across their 22 different growth conditions, indicating transcriptional regulation that senses these conditions.
The y-ome genes were selected from the EcoCyc database [52] by screening for genes with minimal functional
annotation. Finally, two groups of genes (YmfT and YgeV imodulons) were chosen from the PRECISE2.0
dataset [46], as they form iModulons.

3 Results
Before describing the results of our investigation of the 104 genes described above, we briefly re-

count some of the key elements of the full experimental and computational approach used to achieve
them. The main elements of our work are schematized in Figure 1(B). For those interested in the
precise details, the Methods and Supplementary Information attempt to transparently provide enough

6



explanation for others to repeat the work described here for themselves. There are several main ex-
perimental and computational progressions needed to carry out environmentally-dependent regulatory
discovery that are the main substance of this section, and we describe them now in turn.

As noted in the introduction, massively parallel reporter assays are an excellent way to discern
regulatory behavior with base-pair specificity, since there is a direct link between measured expression
and nucleotide identity in the promoter region. We use a modified Reg-Seq [9] protocol with the long-
term goal of increasing the scale of the method from hundreds of genes at a time to thousands. Here,
we give a summary of these modifications; a detailed breakdown and protocols can be found in the
Materials and Methods in Section 7. For each gene included in this study, we found its promoters and
computationally generated a collection of mutated variants and ordered the sequences as a synthesized
oligonucleotide pool. These oligonucleotides were ligated to sequencing barcodes and cloned into a
plasmid vector. For the 104 genes in this study, we found 119 promoters, leading to 178,619 promoter
variants that were ordered and more than 95% (170,167) were recovered during mapping. Across all
promoter variants, 5,316,504 unique barcodes were identified, with a median of 28 barcodes per variant.
Because we previously observed that expression from plasmids depends significantly on plasmid copy
number, possibly leading to non-physiological expression levels [53], we used genome-integrated versions
of our libraries. Following genome integration, 168,952 promoter variants and 2,232,542 barcodes were
found, with a median of 13 barcodes per promoter variant. Having multiple unique barcodes per variant
is essential for handling possible biases that could be introduced by different sequences during gene
expression or library preparation. The entire library was then grown in 39 unique growth conditions,
which are described in detail in Materials and Methods section 7.4. Once the cultures reached the
desired state, they were harvested and prepared for DNA and RNA sequencing to count abundances
of barcodes.

The outcome of these measurements is vast quantities of data which reports both on the abundance
of the different cells harboring the mutant libraries as well as the abundance of RNAs within those
cells which reports on the level of gene expression. For that data to yield promoter discovery, we
have to next analyze it in such a way that we have a bridge between sequence identify and gene
expression, providing hypotheses for the presence of binding sites and new transcription start sites. As
shown in Figure 2, our primary analytic tools are summary statistics that provide base pair by base
pair insight into how sequence controls expression. Using barcode counts, we compute information
footprints by calculating the mutual information between the identity of a base (mutated vs. wild-
type) and the level of expression measured [7, 29]. Additionally, expression shifts are calculated to
determine if a mutation increases or decreases expression. See Supplementary Information section S2
for a more detailed description of this important statistical step. A summary of the entire approach,
both measurements and analysis, is shown in brief in Figure 1(B) and described in detail in Materials
and Methods and Supplementary Information.

3.1 Summary statistics and hypothesis generation for binding sites

At the most fundamental level, the data from our experiments is sequence data. DNA sequences
reveal the number of cells harboring a given promoter mutant; mRNA sequences reveal the level of
gene expression for that given promoter mutant. As shown in Figure 2, one of the ways in which we
visualize that data is through summary statistics that provide a nucleotide-by-nucleotide rendering
of the importance of a given base pair for the level of gene expression. In particular, as seen in
Figure 2(A), and described in detail in Section S2, the mutual information allows us to compute a so-

7



binding site background

identify environment-dependent
binding sites

identify new transcription start site

−115 −95 −75 −55 −35 −15 5 25

position relative to TSS

position relative to TSS

0.000

0.002

0.004

0.006

0.008

sm
oo

th
ed

 m
ut

ua
l

m
ut

at
io

n

in
fo

rm
at

io
n 

[b
it

s]

araBp, arabinose

mutation creating new TSS
decreases expressioneffect of mutation
increases expression

−115 −95 −75 −55 −35 −15 5 25

position relative to TSS
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

sm
oo

th
ed

 m
ut

ua
l

in
fo

rm
at

io
n 

[b
it

s]

spromoter in xylose

m
ut

ua
l i

nf
or

m
at

io
n 

[b
it

s]

approximately 104

unique footprints

−115 −95 −75 −55 −35 −15 5 25

position relative to TSS

0

2

4

6

8

1e−5

−115 −95 −75 −55 −35 −15 5 25
0.000

0.005

0.010

0.015

0.020

0.025

−115 −95 −75 −55 −35 −15 5 25
0.000

0.001

0.002

0.003

0.004

(A) INPUT
base pair resolution mutual

information footprints

(C) OUTPUT
binding sites and transcription

start sites

(B) ANALYSIS
smoothing and classifying 
footprints into categories

−115 −95 −75 −55 −35 −15 5 25

position relative to TSS
0.0x10-5

0.5x10-5

1.0x10-5

1.5x10-5

2.0x10-5

2.5x10-5

sm
oo

th
ed

 m
ut

ua
l

in
fo

rm
at

io
n 

[b
it

s]

araBp promoter, copper sulfate

position relative to TSS

expression shift matrix, araBp, xylose

−80 −70 −60 −50 −40 −30 −20 −10 0

glucose

xylose

arabinose

copper sulfate

-115 -95 -75 -55 -35 -15 5 25

A

C

G

T

replicate 2

replicate 1

find binding sites and hidden transcription start sites

single
mutation
leads to

transcription

contains putative 
 binding sites

discard
as noise

annotated
TSS

new
TSS

araBp, arabinose

araBp, copper sulfate

araBp, xylose

mutation increases expression
mutation decreases expression

Figure 2. Schematic of the steps taken for analyzing the data needed for regulatory architecture
discovery. (A) One of the key summary statistics that emerges from our experiments is the information
footprint. There is an information footprint for every promoter in every growth condition. Here the top three
panels show the information footprint for the araBp promoter in three growth conditions. (B) Information
footprints and expression shift matrices provide clues about binding sites and transcription start sites. (C) As
shown in the top panel, one of the outcomes of this analysis is binding site hypotheses for a given promoter
under each set of growth conditions. As shown in the bottom panel, a second outcome of this analysis is the
discovery of new transcription start sites that are mutationally “close” to the original promoter sequence.

called information footprint that shows how much the expression changes as a result of mutating a given
base pair [29, 54]. A second summary statistic, also described in Section S2 and shown in the bottom
panel of Figure 2(B), is the expression shift matrix that illustrates whether expression goes up or down if
the wild type base is substituted by any of the three others. As a means of understanding in detail how
these summary statistics work in deciphering regulatory response, in an earlier work, we constructed a
“theory of the experiment” in which we used known energy matrices and statistical mechanical models
to generate synthetic Reg-Seq datasets which could then be subjected to all of the same summary
statistics as in our actual experimental data [54]. The upper panel of Figure 2(C) provides a third way
of summarizing our findings for each promoter. Here, we have a list of the entirety of environmental
conditions that the promoter was tested in and an allied map of where putative binding sites or new
transcription start sites were found. For those interested in seeing these summary statistics in play
for all of our promoters in all environmental conditions, please refer to http://rpdata.caltech.edu/
data/interactive_footprints.html and http://rpdata.caltech.edu/data/all_data.pdf. Note
that the Supplemental Information includes an exhaustive examination of every single gene considered
in our experiments. Figure S4 provides a more general key to how we represent the various data
and summary statistics in this work. The idea of the key is to explain the icons we use in all of our
schematics as well as the way that we summarize the data.

The simplest way to generate binding site hypotheses from these summary statistics is by eye.
Though we have done this in the past for lower throughput versions of these experiments [7, 9], the
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current scale of the data makes it clear that automated approaches have become a necessity. Part of
the suite of tools we used for binding site hypothesis formulation was to perform multiple replicates
of the same experiment to gain insights into the correlations between experiments and to quantify the
noise. At least two replicates were performed for each growth condition. In some conditions we decided
to perform a third replicate if the initial two showed little correlation. In total, 90 different experiments
(39 conditions in duplicate with a few done in triplicate) were performed, resulting in more than 10,000
promoter-growth condition pairs that have to be processed. In general, we find there are three distinct
classes of results. First, there are promoter sequences that contain an active transcription start site
(TSS) and potentially multiple binding sites for sigma factors and regulators. Then, there are cases
where an otherwise inactive promoter sequence gets activated at an alternative transcription start site
by a single mutation. Finally, there are promoter sequences that do not contain an active transcription
start site for any of the mutations we performed. An overview of these different types of results can
be found in Figure 2(B).

To automatically classify the data into these categories, we compute the coefficient of variation
of the mutual information footprint across all positions in the promoter. Next, the footprints are
smoothed using a Gaussian kernel, and the coefficient of variation is computed again. By evaluating
how the coefficient of variation changes upon smoothing, we can distinguish between footprints with
single positions of high mutual information and footprints with putative binding sites. A detailed
description of this operation can be found in the Supplementary Information in Section S2.3.

For promoters containing putative binding sites, the locations of binding sites are identified using a
two-state Hidden Markov Model (HMM). Binding sites are identified as groups of positions with high
mutual information and noisy regions are identified as groups of positions with low mutual information.
HMMs are commonly used in biological applications [55] and are particularly useful here to study the
transition between the binding sites and the noisy regions. For promoters where we find a potential
alternative transcription start site resulting from only a single mutation, we use the very helpful model
of LaFleur et al. [56], which predicts transcription rates by σ70 for any query sequence. We have found
this tool to provide a powerful interpretive tool for Reg-Seq data. Both models are discussed in detail
in the Supplementary Information Section S2.3.

3.2 Identifying Transcription Factors
Identification of hypothetical binding sites is only the first step in the regulatory architecture

discovery process; we also have to identify which proteins bind to those sites. As with other aspects
of these questions, much beautiful work has shown how to perform such identification [10, 12, 13, 57].
This is a particularly challenging step since we have found that even with a number of complementary
methods, successfully assigning transcription factor identity to every putative new binding site (or even
previously established binding sites) is difficult across all promoters and all conditions.

As seen in Figure 3, we have adopted several key strategies. First, we have undertaken a broad
collection of experiments in which we use the putative binding sites as “fishing hooks” for TF pulldown
from cell lysate as shown in the lower right panel of Figure 1(B) in conjunction with mass spectrometry.
The promoter for the gene dicC is active in every condition we tested, as shown in the left panel of
Figure 3(A). We found a putative, unknown repressor site, as shown in the middle panel of the figure
which is therefore a very interesting candidate for transcription factor identification. To that end,
the upper right panel of Figure 3(A) shows how a DNA chromatography and mass spectrometry
measurement for the dicCp promoter fishes out an entire collection of peptides, where in this case
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we find an enrichment of the two transcription factors ArcA and YgbI. For the data shown here,
cells are used that were induced with 2,2-dipyridyl. A complementary computational approach is to
compare the putative binding site to previously identified sequences in databases such as RegulonDB
and EcoCyc, which is described in detail in the supplementary information S2.4. Here too (lower
right panel of Figure 3(A)), we find that the previously identified ArcA binding site sequence is very
similar to the sequence we identified from the information footprint analysis described in the previous
section. Figure 3(B) repeats the strategy shown in Figure 3(A) but now for the mhpRp2 promoter.
This promoter has a binding site for the activator CRP annotated between the positions -38 to -59 [58].
As shown in the left panel in Figure 3(B), we find this binding site only in stationary phase. As in
the case of the dicCp promoter, mass spectrometry yields an enrichment in ArcA as well as GalS,
where lysates from cells grown to stationary phase were used. The computational approach similarly
identifies ArcA to bind around the -10 region of the promoter (here shifted to the -20 position), and
identifies CRP to bind to its known activator site.

Though we have successfully used the multiple complementary approaches described above and
shown in Figure 3, this system does not suffice to identify transcription factors for all promoters
under all conditions. One possible reason for this in the context of the mass spectrometry results
is that the act of lysing cells to fish out transcription factors can have the effect of compromising
the environmental conditions that led to transcription factor binding in the first place. On the other
hand, computational approaches are limited to the scope of the binding sites that are reported in the
databases. Unfortunately, in many cases, a potential transcription factor binding partner may not even
have any consensus sequence reported in the literature.

3.3 Dissecting the Regulatory Architecture of Gold Standard Genes
Our exploration of the environment-dependent regulatory genome is predicated on examining a

broad variety of different genes under a wide range of different environments as summarized in Table 1.
Our starting point is sixteen distinct “gold standard” genes that allow us to examine case studies
for which much is already known. For example, we can examine the environmental dependence of
regulation explicitly, as shown in Figure 4(A) for well-known arabinose genes. The regulation of the
araC and araBAD operons has been studied extensively [59–62]. The promoters for the operons are
on opposite strands of the DNA, and mainly regulated by AraC. If there is no arabinose present, AraC
binds two distant binding sites, leading to repression of the promoter through DNA looping. But,
when arabinose is present, AraC instead binds in proximity of the transcription start site and activates
transcription from the promoter. This interaction is very specific; hence, we only expect to detect
the activating architecture in the arabinose growth condition. This is indeed the case, as is shown by
the peaks in the information footprints in the middle panel of Figure 4(B). Mutations within these
peaks lead to a strong decrease in expression as is shown by the color of the peaks. As shown in the
right panel of Figure 4(B), these binding sites do not show up when cells are grown with other carbon
sources. Indeed, as is shown in Figure S8, the binding sites are found only when arabinose is used
as a carbon source. We do not recover the architecture associated with repression primarily due to
the limited size of the promoter region that we study: the most important binding site that leads to
looping is araO2, which is 275 bp upstream of the transcription start site and therefore outside of the
region that was part of our mutant library. Of course, this is a weakness in the method which can
be easily remedied with a larger library at a higher financial cost. Additionally, the promoter is very
weak when not activated, even in the absence of loop formation, which could explain why we do not
find the transcription start site in any other condition other than growth on arabinose. We do find a
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new transcription start site when one specific base in the promoter is mutated, which is discussed in
Section 3.6.

Figure 5 highlights several other important examples where changing environmental conditions
lead to a wholesale change in the binding sites revealed in a Reg-Seq measurement. For example,
one important transcription factor involved in antimicrobial resistance in E. coli is MprA [63, 64].
As shown in Figure 5(A), MprA is a transcriptional repressor that inhibits the expression of its own
transcriptional unit, which contains two genes (emrA and emrB) encoding components of multidrug
resistance efflux pumps and are important for E. coli ’s intrinsic resistance to a variety of compounds.
One of the known inducers of MprA is salicylate [63], which binds MprA and leads to a conformational
change of the repressor and consequent loss of repression. When cells are grown in glucose, we find
the known repressor site for MprA as reported in databases, demonstrated by the red peak in mprA’s
information footprint. When 10 mM of sodium salicylate is added to the media for 1 h, there is
a loss of repression as expected, as is shown by mprA’s information footprint in Figure 5(A). The
information footprint thus serves as a direct window onto the changes in regulatory architecture in
different environments.

Another example of very specific regulation is the activation of cusC, which encodes a component of
a copper efflux system. cusC is activated by CusR in the presence of copper through phosphorylation
of CusR by CusS [65]. We find expression at the cusC promoter when 2 mM copper sulfate is added, as
shown by cusR’s information footprint in Figure 5(A). There is also activation in one of the replicates
for both growth at pH 2.5 with 1 mM glutamic acid and growth with 500 µM copper sulfate, as shown
in Figure S9. As shown in Figure S10, there was no enrichment in mass spectrometry experiments
when the lysate used was from cells grown in copper sulfate, which may indicate that CusR does not
stay in its phosphorylated state after cell lysis, and hence does not bind to the binding site in vitro.

The third example shown in Figure 5(A) is the CpxR-CpxA two-component system consisting of the
cytoplasmic transcriptional regulator CpxR and the histidine kinase CpxA, which respond to stress in
the inner membrane and regulate the expression of a number of genes [66, 67]. CpxR activates its own
expression in the phosphorylated state [68]. Here, we examine the promoter for cpxR which includes
the CpxR binding site. We find the activator site when gentamicin is added to growing cells, as shown
by cpxR’s information footprint in Figure 5(A). This result is in line with the previously identified
interaction of ArcA and CpxA upon treatment with gentamicin [69]. This changes the phosporylation
activity of CpxA and hence, the regulatory activity of CpxR. As shown in Figure S11, we also found
enrichment for CpxR in mass spectrometry experiments where cells are induced with gentamicin before
harvest. Additionally, we find the activator binding site in one of two replicates for both low copper
sulfate concentration (500 µM) and acidic shock (pH 2.5, 1 mM glutamic acid). We find a very similar
result for a second promoter containing a CpxR activator site in our library, yqaE. As is the case for
cpxR, the activator site is recovered in gentamicin conditions, and the same replicates for low copper
sulfate concentration (500 µM) and acidic shock (pH 2.5, 1 mM glutamic acid), see Figure S12. Once
again, the information footprint provides a direct measure of the environmental dependence of the
inferred regulatory architecture.

An even more interesting case study in environmental dependence of regulatory architecture from
our list of gold standard genes is provided by LexA. The transcriptional repressor LexA is involved
in the cellular stress response to DNA damage, also known as the SOS response [70]. LexA has 42
annotated binding sites in EcoCyc, and it has been observed that LexA and many of its regulatory
targets are upregulated when treated with 2.5 mM hydrogen peroxide (H2O2) for 10 minutes [71].
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Figure 4. Environmental dependence of the regulatory architecture in the arabinose operon.
The study of the arabinose operon over the last 60 years has resulted in a complete characterization of its
regulatory landscape [24]. Depending upon conditions, the binding sites are occupied in very different ways.
As seen in the lower panel, the Reg-Seq approach adopted here results in markedly different information
footprints in different environments. The panel on the right shows that only in the presence of arabinose are
binding sites revealed.
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The reason for this upregulation is that in the presence of hydrogen peroxide, the coprotease RecA
activates self-cleavage of LexA, causing its dissocation from its binding sites and expression of its
target genes [72, 73]. Hence, its information footprint should disappear under this condition. 5 of
the promoters studied in our experiments have annotated binding sites for LexA, namely, ftsK, tisB,
dinQ, sulA and recN. In each of these cases, we find the repressor sites, as shown for sulA, recN and
tisB in Figure 5(B) (ftsK and dinQ are shown in supplementary figures S13 and S14, respectively)
when grown in minimal media with glucose. When hydrogen peroxide is added, the repressor binding
site completely disappears. Interestingly, when gentamicin is added, binding seems to be reduced but
not abolished, as can be seen by the reduced peaks in information footprints, see Figures S13-S15.
We performed DNA chromatography and mass spectrometry experiments for the LexA binding site in
the tisB promoter, using both lysates from cells grown in stationary phase, and from cells that were
induced with hydrogen peroxide. We see clear enrichment for LexA, showing specific binding to the
binding site, in the stationary phase lysate. However, when the lysate from the induced cells is used,
we do not find enrichment for LexA.

The results from these gold standard genes, and others like them, show that the strict environmental
dependence of the regulatory landscape is revealed by our Reg-Seq experiments and the summary
statistics used to envision the data. Given these results, we now turn to the use of our approach for
discovering previously unknown regulatory architectures and the ways in which regulation influences
the physiology and adaptation of E. coli to different environments.

3.4 How does E. coli Sense its Environment?

By virtue of exploring the regulatory landscape under a diverse set of environmental conditions,
we can ask whether seemingly distinct environments are “perceived” by a particular gene in the same
way. For example, as noted above, regulation of tisB by LexA is affected by hydrogen peroxide.
But repression is also relieved by phenazine methosulfate, a response that was previously unknown
to the best of our knowledge. The cellular response to phenazines is mainly regulated by the SoxS-
SoxR system [74], which we can see by the activation of arcZ by SoxS in the presence of phenazine
methosulfate, as shown in Figure S16. The fact that LexA responds not just to hydrogen peroxide,
but also to phenazine methosulfate and gentamicin indicates a similarity of response under distinct
environments. We were curious whether it might be possible to classify environments for which a given
gene engender nearly the same response. Intuitively, we expect that environmental conditions that
yield the same putative binding sites will have similar information footprints. As we already saw for
araB in Figure 4, it is possible for one set of binding sites to appear only under one unique condition.
Figure 6 examines two examples in which we compare responses under different growth conditions. We
determined which conditions lead to similar responses by performing hierarchical clustering for each
promoter across all the conditions in which we found binding sites. The results show clusters with
similar information footprints and hence, similar regulatory patterns.

For example, the left panel of Figure 6(A) shows the putative binding sites for the tisB promoter
in each condition, while the right panel of Figure 6(A) shows the result of the clustering analysis. The
left panel is a way of summarizing all the putative binding site regions in all the different conditions
at the same time. As shown in Figure 4, we note that unlike in the arabinose operon, here we
find that for positions between 0 and -40, for nearly all conditions there is a strong signature in the
information footprints indicating that those bases are important under all those conditions. However,
under stationary phase, for example, only bases between ≈ -60 and -80 are relevant. The clustering
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Figure 5. Environmental dependence of the regulation of “gold standard” genes. (A) Depending
upon the environmental conditions, the constellation of binding sites for a given promoter as revealed by the
information footprints will be different. Three examples of genes whose regulatory landscape changes upon
changing the environmental conditions. (B) Genes regulated by LexA and changes in their regulatory
landscape in different environments. Each information footprint reveals a different environment-dependent
regulatory landscape. The two conditions on the far right show how mass spectrometry was used to identify
the LexA protein as the binding partner of the sites revealed in the information footprint.
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analysis shown in the right panel summarizes these distinctions. Note that in the analysis, we have
removed the itemized labels of the different conditions, but an enlarged version of the figure is shown
in Figure S6 of the SI for those wishing to see which environments cluster together.

Figure 6(B) shows a y-ome gene for which the clustering analysis provides an interesting result.
The example shown here is yjbJ, which belongs to the group of genes we identified from the Schmidt
et al. mass spectrometry dataset [43]. As seen in the left panel, yjbJ shows binding sites in only 8
out of the 39 conditions tested. Interestingly, of these 8 conditions, it appears there are three different
stereotyped regulatory responses, as is displayed in the identified clusters.

Another way of determining how gene regulation reflects environmental conditions based on Reg-
Seq data is to examine all genes in all conditions, as seen in Figure 7. Figure 7(A) shows the concept of
the analysis, in which all information footprints are combined into a matrix, where each row contains
all footprints for one condition, and each column contains the mutual information at a certain base
in a promoter. We then ask whether there is a clustering of the data such that all conditions with
consistently similar regulatory profiles are grouped together. Figure 7(B) shows the result of that
analysis. The biggest separation is between growth in stationary phase, and all other conditions. Note
that one replicate for magnesium starvation groups with the stationary phase conditions, indicating
that in this specific experiment, the cells entered stationary phase. On the other end of the clustering,
another strong perturbation is shock in LB with 750 mM of NaCl. In this condition, we have identified
multiple interesting new binding sites, as discussed below. In general, replicates for the same conditions
cluster well together, indicating a general reproducibilty of the experiments. For the genes studied here,
induction with phenazine methosulfate or gentamicin also lead to a significant change in regulatory
patterns.

3.5 Dissecting the Regulatory Architecture of the y-ome
Completely understanding the physiology and evolution of an organism will require figuring out the

function and regulation of all of its genes. Even in the ostensibly “well understood” model organism E.
coli, the presence of the y-ome and the allosterome make it clear that there is much left to discover. We
were excited to explore genes from the large list of y-ome genes. In Figure 8 we show results for yjbJ,
ygiW, and ybaY, which were identified from the Schmidt et al. dataset [43]; yadE and yadI, which we
chose from Ecocyc; and ybiYW from the YgeV-iModulon and intE and icdC from the YmfT iModulon
identified by Lamoureux et al. [46]. None of these genes had an annotated transcription start site, so
we predicted transcription start sites using the model from LaFleur et al. [56]. In each of these cases,
the predicted transcription start site was active in at least one growth condition. For seven of these
genes, we identified putative binding sites for transcription factors in at least one condition, with four
genes having more than one site. For three binding sites we were able to identify the transcription
factor by mass spectrometry, and for one binding site we were able to identify CRP as the transcription
factor by sequence comparison to the CRP binding motif.

The putative stress response gene yjbJ is thought to be part of the RpoS regulon and expressed in
stationary phase [43, 75], and indeed we find an active transcription start site in stationary phase. It
has also been observed to be upregulated when cells are exposed to high salt concentrations [76]. Here,
we find an activator site when cells are induced in LB media with 750 mM of NaCl, but not when
cells are grown without additional salts (for more details, see Figure S17). This putative binding site
overlaps with a reported binding site for LRP from ChIP-chip experiments [77], so we propose that LRP
activates expression of YjbJ. However, we did not detect enrichment for LRP (or any other transcription
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Figure 7. Clustering of all growth conditions. (A) Information footprints are grouped into a matrix
with each row corresponding to all the information footprints for a given condition and each column a specific
base within a specific promoter. Colors identify regions of high mutual information. (B) Clustering shows the
similarity of footprints across all conditions. This figure reveals that the largest distinction is between
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factor) in DNA chromatography and mass spectrometry experiments. (These experiments, which were
performed in high-salt conditions generally yielded no enrichment.) We do not find expression from
the yjbJ promoter when cells are grown in minimal media with glucose, unless cells are induced with
L-leucine in exponential phase growth. This also indicates regulation by LRP.

The gene yadI was identified as a y-gene in the first complete genome assembly of E. coli [18], but
its function remains elusive. It is a predicted PTS enzyme IIA [78]. We find an active transcription
start site, and a putative activator binding site in a few conditions. We find expression in LB, as
well as minimal media with acetate and galactose as shown in Figure S18. Expression seems to be
especially strong in stationary phase, as shown in Figure 8. Computational motif scanning predicts
this site to be a binding site for CRP, as shown in Figure S19, which has not been identified before.
Our mass spectrometry results for yadI, however, did not show enrichment of CRP, despite being able
to detect CRP at levels well above the median of all protein abundances. This is consistent with the
general observation that we do not find significant CRP enrichment even for genes where CRP binding
is expected (e.g. mglB and araB).

ybaY undergoes supercoiling-dependent transcription, which is associated with the osmotic stress
response and acts through RpoS, which has been found in media with osmolarity of 0.8 Osm [79].
Indeed, we find an active transcription start site for ybaY when grown in LB supplemented with
0.75M NaCl. We also find an activator-like site, which is similar to the activator site for yjbJ. The
sequences for these binding sites are very similar, with 12 of 19 bases shared and a conserved segment of
TCTGAAT, suggesting that the same transcription factor is regulating these two genes. However, the
identity of this TF remains unknown. The identified transcription start site is also active in stationary
phase – indicating binding of RpoS – as well as in many other conditions, as shown in Figure S20.

ygiW is thought to be upregulated in stationary phase [43, 80], and we found an active transcription
start site, which is slightly shifted compared to the predicted transcription start site at ≈ +40 and
only active in stationary phase. In DNA chromatography and mass spectrometry experiments, TyrR
was enriched at a putative activator binding site around the -30 region. A potential repressor binding
site can be seen at +30, but no candidate transcription factor was found by mass spectrometry or
computational motif scanning. This region could alternatively be an imperfect sigma factor site, where
the repressor-like mutations are actually increasing the binding affinity of the sigma factor.

Another y-ome gene that we considered is the ybiYW operon, which until now has had no functional
annotation. Using our broad suite of environmental conditions, we found an active transcription start
site when cells are grown anaerobically both with and without supplemented nitrate. We also found
expression when minimal media is supplemented with glucose and sub-inhibitory concentrations of
ampicillin, but only in one replicate, which could indicate that in this specific experiment cells entered
anaerobic growth conditions. As shown in Figure S21, DNA chromatography and mass spectrometry
with lysate from cells grown in minimal media with glucose shows high enrichment for the transcription
factor YciT, suggesting YciT binds in the vicinity of the -5 site relative to the predicted transcription
start site. This finding suggests that YciT and YbiY-YbiW are involved in the cell’s response to
anaerobic conditions, which has not been reported before. The information footprint suggests binding
of an activator around the -20 region, but we found no candidate transcription factors through the
mass spectrometry experiments or the computational motif scanning. It should be noted that cells
grown aerobically were used for DNA chromatography, as producing the needed amount of cell lysate
anaerobically was technically out of scope.
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The intE-xisE-ymfH operon is part of the e14 prophage and has no annotated function. We find
an active transcription start site only in the presence of gentamicin, shown in Figure 8, and only in one
of the two replicates tested for this condition. However, we do find a binding site for the transcription
factor YhaJ in the vicinity of the -55 position relative to the predicted transcription start site, as shown
by mass spectrometry results shown in Figure S22.

yadE has been identified as a possible envelope assembly factor [81]. We find an active transcription
start site across many conditions, with most conditions that reach exponential phase showing a repres-
sor binding site around the -40 region. However, when either salt or phenazine methosulfate is added
to the media, the site disappears, suggesting that the repressor is deactivated. Additionally, there is
expression from this promoter by RpoS under stationary phase, with an apparent repressor binding
site downstream. No enrichment for any transcription factors was found using mass spectrometry. The
pseudogene icdC was identified as part of the YmfT-iModulon by Lamoureux et al. [46]. We found an
active transcription start site for this gene in stationary phase, indicating that this gene is part of the
RpoS regulon.

3.6 Transcription Start Sites: Old and New
One of the surprising outcomes of our experiments was regulatory discoveries other than novel

transcription factor binding sites. As seen in Figure 9, in some cases a single mutation sufficed to
produce entirely new transcription start sites. While this phenomenon has been reported before [82],
we were intrigued by how often it occurred in our experiments. Figure 9(A) shows the situation
schematically in which a promoter of interest has some known transcription start site. However,
as a result of a single mutation (see also the example of araBp-xylose in Figure 2) an entirely new
transcription start site emerges. The most important sequence in determining if σ70, the most abundant
σ-factor, binds to DNA and initiates transcription is the -10 element, which has the consensus sequence
TATAAT. As is shown in the top right panel of Figure 9, the first two bases and the last base are the
most important, meaning, mutations in the other three bases affect binding much less. We find that
in most cases, a new transcription start site is created when all three of the important positions in the
-10 element match the consensus sequence after a mutation occurs.

Figures 9(B-D) give three specific examples of this result. In the case of the xylA promoter, which
is activated by XylR in the presence of xylose, we see that in the absence of xylose, changing an A to
a T at position -68 in the promoter creates the TATAAT region of a new core promoter, giving rise to
a large increase in transcription rate, as shown in the right panel of Figure 9(B). A similar story plays
out in the case of the mglB promoter, which is activated by CRP. Here, a mutation at the +30 position
leads to a consensus -10 sequence, leading to a new transcription start site. In the araB promoter, a G
becomes an A at the -77 position, but with the same consequence which is the production of a new -10
region. In all three of these examples, a single mutation creates a new transcription start site under
conditions other than those in which it is normally activated. These observations inspire the question
of whether they are a matter of chance mutations on random sequences [82], or instead, that it is a
beneficial feature to have inoperative promoters poised a single mutation away from being functional.

Another set of intriguing new results involved several cases where earlier work had hypothesized
the existence of multiple distinct transcription start sites. For example, for the ompR promoter, as
shown in Figure 10(A), inspecting the 5’ ends of mRNAs using primer extension assays [83] revealed
multiple distinct mRNA species, suggesting the existence of at least four transcription start sites with
a window of 116 bases. As shown in the figure, we find that only one transcription start site - the
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one associated with ompRp1 - is active, as the information footprints exhibit binding peaks only in
the case of this transcription start site. There is no transcription initiated from any of the other start
sites, as shown in Figure S23.

Figure 10(B) shows a second intriguing example of the tolC promoter for which we identify two
transcription factor start sites. Like ompR, earlier work on the 5’ ends of mRNAs found multiple species,
where initially two start sites were identified [84], tolCp1 and tolCp2 and later, two additional sites
were found [85], tolCp3 and tolCp4. One tolC site (tolCp1 and tolCp2) is active in most conditions and
is known to be activated by PhoP in magnesium limiting conditions. Indeed, in one of our replicates
for magnesium starvation, we find an activator binding site at the annotated position, as shown in
Figure S24. However, we do not observe two different promoters here, indicating that transcription is
initiated from one site only. The other two promoters, tolCp3 and tolCp4, are 50 bases downstream,
and have been found to be activated by MarA, SoxS and Rob through a mar-box [85, 86]. Here we
only find activation by Rob under its activating conditions, which is induction with 2,2-dipyridyl. The
other annotated activators, i.e. MarA and SoxS, are not found to activate tolC from this site even
under inducing conditions. In previous work, activation of these two transcription factors relied on
overexpressing the proteins [85, 86], which may have led to supra-physiological concentrations. As
shown in Figure S16, we do find activation by these transcription factors in said conditions on other
promoters, such as the promoter for acrZ. To summarize, for tolC we find two distinct transcription
start sites, instead of the four annotated sites. We find more examples for promoters with multiple
annotated transcription start sites in our dataset, where only a subset of the annotated start sites are
active, such as the promoter for CRP, see Figure S25, and the promoter or galE, see Figure S26.

As the examples shown in Figures 9 and 10 illustrate, the question of transcription start sites
demonstrates unequivocally that physiological and experimental context both matter. In some con-
ditions, a single mutation suffices to yield an entirely new transcription start site. In other cases, we
hypothesize that the existence of different species of mRNAs as revealed by their 5’ ends may not be a
valid signature of alternative start sites. What is certain is that sorting out the complexity and nuance
of how genes are regulated, even in this “simplest” of model organisms, is very challenging.

4 Discussion
The study of gene regulation is one of the centerpieces of modern biology. Indeed, one of its great

success stories is our increasing mastery over the reading, writing and control of the genome. That
said, despite an impressive status quo, there still remain gaping holes in our understanding. We are
surprised that with more than 1017 nucleotides of DNA sequences on the Sequence Read Archive –
orders of magnitude more “letters” than are present in all the English language books of the Library
of Congress or Wikipedia – our knowledge of the regulatory part of genomes remains elusive. Even
in our best understood model organisms, we don’t know how the majority of genes are controlled in
response to changes in environment.

One of the central motivations of the present work is the hope that we can make more systematic
and quantitative inroads into discovering the regulatory architectures that govern the physiological
and evolutionary responses of different classes of organisms. Genes are regulated in response to both
internal and external signals. As a result, part of the quest to understand the regulatory genome
demands including this environmental dependence, which is often mediated by allosteric transcription
factors. The molecular aspect of this problem has been christened the “allosterome,” [87] referring
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to the fact that many of the transcription factors that control gene expression change their activity
as a result of binding by effector molecules. Greater mastery over regulatory architectures and their
environmental dependence will make a actionable contribution to efforts to understanding physiology
and evolution, as well as forming the basis for more systematic approaches to synthetic biology.

In this paper, we have tackled the parallel and entangled challenges of discovering regulatory
architectures and the environmental conditions that affect them. By using the power of massively
parallel reporter assays in conjunction with the tools of information theory, we are able to peer into
the regulatory “dark matter” of the E. coli genome. Further, by carrying out our experiments over a
broad array of different growth conditions, we can get a glimpse of the rich context dependence of those
regulatory architectures. Said differently, in principle, there is a different regulatory architecture for
each and every environment. To reveal these architectures, we chose roughly 100 biologically interesting
genes with which to carry out this environment-dependent regulatory dissection. By studying “gold
standard” genes for which much about their regulatory response was already known, we were able to
confirm and clarify previous data, and to classify environments by the commonality of their regulatory
response. Already, in the case of these gold standards we uncovered new insights, including the
discovery of new binding sites, clarifications about the nature of transcription start sites, and the
ability to characterize a given promoter by the categories of distinct environments that it recognizes.
Beyond the gold standard genes, we undertook a systematic analysis of a broad variety of other genes,
including a representative sampling of genes from the y-ome, the set of genes within the E. coli genome
which remain of unknown function. The results of those experiments led to the discovery of a collection
of new environment-dependent regulatory architectures.

How well does Reg-Seq actually work? To begin, we consider the 16 gold standard genes. Current
databases have 32 annotated binding sites for these gold standard genes. We successfully re-identified
18. However, upon further review, we only expect to find 22 of these binding sites. In particular,
some of the annotated binding sites will escape detection using our Reg-Seq approach because either
the interactions between the transcription factor and the DNA are very weak; they require long range
interactions implying binding sites outside the region of our mutation library; or because the binding
site annotation resulted from in vitro experiments with no corresponding in vivo evidence. To be
more precise, many of the binding sites we “missed” were found in vitro or under non-physiological
conditions, such as overexpression of the transcription factors. We interpret these findings not as a
failure of previous efforts, but instead as showcasing the difficulty of harmonizing in vitro and in vivo
conditions and methods. Additionally, if we did not identify a previously found binding site, it could
indicate that the transcription factor does not interact directly with the polymerase or sigma factor
to regulate transcription, or more generally that its function might not relate directly to its binding
affinity.

More importantly, our approach led to a number of new insights into the environment-dependent
regulatory genome of E. coli. First, our work led to intriguing hypotheses for previously unknown
transcription start sites whose emergence was condition dependent. These emergent transcription start
sites lead us to wonder and speculate about a possible evolutionary role for such mutationally “close”
promoters as well as changes to binding site strength through small mutational changes. Writ large,
changes in transcriptional regulation are known to be one of the main ingredients of evolutionary
change. Evolutionary adaptation itself is influenced to a large extent by fluctuations or wholesale
changes in environments. A story that is far from complete are the ways in which evolutionary patterns
and dynamics are altered by the regulatory genome. We are hopeful that wide-ranging measurements
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such as the Reg-Seq approach described here will provide a powerful substrate for dissecting regulatory
evolution. There have already been a variety of quantitative models that link basepair resolution
binding strengths of transcription factors to evolutionary fitness [88–90] and the basepair-by-basepair
dissection of gene expression changes and corresponding energy matrices provide the data to sharpen
the predictions from such models.

Although the work here reflected an ambitious attempt to systematically and quantitatively dissect
promoter regulatory architectures (i.e. binding sites and their associated transcription factors), there
is still much work to be done to realize the aim of completing the regulatory genome of a single
organism. One immediate step that lies within reach is to increase the size of the mutated regions in
our libraries which is mostly limited by the availability and affordability of synthesized oligo pools.
Second, we believe that an even broader range of environmental conditions are needed to conclude
what conditions a given gene “cares” about. Further, the transcription factor identification part of the
problem requires complementary experimental and bioinformatic approaches, and even then, is unable
to find all transcription factors in all environments. We hope that new approaches will be found for
identifying transcription factors and their allied effectors.

Given this overview of our results, it raises a number of questions about the broader significance
of our approach and findings. As we expand the diversity of microbial organisms investigated in
environments ranging from the human gut to the ocean floor, we ask how can we understand the
physiological and evolutionary response of those organisms? One approach that is becoming nearly
routine is to sequence the genome of some organism of interest and then use bioinformatic and AI
tools to annotate genes, infer biochemical pathways and place the organism within the current known
microbial phylogeny. However, what the current approach does not give us is systematic insight into
the regulatory landscape, a minimal version of which requires knowing which external signals induce
and activate the many genes of the organism, as well as something about the apparatus that converts
the environmental input into a gene expression output. Despite a number of outstanding challenges,
the work described in this paper provides a viable route to achieving a whole genome reconstruction
of its regulatory landscape in a single experimental approach and corresponding analytical pipeline.

Microbes perform a huge variety of different functions in conjunction with signals from their en-
vironments. In that sense, microbes are environmental transducers, they sense their environments
and then they act upon what they sense by altering their gene expression profiles. The regulatory
genome is both the sensory and response apparatus. It is that part of the genome that indirectly
senses the concentration of effector molecules and their allied transcription factors, and together, col-
lectively modulates the degree of gene activity. Carrying this analogy further, there are two questions
one might ask. How many different “senses” does a cell have? And how many “input-output systems”
does it have? How can we begin to ask such questions for organisms that lie beyond the library of
model organisms? We suspect answering these questions is not merely a matter of scaling up existing
methods. Rather, this involves systematic experiments, measurements, and analyses that give concrete
quantitative answers to these questions. The diversity of genes and environmental conditions that the
Reg-Seq approach allows us to investigate permits a form of statistical analysis that address both the
cellular senses and the cellular input-output repertoire by analyzing correlations across rows vs columns
of one of the essential summary statistics of our study, the mutual information footprint per base pair
in each condition.

There is much that has been written and said about the increasing and powerful role of AI in biology.
As demonstrated by some of the massive recent successes of AI approaches such as AlphaFold [91, 92]
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and Virtual Cell projects [93], we seem to be at the precipice of a time when modern computation
combined with high-throughput biology data will give us answers to questions about the physiology
and evolution of microbial organisms that we have been struggling to achieve for decades. For example,
synthetic biologists might want to design a promoter that has a bespoke gene expression profile across
a cohort of environments of their own choosing. Or, we might want to design minimal genomes
whose large scale patterns of expression are controllable by the induction of a small number of genomic
designed elements [94, 95]. Or, we might wish to identify a condition or molecule that might repress the
activity of a microbial pathogen. Ultimately, these are all questions about gene regulation. However,
projects such as AlphaFold are predicated upon the existence of huge quantities of high-quality data
with great similarities from one protein structure to the next. This high quality training data is one
of the prerequisites for these successes. If one of the next frontiers is the data-driven modeling of the
regulatory genome to drive engineering and synthetic biology goals then what is needed is systematic,
quantitative examples of regulatory landscapes. In the work presented here, we attempted to measure
and systematize the kind of regulatory data that might serve as a basis of data-driven generative
models. The approach outlined in our paper, when taken to scale, across a diversity of organisms,
promises to enhance such efforts. Once done for a sufficiently large and diverse ensemble of microbial
organisms, data-driven generative models will be able to perform things that are currently out of reach.
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6 Data and Code Availability
Sequencing data will be available on the SRA. Mass-spectrometry data will be available on Caltech

Data. Code written to process and analyze data, as well as to generate figures, will be made available
on Github. An interactive dashboard to explore information footprints for every gene in every condition
can be found at http://rpdata.caltech.edu/data/interactive_footprints.html. A joint display
of all information footprints can be found at http://rpdata.caltech.edu/data/all_data.html. The
compendium with a discussion of the results for every gene, as well as an overview of the known binding
sites in its promoter can be found at http://rpdata.caltech.edu/data/reg-seq_compendium.pdf.

7 Materials and Methods
7.1 Oligo Pool Design

7.1.1 Identification of Transcription Start Sites

For each gene chosen for this study, shown in Table 1, we first looked for its promoter on EcoCyc
[52]. If the promoter was found, the annotated transcription start site (TSS) was used. If multiple
promoters were identified, each promoter was included in the experiment. If no promoter was found,
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we looked for transcriptionally active sites in the data set from Urtecho et al.[96]. In their work, the
genome was fragmented and every fragment was tested for transcription initiation in LB. If we could
find a site that was identified as active close to the gene of interest, we chose this site as the origin for
computational promoter mutagenesis. If no TSS could be identified for a gene, the model from LaFleur
et al. [56] was used to computationally predict a TSS in the intergenic region. The site predicted to
be the most active within 500 bp upstream of the coding region was chosen as the TSS. Initially, 119
promoters were chosen, however, 7 promoters (mglBp, hdeAp2, mtnp, ybeDp, cpxRp2, galEp1, and
ompFp), had an identical TSS as another promoter annotated in Ecocyc. The duplicated promoters
were treated as independent when mutated variants were created, leading to twice the number of
variants in the total pool.
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7.1.2 Computational Promoter Mutagenesis

Once a TSS is identified, the 160 bp region from 115 bp upstream of the TSS to 45 bp downstream
is taken from the genome. Most of the cis regulation has been shown to occur within this window.
Based on the approach of Kinney et al. [29], each promoter sequence is randomly mutated at a rate
of 0.1 per position. 1500 mutated sequences are created per promoter, following the approach of [9],
which creates sufficient mutational coverage in the promoter region. The promoter oligonucleotides are
flanked by restriction enzyme sites (SpeI at 5’ and ApaI at 3’) which are used in subsequent cloning
steps. The restriction sites are flanked by primer sites that are used to amplify the oligo pool. The
primer sequences were chosen from a list of orthogonal primer pairs, designed to be optimal for cloning
procedures [97]. Oligo pools were synthesized (TwistBioscience, San Francisco, CA, USA) and used
for subsequent cloning steps.

7.2 Library Cloning
7.2.1 Cloning Oligo Pool into a Plasmid Vector

The oligo pool was amplified using a 20 bp forward primer (SC142) and a 40 bp reverse primer
(SC143), which consists of a 20 bp primer binding site and a 20 bp overhang. PCRs were run with
minimal amplification until faint bands appear on an agarose gel in order to minimize amplification
bias, using 10 ng of the oligo pool as template, as recommended by TWIST. The PCR was run for
with 10 amplification cycles using a volume of 12.5 µl. PCR products were cleaned and concentrated
(DNA Clean & Concentrator-5, ZymoResearch) and used for a second amplification step. The 20 bp
overhang on the reverse primer from the first amplification was used as primer site for a reverse primer
(SC172), which contains randomized 20 bp barcode, flanked by two restriction enzyme sites (SbfI and
SalI, 5’ to 3’ direction) . The forward primer is the same as in the first amplification step (SC142).
PCR amplification is run again with minimal amplification to minimize amplification bias, which we
found to be 8 cycles. PCR products are run on a 2% agarose TAE gel and subsequently extracted and
purified (Zymoclean Gel DNA Recovery Kit, ZymoResearch). In the next step, a restriction digest is
performed on the outer restriction enzyme sites (SpeI-HF and SalI-HF). Unless noted otherwise, all
restriction digests were run for 15 minutes at 37 °C, using 1 µg of DNA as template and using 1 µl
of each restriction enzyme. The plasmid vector was digested with different restriction enzymes which
create compatible sticky ends (XbaI and XhoI). Most restriction enzyme sites are palindromes, so by
choosing different enzymes with compatible ends, we avoid having palindromes flanking the plasmid
inserts after ligation. The oligo pool is combined with the plasmid vector using T7 DNA ligase (New
England Biolabs, Ipswich, MA, USA) following the supplier’s protocol. Ligation products were cleaned
and concentrated (DNA Clean & Concentrator-5, ZymoResearch) and a drop dialysis (MF-Millipore
VSWP02500, MilliporeSigma, Burlington, MA, USA) was performed for 1 hour to improve sample
purity. Electroporation using E. coli pir116 electrocompetent cells (Lucigen, Middleton, WI) was
performed at 1.8 kV in 1 mm electroporation cuvettes, followed by 1 hour recovery at 37 °C and 250
rpm in 1 ml LB media (BD Difco). The entire culture was plated on 150 mm LB + kanamycin (50
µg/ml) petri dishes and grown overnight at 37 °C. The following day, plates were scraped and the
colonies resuspended. Freezer stocks were prepared using a 1:1 dilution of resuspended colonies and
50% glycerol. Cultures were inoculated with 5 × 108 cells in 200 ml of LB + kanamycin (50 µg/ml)
and grown at 37 °C until saturation. Plasmids were extracted (ZymoPURE II Plasmid Maxiprep
Kit, ZymoResearch) and used for subsequent sequencing. For details, see 7.3. The plasmid library
is then used as template in a restriction digest using restriction enzymes ApaI and SbfI-HF. The
resulting product was cleaned and concentrated (NEB Monarch) and the DNA concentration was
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Part s 5’ restriction site 3’ restriction site
Plasmid Vector XbaI XhoI
RiboJ::GFP ApaI PtsI
Oligo Pool SpeI ApaI
Barcoding Primer SbfI SalI

Table 2. Restriction sites used. All enzymes were ordered from NEB. If available, high fidelity versions of
the enzymes were used.

measured on a NanoDrop. Similarly, the RiboJ::GFP element was PCR amplified (primers SC191
and SC192), adding restriction sites as overhangs (ApaI and PstI). For details about the restriction
sites, see Table 2. The PCR product was cleaned and concentrated (NEB Monarch) and digested with
the respective restriction enzymes. The plasmid library is combined with the RiboJ::sfGFP element
using T7 DNA ligase (New England Biolabs, Ipswich, MA, USA) following the supplier’s protocol.
Ligation products were cleaned and concentrated (NEB Monarch) and a drop dialysis (MF-Millipore
VSWP02500, MilliporeSigma, Burlington, MA, USA) was performed for 1 hour to improve sample
purity. Electroporation using E. coli pir116 electrocompetent cells (Lucigen, Middleton, WI) was
performed at 1.8 kV in 1 mm electroporation cuvettes, followed by 1 hour recovery at 37 °C and 250
rpm in 1 ml LB media. Entire cultures were plated on 150 mm kanamycin (50 µg/ml) + LB petri
dishes aweren grown overnight. The following day, plates were scraped and the colonies resuspended.
Freezer stocks were prepared using a 1:1 dilution of resuspended colonies and 50% glycerol. Cultures
were inoculated with 5× 108 cells in 200 ml of LB + kanamycin (50 µg/ml) and grown at 37 °C until
saturation. Plasmids were extracted (ZymoPURE II Plasmid Maxiprep Kit, ZymoResearch) and used
for subsequent genome integrations.

7.3 Barcode Mapping

The plasmid library is used for barcode mapping. Purified plasmid is PCR amplified using forward
primer (SC185) outside the promoter region and a reverse primer outside the 20 bp barcode (SC184).
The PCR is run with minimal amplification, and the product is gel purified (NEB Monarch). The
purified DNA was used as template for a second PCR using a primer (SC196), adding an Illumina
P5 adapter to the promoter side, using a primer (SC199), and adding an Illumina P7 adapter to the
barcode side. The PCR is again run with minimal amplification and gel purified (NEB Monarch).
The product was used for sequencing on a Illumina NextSeq 2000 with a P2 flow cell with pair-end
reads using primers SC185 for read 1, SC184 for read 2 and SC201 for the index read. Reads were
filtered and merged using custom bash scripts, which are available in the Github repository. After
processing, each promoter/barcode pair was identified in each read, and pairs with less than 3 total
reads were discarded. An alignment algorithm was used to identify the identity of each sequenced
promoter variant. This allowed us to include additional promoter variants that were in the initial oligo
pool because of synthesis errors in the production of the oligos. The barcode mapping was used in
the analysis of libraries grown in various growth conditions. The code used to perform processing of
sequencing data can be found in the associated Github repository. Processing is done with the help
of various software modules [98–100]. Custom Python code used for the analysis and visualization of
results can be found in the associated Github repository.
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7.3.1 Genome Integration

7.3.1.1 Creation of Landing Pad Strain We used ORBIT [101] to integrate reporter libraries
into the E. coli chromosome. ORBIT uses a targeting oligo containing an attB site, and an integration
plasmid using an attP site. An additional helper plasmid facilitates the integration of the targeting
oligo into the replication fork, followed by recombination of the attB and attP sites catalyzed by a
bxb-1 gene in the helper plasmid. To increase the efficiency of genome integration, we created a landing
pad strain that contains an attB site close to the glmS gene in the E. coli chromosome. Wild type
E. coli (K12 MG1655) is streaked on a LB plate and grown overnight at 37 °C. A single colony is
picked and prepared to make elecotrocompetent cells as follows. The picked colony is grown in 3 ml
of LB at 37 °C and shaken at 250 rpm overnight. The overnight culture is diluted 1:1000 into fresh
LB (e.g. 200 ml) and grown at 37 °C and 250 rpm until exponential phase, reaching an optical density
at 600nm (OD600) of ∼ 0.4. The cultures are then immediately put on ice and spun in a centrifuge
at 5000 g for 10 min. Following the spin, the supernatant is discarded, and the cells are resuspended
in the same volume as the initial culture of deionized water at 4 °C. The cells are spun again at 5000
g for 10 min. This wash step is repeated 3 times with 10% glycerol. After the last wash step,the
supernatant is discarded and cells are resuspended in the remaining liquid and distributed into 50 µl
aliquots. Aliquots are frozen on dry ice and kept at -80 °C until they are used for electroporation.
For electroporation, aliquots are thawed on ice and 1 mm electroporation cuvettes are pre-chilled on
ice. 100 ng of helper plasmid (Addgene #205291) is added to a 50 µl cell aliquot and mixed by slowly
pipetting up and down. The aliquot is then added to the electroporation cuvette and electroporation is
performed at 1.8 kV. The aliquot is recovered with 1 ml of LB media pre-warmed to 37 °C. The culture
is recovered for 1 hour at 37 °C and shaken at 250 rpm. After recovery, aliquots at various dilutions
are plated on LB + gentamicin (gentamicin sulfate 15 µg/ml). Plates are grown overnight and a single
colony is picked to prepare electrocompetent cells and frozen stocks as described above. The cells are
electroporated with 2 mM of the targeting oligo (SC219) and an integration plasmid containing kanR
for selection and the sacB gene for counterselection. After recovery, the cultures are plated on LB +
kanamycin (50 µg/ml). A colony is picked and electrocompetent cells are prepared again as mentioned
above. Another electroporation is performed using only the targeting oligo (SC219). This time, cells
are plated on LB + 7.5% sucrose for selection of loss of the integrated cassette, leaving only an attB
site in the locus. This results in a scarless insertion of the attB site into the chromosome.

7.3.1.2 Integration of the Library. To perform genome integration, the host strain carrying the
helper plasmid is made electrocompetent (follow growing and washing steps described above), and the
plasmid library is electroporated into the host strain, using about 100 ng of plasmid per transformation.
The cells are recovered in 3 ml of prewarmed LB + 1% arabinose and shaken at 37 °C at 250 rpm
for 1 hour. The entire volume is plated on LB + kanamycin plates and colonies are grown over night.
The next day, all colonies are scraped, resuspended in LB and diluted to an OD600 of 1. The helper
plasmid used for genome integration causes growth deficits, hence, the library needs to be removed of
the plasmid. Therefore, the library is inoculated with 0.5 ml of culture at an OD600 of 1 in 200 ml of
LB, and grown until exponential phase at 37 °C shaken at 250 rpm. The helper plasmid carries the
sacB gene, which is used for negative selection in the presence of sucrose. At exponential phase, the
culture is plated on LB + 7.5% sucrose agarose plates. Plates are grown overnight, scraped and made
into frozen stocks at an OD600 of 1. The frozen stocks are then ready for growth experiments.
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7.4 Growth Media and Culture Growth

7.4.1 Base Media

Lysogeny Broth (LB) was prepared from powder (BD Difco, tryptone 10 g/l, yeast extract 5 g/l,
sodium chloride 10 g/l), and sterilized by autoclaving. M9 Minimal Media pre-mix without carbon
source was prepared in the following way, similar to [43]: to 700 ml of ultrapure water, 200 ml of 5
× base salt solution (BD Difco, containing disodium phosphate (anhydrous) 33.9 g/l, monopotassium
phosphate 15 g/l, sodium chloride 2.5 g/l, ammonium chloride 5 g/l, in H2O, autoclaved), 10 ml of
100X trace elements (5 g/l EDTA, 0.83 g/l FeCl3-6H2O, 84 mg/l ZnCl2, 19 mg/l CuSO4 - 5 H2O,
10 mg/l CoCl2 - 6H2Oin H2O, 10 mg/l H3BO3, 1.6 mg/l MnCl2 - 4H2O, prepared as described in
[102]), 1 ml 0.1 M CaCl2 solution, in H2O, autoclaved, 1 ml 1 M MgSO4 solution, in H2O, autoclaved
and 1 ml of 1000 × thiamine solution (1 mg/ml in water, filter sterilized) were added. The resulting
solution was filled up to 1 l with water and filter sterilized. M9 minimal medium was complemented
with carbon source by mixing appropriate amounts of carbon-source-free M9 minimal medium and
carbon source stock solutions. Carbon source stock solutions were prepared as 20% solutions and filter
sterilized.

7.4.2 Cultivation

Overnight cultures were incubated from frozen stock in 200 ml M9 minimal media with 0.5% glucose
and grown at 37 °C while shaken at 250 rpm. Cultures were diluted 1:100 into the respective growth
media (prewarmed to 37 °C, 200 ml) and grown to exponential phase (OD600 of 0.3). To ensure steady
state growth, the cultures were diluted a second time 1:100 into the same growth media and grown again
to an OD600 of 0.3, ensuring at least 10 cell divisions in the growth media. At this step, there are four
different paths for a culture: 1. It is immediately harvested (called standard growth).; 2. A compound
is added to the culture and the culture is harvested at a later specified time (called induction); 3. the
culture is moved to water bath of a different temperature and then harvested at a later specified time
; or 4. the culture is spun down in four 50 ml aliquots at 3500 rpm for 7 min, washed in a different
media twice, and then grown in that media for 1 hour. Unless otherwise mentioned, glucose was used
as carbon source. Each condition was done in duplicate with some conditions being done in triplicate
when the initial replicates did not seem to correlate well. To compare how experiments correlate, for
each pair of conditions, we computed the Pearson correlation coefficient across all mutual information
footprints. Figure S5 shows the correlation between all experiments and shows which experiments were
excluded from analysis due to poor correlation to the rest of the experiments.

7.4.3 Specific Growth Conditions

Glucose: For standard growth, 5 ml of 20% glucose solution added to 200 ml of M9 minimal media
pre-mix for a final concentration of 0.5%.
Arabinose: For standard growth, 5 ml of 20% arabinose solution added to 200 ml of M9 minimal
media pre-mix for a final concentration of 0.5%.
Xylose: For standard growth, 5 ml of 20% xylose solution added to 200 ml of M9 minimal media
pre-mix for a final concentration of 0.5%.
Galactose: For standard growth, 2.3 ml of 20% galactose solution added to 200 ml of M9 minimal
media pre-mix for a final concentration of 0.23%.
Acetate: For standard growth, 5 ml of 20% sodium acetate solution added to 200 ml of M9 minimal
media pre-mix for a final concentration of 0.5%.
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Sodium Salicylate: 1 M sodium salicylate stock was prepared and filter sterilized. For standard
growth, 500 µl of the stock was added to 200 ml of M9-glucose media for a final concentration of
2.5 mM. For 1 hour induction, 2 ml of the stock was added to 200 ml M9-glucose media for a final
concentration of 10 mM.
Ethanol: For standard growth, 5 ml of 200 proof ethanol was added to 200ml of M9-glucose media
for a final concentration of 2.5%. For 1 hour induction, 10 ml of 200 proof ethanol was added to 200
ml M9-glucose media for a final concentration of 5%.
Ampicillin: For both standard growth and 1 hour induction, ampicillin was added to M9-glucose
media for a final concentration of 2 mg/l.
LB: For standard growth, cultures were grown in LB media
Stationary Phase: Cultures were grown in M9-glucose media for an additional one day (1d) or three
days (3d) after reaching an OD600 of 0.3.
Leucine: For 1 hour induction, leucine was added for a final concentration of 10 mM.
Phenazine Methosulfate: For 1 hour induction, 61 mg of 2,2 phenazine methosulfate (SigmaAldrich)
was added for a final concentration of 100 µM.
2,2 Dipyridyl: For 1 hour induction, 156 mg of 2,2 dipyridyl (SigmaAldrich) was added for a final
concentration of 5 mM.
Gentamicin: For 1 hour induction, gentamicin was added for a final concentration of 5 mg/l.
Copper Sulfate: 1M stock of CuSO4 was prepared. 1 hour inductions were performed with final
concentrations of both 500 µM and 2 mM.
Hypochlorous Acid: For 1 hour induction, sodium hypochlorite solution (Sigma-Aldrich #425044)
was added for a final concentration of 4 mM.
Spermidine: For a 1 hour induction, spermidine was added for a final concentration of 5 mM.
Serine Hydroxamate: For a 30 min induction, serine hydroxamate (Sigma-Aldrich) was added for
a final concentration of 0.4 mg/ml.
Cold Shock: Cultures were grown in M9-glucose media to an OD600 of 0.3 and then were immersed
in a 10 °C water bath and shaken for 1 hour.
Medium Cold Shock: Cultures were grown in M9-glucose media to an OD600 of 0.3 and then were
immersed in a 19 °C water bath and shaken for 1 hour.
Heatshock: Cultures were grown in M9-glucose media to an OD600 of 0.3 and then were immersed
in a 42 °C water bath and shaken for 5 min.
H2O2: For 30 min induction, H2O2 was added to M9-glucose media for a final concentration of 0.1
mM. For 10 min induction, H2O2 was added to M9-glucose media for a final concentration of 2.5 mM.
Nitrogen Starvation: Minimal media premix was prepared with only 10% NH4Cl. Cultures were
grown in M9-glucose media to an OD600 of 0.3, then washed and grown for 1 hour in M9-glucose
media with reduced NH4Cl.
Magnesium Starvation: Minimal media premix was prepared where MgSO4 was replaced with
NaSO4 at the same concentration. Cultures were grown in M9-glucose media to an OD600 of 0.3, then
washed and grown for 1 hour in M9-glucose media with NaSO4.
Sulphur Starvation: Minimal media premix was prepared where MgSO4 was replaced with MgCl at
the same concentration. Cultures were grown in M9-glucose media to an OD600 of 0.3, then washed
and grown for 1 hour in M9-glucose media with MgCl.
pH2: Minimal media was prepared as usual, but the pH is adjusted to 2.0 using sodium hydroxide.
Cultures were grown in M9-glucose media to an OD600 of 0.3, then washed and grown for 1 hour in
M9-glucose media with pH2.
Low Osmolarity: Minimal media pre-mix was diluted by a factor of two before adding glucose. Cul-
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tures were grown in M9-glucose media to an OD600 of 0.3, then washed and grown for 1 hour in low
osmolarity M9-glucose media.
High Osmolarity: LB was supplemented with 0.75 M NaCl. Cultures were grown in M9-glucose
media to an OD600 of 0.3, then washed and grown for 1 hour in LB with 0.75 M NaCl.
Low Phosphate: Minimal media was prepared with only 10 % of disodium phosphate and monopotas-
sium phosphate. Cultures were grown in M9-glucose media to an OD600 of 0.3, then washed and grown
for 1 hour in low phosphate M9-glucose media.
Nitrate: For standard growth, potassium nitrate was added to standard M9-glucose media for a final
concentration of 80 mM.
Anaerobic: For anaerobic growth, M9-glucose media was kept in a glove box containing nitrogen for
multiple days to equilibrate and remove oxygen from the media. Cultures were inoculated in 20 ml of
this media inside the glove box in glass tubes which are sealed with rubber plugs. Tubes were grown
in a shaker at 37 °C and shaken at 250 rpm. When the culture reached an OD600 of 0.3, a 1:100
dilution was performed inside the glove box and grown to an OD600 of 0.3 again. Cultures were then
harvested.
Anaerobic and Nitrate: 80 mM potassium nitrate was added to standard M9-glucose media. Cul-
tures were grown in anaerobic conditions as described above.

7.5 Barcode Sequencing

Once a culture is ready for harvesting, 750 µl of culture are mixed with 750 µl of freshly prepared
1X Monarch DNA/RNA Protection Reagent (NEB) and pelleted by spinning at 20000 g for 1 minute.
The supernatant is discarded, and the pellets are frozen on dry ice. Genomic DNA is extracted
from four pellets for each sample using a Monarch Spin gDNA Extraction Kit (NEB), following the
manufacturer’s protocol for gram-negative bacteria. RNA was extracted and reverse transcription was
performed using a custom protocol. 500 ng of gDNA and 5 µl of cDNA was used as template for library
preparation. First, the template is amplified by PCR using primers SC184 and SC88. 12 cycles are run
for gDNA and between 20 and 25 cycles for cDNA, depending on the sample. The PCR product was
run on a 2% agarose gel and bands were gel purified (Monarch DNA Gel Extraction Kit, New England
Biolabs). Then, 5 ng of amplified DNA was used for a second PCR (50 µl volume), using forward
primer SC80 and one of 92 reverse primers (SC354-SC445), which add an index for demultiplexing.
The PCR is run for 6 cycles and the product is run in a 2% agarose gel, followed by gel extraction.
The extracted DNA is used for sequencing. Sequencing runs were perfomed on a NextSeq 2000. A
summary of all the sequencing runs used for this paper is shown in Table 3. Primer SC450 was used
for read 1, and primer SC270 for the index read. Sequencing data is filtered for quality and trimmed
using fastp [99]. Barcodes are extracted and counted from sequencing files using custom Bash scripts,
which are available on Github.
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7.6 Sequencing Runs

Date SRA Number Content Run Type Sequencer

05/14/2022 Mapping of promoter variants and barcodes Paired-End Next-Seq 2000 - P2 flowcell

03/27/2023
Comparison of plasmid reporters and genome
integrated reporters

Single-end MiSeq v2 flowcell

09/07/2023 Barcode counting in 9 Conditions Single-end, 50 cycles MiSeq, v2 flowcell
12/07/2023 Barcode counting in 27 Conditions Single-end, 27 cycles Next-Seq 2000, P3 flowcell
06/21/2024 Barcode counting in 44 Conditions Single-end, 27 cycles Next-Seq 2000, P4 flowcell
09/07/2024 Barcode counting in 24 Conditions Single-end, 27 cycles Next-Seq 2000, P2 flowcell

Table 3. Sequencing runs. Every sequencing run containing data used in this work. Each run has its own
code for processing, which can be found in the associated Github repository.

7.7 DNA Chromatography and Tandem Mass Spectrometry

7.7.1 Cultivation for Lysate

Similar to the procedure described in 7.4.2, overnight cultures were grown in 5 ml of M9 minimal
medium with 0.5% glucose at 37 °C and then diluted 1:100 into the growth media listed in 7.4.3.
Cultures were carried out in 2800 ml Fernbach-style flasks filled with 500 ml of media. The total
volume of liquid culture for a given growth condition ranged from 1000 to 6000 ml, depending on the
number of required DNA chromatography experiments. After a given growth condition duration is
completed, the cells were harvested by centrifuging at 8000 g for 30 minutes at 4 °C. Cell pellets were
stored at -80 °C or subsequently lysed.

7.7.2 Lysate Preparation

Cell pellets were re-suspended in lysis buffer (70 mM potassium acetate, 50 mM HEPES pH 7.5, 5
mM magnesium acetate, 2.5 mM DTT, and cOmplete Ultra EDTA-free protease inhibitor). Mechanical
cell lysis was performed using a high pressure cell disruptor (Constant Systems). Afterwards, to help
solubilize membrane proteins, n-dodecyl-β-D-Maltoside (DDM) detergent was added to the crude lysate
for a final concentration of 1 mg/ml. Lysates were clarified of non-soluble cell debris by centrifuging at
30000 g for 1 hour at 4 °C. The collected supernatants were further concentrated to ∼100 mg/ml using
centrifugal protein concentration filter (Amicon Ultra -15) with a molecular weight cut-off of 3 kDA.
Protein concentrations were determined using a fluorometer (Qubit fluorometer) and proprietary dyes
that specifically label proteins (Qubit Reagent). The lysates were further cleared of non-specific DNA
binding proteins by incubating with a competitor salmon sperm DNA (Invitrogen) at 0.1 mg/ml for 10
minutes at 4 °C. An additional 1 hour incubation at 4 °C is performed by adding sacrificial streptavidin-
coated magnetic beads without any attached DNA oligos (Dynabeads MyOne Streptavidin T1) at ∼3
mg/ml in order to clear proteins that may non-specifically bind to the beads surfaces. Lysates are
centrifuged one final time to pellet the sacrificial beads and any remaining insoluble component. The
resulting supernatants are stored at -80 °C or aliquoted into volumes of 200 µl for subsequent DNA
chromatography experiments.

7.7.3 DNA Chromatography

DNA affinity chromatography is used to isolate a transcription factor of interest from a given cell
lysate. The procedure detailed below is similar to the one we have used previously [7, 103]. In brief,
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DNA oligos that have putative transcription factor binding sites are attached to magnetic beads. These
beads with tethered DNA are incubated with cell lysates to "fish out" proteins that bind to the oligos.
They are spatially separated from the remaining lysate by magnets, allowing for extraction of the
bound proteins. The relative enrichment of a given protein is determined by comparison to a control
DNA sequence that has no specific binding sites.

7.7.3.1 DNA Oligos for Magentic Beads The binding sequence of an oligo (IDT) is taken
from the native E. coli genome, where the sequence region is hand-selected to match the putative
binding sites determined by RegSeq. For the control sequence, a region near the TSS associated with
the promoter ymjF was used, since this sequence had no discernible binding sites, as determined by
RegSeq. Each oligo has the 5’ end biotinylated (to ensure attachment to streptavidin-coated magnetic
beads) and starts with a cut site sequence for the PstI restriction enzyme (New England Biolabs),
which allows for the bound protein to be recovered by a restiction digest.

7.7.3.2 Bead Incubations and Protein Recovery A batch volume of magnetic beads (Dyn-
abeads MyOne Streptavidin T1) is measured out, according to the total number of DNA chromatogra-
phy experiments being performed and assuming each individual chromatography experiment requires
160 µl of stock beads per 200 µl of aliquoted lysate. The total volume of beads is washed twice in
TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA), washed twice in DW buffer (20 mM Tris-HCl pH
8.0, 2 M NaCl, 0.5 mM EDTA), and re-suspended in annealing buffer (20 mM Tris-HCl pH 8.0, 10
mM MgCl2, 100 mM KCl). The beads are aliquoted according to the number of oligos used. DNA
oligos are added to the aliquoted beads to a final concentration of 5 µM and incubated for at least 3
hours at room temperature or overnight at 4 °C. After oligo incubation, beads are washed twice in TE
buffer and then twice DW buffer. All wash buffers are supplemented 0.05% TWEEN-20 detergent to
minimize bead loss related to sticking to surfaces. After washing, beads are incubated in a blocking
buffer (20 mM HEPES pH 7.9, 300 mM KCl, 0.05 mg/ml bovine serum albumin, 0.05 mg/ml glycogen,
2.5 mM DTT, 5 mg/ml polyvinylpyrrolidone, and 0.02% DDM) for 1 hour at room temperature to
reduce nonspecific protein binding to the bead surfaces. The beads are then washed three times in
lysis buffer. The beads are added to the aliquoted lysates to a final concentration of 5 mg/mL. When
applicable, a supplement of the reagent defining a given growth condition (carbon source, antibiotic,
chemical stress,...) is added to the lysate to approximate the internal cell environment. For example,
for the M9-glucose growth condition, glucose is added to the lysate to a final concentration of 0.5%.
See Table S2 for details of all lysate supplements used. The beads and lysate are incubated overnight
at 4 °C on a rotating rack. The next day, the beads are washed three times in lysis buffer and once
in the reaction buffer (NEB buffer r3.1) for the restriction enzyme PstI. 1000 units of PstI is added
to each bead reaction. The beads are incubated for 90 min at room temperature. The supernatant
containing the DNA and bound proteins is collected for solution-based protein digestion.

7.7.4 Protein Digestion, Labeling and Desalting for Proteomic Analysis

The samples were subjected to an isobaric-labeled filter-aided sample preparation (iFASP) proto-
col (PMID: 23692318) with minor changes. Briefly, supernatant from each sample was loaded onto
a 10 kDa Amicon filter (Pierce), and washed with 8 M urea in 100 mM HEPES (urea buffer) 3
times. Each washing step includes adding 200 µl of the corresponding solution followed by 14000 g
centrifugation for 15 min. After 3 washes with urea buffer, 200 µl of urea buffer containing 5 mM
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tris(2-carboxyethyl)phosphine was added into each filter to break disulfide bonds. The reaction was
incubated for 1 hour at room temperature, and 200 µl of urea buffer containing 20 mM of chloroac-
etamide was added into each filter to alkylate free thiols. The alkylation reaction was incubated for
15 min at room temperature, and the filters were centrifuged for 14000 g for 15 min. The filters were
further washed 3 times with 150 µl of 100 mM of triethylamine bicarbonate (TEAB) in water. After the
TEAB washes, 120 µl of 100 mM TEAB containing 1 µg of Trypsin (Pierce) was added into each filter.
The enzyme to substrate ratio is estimated be from 1:5 to 1:10. The trypsinization step occurred for 16
hours at 37 °C. After trypsinization, 5 µl of DMSO containing 0.05 mg of TMTpro reagent (Thermo)
was added into each filter, and the labeling reaction incubated for 1 hour. 1 µl of 5% hydroxylamine
was added into each filter to quench the TMT labeling. The samples were then eluted from the filters
by 14000 g centrifugation for 15 min. The filters were further washed 3 times with 50 µl of 0.5 M
NaCl in water, and all elutions were pooled together. The pooled sample was dried using a CentriVap
concentrator (LabConco), and was desalted with a monospin C18 column (GL Science) according to
manufacturer’s instructions. The desalted sample was dried again using a CentriVap concentrator and
was stored at -80 °C.

7.7.5 Liquid Chromatography and Tandem Mass Spectrometry

Samples were reconstituted in 20 µl of 2% acetonitrile and 0.2% formic acid in water. The peptide
concentration was determined using the Pierce Colorimetric Quantitative Peptide Assay. An aliquot
of 500 µg of the peptide was loaded onto a Thermo Vanquish Neo liquid chromatography (LC) system,
where the peptides were separated on an Aurora UHPLC Column (25 cm × 75 µm, 1.6 µm C18,
AUR2-25075C18A, Ion Opticks). The LC gradient was increased from 2% to 98% of mobile phase B
over 130 min. See Table S3 for the gradient settings. The LC processed peptides were analyzed on a
Thermo Eclipse Tribrid mass spectrometer using a data-dependent acquisition (DDA) method, where
the mass spectrometer selects the most intense peptide precursor ions from the first scan of tandem
mass spectrometry (MS1) and then fragments and analyzes the precursors in a second scan (MS2).
MS1 scans were acquired with a range of 375–1600 m/z in the Orbitrap at a resolution of 120000. The
maximum injection time was 50 ms, and the AGC target was 250. MS2 scans were acquired using the
quadrupole isolation mode and the higher-energy collisional dissociation (HCD) activation type in the
Iontrap. For these scans, the resolution was 50000, the isolation window was 0.7 m/z and the collision
energy was 35%. See Table S4 for the detailed parameters used for the mass spectrometry scans.

7.7.6 Mass Spectrometry Data Analysis

The raw data generated by the mass spectrometer is analyzed using Proteome Discoverer 2.5 based
on the Sequest HT algorithm [104]. The data is compared against the E. coli proteome from UniprotKB
for protein identification. The fragment mass tolerance was set to 10 ppm. The maximum false peptide
discovery rate was specified as 0.01 using the Percolator Node validated by a q-value. See Table S5 for
the complete list of parameters used for Protein Discoverer 2.5. The resulting data was exported and
analyzed with custom Python-based code, which is available on Github.
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S1 Existing methods for dissection of gene regulation in bacteria
A huge effort has been expended in uncovering how genes in E. coli are regulated [4, 22, 24,

28, 105–112]. For much of the history of modern molecular biology, genes were usually studied on
a one-by-one basis due to the lack of high throughput methods. This led to major success stories
including insights into the lysis-lysogeny decision in bacteriophage lambda, discoveries on how bacteria
use different carbon sources including lactose, galactose and arabinose, insights into the role of DNA
looping and a myriad of other examples. Over the past few decades, a variety of high-throughput
methods have re-enlivened the subject by enabling the identification of many binding sites for a single
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transcription factor in one experiment, or identifying binding sites for all transcription factors without
knowing the identity of the transcription factors specifically binding those sites. Here we provide an
overview of some examples of previous work to give a sense of where our own efforts fit into this
enormous subject, highlighting both the successes and open questions resulting from previous work.
We begin by discussing in vitro approaches in which DNA and proteins are interrogated outside of
their natural cellular environments. Much has been learned from these approaches. Then, we turn to
the analysis of in vivo methods which attempt to capture DNA-protein interactions in the context of
living cells.

• SELEX: Systematic evolution of ligands by exponential enrichment (SELEX) was developed
in 1990 [113] with the purpose of identifying in vitro which DNA sequence or ligand a protein
binds to. The method uses a library of synthesized DNA that is incubated with purified proteins.
Unbound DNA is removed and bound DNA is eluted from the protein and subsequently amplified.
This process is repeated over multiple rounds to find DNA with high binding affinity to the
protein. The level of specificity of the DNA obtained in these experiments can be tuned by
choosing a different number of cycles. Once a DNA sequence with high affinity for the protein
is identified, the genome of interest can be scanned for potential transcription factor binding
sites by looking for sequence similarity between the genomic DNA and the SELEX DNA. In the
context of E. coli, binding sites for hundreds of transcription factors have been identified genome
wide [57].

• PBM: Protein-binding microarrays (PBM) use a large array of synthesized DNA oligonucleotides
that are fused to a surface. Binding of purified protein to the DNA oligonucleotides is measured
by fluorescence microscopy of tagged proteins. PBMs are able to better detect less specific
binding sites for TFs than SELEX [114]. PBMs have been used to identify the motifs for more
than 1000 transcription factors [115].

• DAP-Seq: One modification to in vitro binding assays that has been useful is to choose genomic
DNA as template instead of synthesized DNA. This approach is the basis of DNA affinity purifi-
cation sequencing (DAP-Seq) [116, 117]. One of the advantages of using genomic DNA is that
such DNA maintains chemical modifications to the DNA such as methylation and reveals that
such methylation can be important for DNA - TF interactions.

• ChIP-Seq: Chromatin immunoprecipitation with sequencing (ChIP-Seq) is one of the most com-
monly used methods to identify binding sites for TFs in the in vivo setting. Identifying binding
sites in vivo is beneficial as potential co-factors and enzymes modifying the conformation of the
TF are present if the correct growth condition is chosen. In the first iterations of the method the
resolution of identified binding sites was low, however, the use of endonucleases in ChIPexo-Seq
[118] lead to higher accuracy. To pull down TFs that are crosslinked to DNA, the TF needs to
be modified with a tag, e.g., His-tag [119], or antibodies against the TF need to be available,
which can limit the throughput and often means that only one or a few TFs can be studied at
the same time. However, binding sites across the entire genome can be found in a single experi-
ment, giving high throughput on this axis. There have been drastic differences in the number of
binding sites identified for certain TFs between ChIP-Seq and SELEX [119]. ChIP-Seq has been
used to discover a variety of different DNA-Protein interactions, such as the RpoS regulon in E.
coli [119], the PhoB regulon [120], nucleoid organization by H-NS and MukBEF [121], genome
wide binding of CRP (using DNA microarrays) [122] and binding of Sigma70 [123]. In a recent
study, ChIp-Seq was performed on 139 TFs for cells grown in minimal media with glycerol [124].
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• DNAse footprinting: In contrast to ChIP-Seq, DNAse footprinting does not require a pull down
on a specific TF. This allows for the discovery of binding for all DNA binding proteins across
the entire genome at the same time, but also comes with the loss of the identity of the protein
binding to each site. This method has been combined with RNAP occupancy studies to verify
the function of identified binding sites [12, 125].

• MPRA: Massively-parallel reporter assays are one of the signature recent achievements in high-
throughput approaches for dissecting promoter function. The method is based upon creating large
libraries of genetic variants and measuring their function in parallel. Urtecho et al. use genome-
integrated massively parallel reporter assays to catalog and characterize promoters throughout
the E. coli genome [96]. This approach has been used impressively in E. coli to explore not only
binding sites, but also ribosomal binding site sequences [126], etc.

• Sort-Seq: In Sort-Seq [7, 29] binding of transcription factors is identified by mutating bases in
the vicinity of a transcription start site and measuring expression of a downstream reporter gene
using fluorescence activated cell sorting (FACS), followed by DNA sequencing of the mutated
promoter variants. By identifying bases where a mutation leads to a large change in expression
putative binding sites are discovered. The identity of the transcription factor binding to these
sites is then identified by DNA chromotography and mass spectrometry. This approach not only
identifies binding of transcription factors, but also shows that the binding is functional, i.e.,
binding of the transcription factor effects expression of a gene. It has been found that binding
sites that have been identified in vitro do not necessarily imply that the binding has regulatory
function [120].

All of these methods have been used to gain insights into the regulatory landscape of E. coli and
other organisms. Databases such as EcoCyc [52] and RegulonDB [127] contain a large number of anno-
tated binding sites. Our goal is to use data from these methods as well as approaches in our paper to
provide a systematic, rigerous and complete description of all promoters in E. coli with standardized
annotations in databases that can be used for e.g. phylogenetic modeling and building blocks for syn-
thetic biology. In particular, as shown in several of the figures in the paper, in those cases where we are
able to find putative binding sites and identify the TFs that bind to those sites, the aim is to be able
to go from a promoter of unknown regulatory architecture all the way to an environment-dependent
regulatory architecture including energy matrices describing transcription factor binding and statisti-
cal mechanical models of the input-output response of the promoter of interest as a function of key
regulatory knobs such as DNA-TF binding site strength, TF copy number and effector concentration.
Beyond that, the aim is for all of these disparate sources to come together to make excellent databases
such as EcoCyc [52] and RegulonDB [127] a more complete and internally consistent source as a basis
for rigorous understanding of the physiology and evolution of E. coli and that will serve as a template
for how to structure such databases for other organisms.
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Sequence DNA counts RNA counts
ACTA 5 23
ATTA 5 3
CCTG 11 11
TAGA 12 3
GCGC 2 0
ACCA 8 7
AGTA 7 3

Table S1. Synthetic dataset used to explain the logic of creating summary statistics. Hypothetical
dataset where for each sequence there is an associated count from DNA sequencing and a count from RNA
sequencing. For this hypothetical case, the tiny wild-type “sequence” is ACTA.

S2 Theory of the experiment
For each promoter-growth condition pair we produce a unique dataset consisting of counts of both

DNA and RNA for each barcode. An example dataset is shown in Table S1. To identify potential
binding sites in the sequence, we are looking for positions in the sequence of interest that lead to a
high change in expression of the reporter when the base is mutated. We hypothesize that this coupling
between sequence and expression indicates that the binding of a regulatory factor has been modified.
There are multiple ways of displaying the connection between the identity of each base and the level
of associated with such sequence changes. Ultimately, we have opted to use “summary statistics” that
take as input the sequencing reads and result in output of some basepair by basepair picture of the
importance of a given base to the level of expression. In particular, here we use two such summary
statistics, namely, expression shifts and mutual information as a way to generate hypotheses for binding
site positions and sequences. A detailed discussion of both quantities can be found in [54]. Here, we
give a brief reminder of these two summary statistics to make our approach self-contained, though the
reader can see that reference for more details.

S2.1 Expression Shifts
The expression shift summary statistic is an average way of determining how much the gene ex-

pression will be changed if the base at site i is changed from its wild type value to one of the three
other alternatives. Expression shifts can be calculated directly from the data, and measure directly
how much the expression is changed given a mutation to a specifc base at each position. The result is
a 4×L matrix, where L is the length of the promoter sequence. Specifically, for a dataset where each
sequence i is associated with a measure for expression ci the value in the expression shift matrix at
position l corresponding to base b is given by

∆sb,l =

{
1
n

∑n
i=1 ξi,l

(
ci
⟨c⟩ − 1

)
, where ⟨c⟩ = 1

n

∑n
i=1 ci, if b is mutated

0, if b is wild type
(S1)

where ξi,l = 1 if the base at position l in the i-th promoter variant corresponds to base identity b
and ξi,l = 0 otherwise. For our experiments, the measure of expression ci is the ratio of RNA to
DNA barcode counts. The same measure can be applied to Sort-Seq datasets, where the measure of
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expression is the expression bin the sequence was assigned to. This matrix form of the expression shift
allows us to capture how mutations in specific bases affect the promoter change in expression.

S2.2 Mutual Information

As noted above, a second useful summary statistic is the information footprint. Details for how
to go from sequence reads to this summary statistic can be found in [54]. This way of displaying how
mutations change expression of the reporter gene is achieved by computing the mutual information
between the identity of a given base and the level of gene expression. High mutual information indicates
that the identity of the base is significant in governing the level of expression and leads to the hypothesis
that that base is part of a binding site, for example. However, as we showed in Figure 2, not only
does the information footprint reveal binding sites that had not been seen before, but also sometimes
hides the existence of mutations that created new transcription start sites. Ultimately, the information
footprint is one of many possible summary statistics for trying to tame the enormous datasets, and
needs to be used judiciously.

From the data we can compute the ratio of reads that contain a mutation at each position for both
DNA and RNA reads, p(m,µ), where m indicates the base is wild-type (m = 0) or mutated (m = 1),
and µ indicates if the read belongs to DNA (µ = 0) or RNA (µ = 1). Then, we compute mutual
information at position i as

Ii =
1∑

m=0

1∑
µ=0

p(m,µ) log2

(
p(m,µ)

p(m)p(µ)

)
, (S2)

where p(µ) and p(m) are the marginal distributions of p(m,µ). In the example dataset introduced
in Table S1 for the purposes of explaining notation and the algorithm, there are a total of 50 DNA
counts and 50 RNA counts. In the first position, the wild-type base is A, and 25 DNA reads contain
the wild-type base, hence we compute p(0, 0) = 0.25, while 36 RNA reads contain the wild-type base,
thus p(0, 1) = 0.36. 25 DNA reads contain a mutation in the first base, which gives p(1, 0) = 0.25,
and 14 RNA reads contain a mutation in the first base, therefore, p(1, 1) = 0.14. Using these values,
using equation S2 we can compute mutual information for the first base to be I1 = 0.037 bits. At this
point in time, the meaning of an absolute value is still unclear, and we can only compare the value of
mutual information at one position to the values at other positions in the same promoter.

S2.3 Identification of Binding Sites

Once an information footprint is computed, one has to identify where binding sites are. For a
handful of footprints this can be done by hand, however, for the scale of this experiment when on the
order of 10000 unique footprints are obtained, an unbiased and automated method to detect binding
sites from the data is needed. We have explored multiple different methods which are discussed below.

S2.3.1 Triaging

At first, we put each footprint into one of three categories: 1. Footprints containing putative
binding sites for transcription factors and/or sigma factors 2. One single mutation in the promoter
sequence leads to high expression from a transcription start site that is different from the annotated
transcription start site, a phenomena we call de novo promoters 3. The footprint is not distinguishable

48



from noise. The mutual information computed from equation S2 is at base-pair resolution. To smoothen
the footprint and make it easier to identify peaks, we use a sliding gaussian kernel across each footprint.
An important quantity for our classification of footprints is the coefficient of variation (CV) of mutual
information across the promoter. A footprint with distinct peaks compared to a noise background has
a large CV compared to a footprint with lots of fluctuations, as shown in Figure S1(A). To estimate
a noise floor for our dataset, we use a shuffling approach. We take our datasets (measurements of
promoters in growth conditions), and assign sequencing counts to random mutated promoter variant
that is different from the sequence the counts were identified initially. This removes the measured
correlation between base identity and effect of the mutation. We perform this shuffle 100 times per
promoter-growth condition pair, and for each iteration the footprints are smoothed using the gaussian
kernel and the CV is computed. All resulting CV values are pooled, and we compute a 95% confidence
interval for the distribution, where we choose the upper limit of the interval as the noise threshold,
which turns out to be 0.75, as shown in Figure S1(B). This allows us to distinguish measurements that
are dominated by noise from footprints that contain a distinguishable signal. To identify if a footprint
contains joint regions of high mutual information, a sign of a binding site, or a single mutation that leads
to activity from the promoter, we look at how the smoothing of the footprint changes the CV across
the positions. We simulate footprints with varying number of neighboring positions that have high
mutual information compared to a noisy background, and compute the CV before and after smoothing
of these footprints. We find that there is a distinct group of datasets that follow the trend for a single
position with high mutual information, as can be seen by the blue line in Figure S1(C). This allows us
to separate the datasets between footprints that have putative binding sites, and footprints with single
positions of high mutual information. Figure S1(D) shows the thresholds and example footprints for
the araB promoter. We then use a Hidden Markov model to identify binding sites for promoters in the
first class and the computational model by LaFleur et al. [56] to look for putative new transcription
start sites in promoters with single mutations of high mutual information, both cases are discussed in
detail below.

S2.3.2 Hidden Markov Model

Once a sequence is identified as containing binding sites, we use a two state Hidden Markov Model
to distinguish binding sites from positions that do not contain binding sites. Hidden Markov models
are often used for sequence analysis [55], and here we present an application specific to the nature of our
experiment and datasets. The two hidden states in the model are binding sites and background, where
we assume that binding sites contain significantly higher mutual information that noisy background.
Positions that do not contain binding sites have non-zero mutual information due to experimental
noise but also due to the nature of our mutated library, where each sequence contains on average 16
mutations (160 bases at a 0.1 mutation rate). Hence, mutations in and outside binding sites occur
at the same time. Since we are using about 1500 mutated sequences per promoter, we are using
only a tiny fraction of all possible mutated sequences. The observable in the model is the mutual
information in the footprints, which are treated like time-series, in the sense that each position can be
interpreted as a subsequent "time point". The transition probability matrix in the model captures the
fact that binding sites are not at single base pairs, but instead usually made out of groups of 10-20
bases at a time. We use gaussian distributions to parameterize the emission probabilities, and use
the "hmmlearn" Python package to fit and evaluate the models. For each information footprint we
fit a individual model, repeating the process 10 times to exlude possible diverging runs. From the 10
separately fit models, we choose the one that produces the highest log-likelihood when the sequence
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Figure S1. Triaging of the data into different classes. (A) The coeffiecent of varation of mutual
information across positions in the footprint is a proxy for noise. (B) The noise floor of measurements can be
estimated by shuffling datasets and recomputing footprints and coeffiecents of variation. (C) Datasets follow
different trends under smoothing depending on the number of positions with high mutual information.
Footprints with single positions of high mutual information separate from the rest of the data. (D) Based on
the noise floor and the distinct behavior of footprints with single positions of importance, thresholds are
drawn in the plane of coefficient of variation before and after smoothing of the data. Shown are examples for
araB, which has activator binding sites when cells are grown in arabinose, but not when grown in xylose. In
that case, a single mutation upstream of the annotated TSS leads to a new active TSS emerging.
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is evaluated using the model. The information footprint itself is unsigned and hence, does not contain
information about binding sites being repressor-like or activator-like. When a region of the promoter
is identified as binding site, we look at the expression shift to identify the sign of change in expression
when the site is occupied. In Figure S2 we show the result of the Hidden Markov Model for the araB
promoter for growth in arabinose, and the identified binding sites, which overlap with the annotated
activator sites for AraC. In the expression shift we can see that within the binding sites, nearly every
mutation leads to a decrease in expression, showing how mutations in the binding site weaken binding
of the activator and decrease expression.

As quality control, fit the model both for the forward sequence, but also the reverse sequence,
to ensure consistency. Examples are shown for the araB promoter for growth with arabinose and
the tisB promoter for growth in glucose. Another important parameter is the width of the gaussian
kernel used for smoothing. If the smoothing kernel is too narrow, binding sites are not identified as
continuous units and many single positions outside actual binding sites are identified as binding sites
by the model. If the kernel is too wide, binding sites merge and we lose the resolution to distinguish
neighboring binding sites, as shown in Figure S2. Thus, we choose a kernel width of σ = 2 for our
analysis.

S2.3.3 De novo promoters

As seen in the main text, one of the key and surprising outcomes of our experiments was the
emergence of new transcription start sites based only upon a key driver mutation. This phenomenon
was discovered in earlier experiments by the Gore Lab [82]. The presence of such results in our
experiments led us to develop a systematic approach for identifying these new transcriptional start
sites as shown in Figure S3.

The most useful way of visualizing the emergence of new promoters in our data is using the summary
statistic we call the expression shift matrix. In the left panel of Figure S3 we show an example of such
an expression shift matrix in the context of the araBp promoter when grown in xylose. As seen in the
figure, there is a mutation just to the left of the -75 position in which a G is replaced by an A and for
which there is a very large resulting shift in the expression. To investigate if this mutation indeed led
to formation of a new transcription start site, we split the dataset into two groups, one that harbors
the mutation at this site, and a second group that has the wild type base at that site. At this point
in the procedure, we invoke bioinformatics in the form of a model from the Salis lab for predicting
transcription rates from putative promoter sequences [56]. As seen in the middle panel of the figure, our
approach is to slide along the promoter region in single base pair increments, where for each position,
we extract a block of sequence and feed into into the Salis Lab transcription rate calculator. The result
is a predicted transcription rate for every possible transcription start site for each sequence in both
groups. To summarize the outcomes, we compute the average transcription rate per transcription start
site across all sequences within each group. The average predicted transcription rate is then plotted
as a function of the position of our query block of sequence as shown in the right panel of the figure.
As is evident in the figure, there is significant enhancement in the predicted transcription rate that
corresponds precisely with the presence of the mutation of interest. As noted in the main text, such
mutation are precisely in the -10 region of a new promoter.
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Figure S2. Using Hidden Markov Models to find binding sites in information footprints. (A)
There are two hidden states associated with each basepair. We identify a given basepair either as being part of
a binding site or not (these sites are labeled as background). The observable used is the mutual information
per position. To maximize the likelihood, a transition matrix is fit which gives the prior probability that the
i+ 1th position is a certain state given the state of the ith position. Emission probabilities describe how likely
it is to find a value for mutual information in a binding site or in background. Once the model is fit, the
sequence of states which returns the maximum likelihood is returned, and binding sites are identified. The
expression shift matrix is used to find if the binding site is activator-like or repressor-like. (B) Test of the
Sensitivity of the Hidden Markov model by examining the consistency of the analysis when going from right to
left rather than left to right and as a function of the width of the smoothing kernel.
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Figure S3. Using a computational model to identify putative transcription start sites. When a
promoter is identified to contain a putative new transcription start site, the mutation with the largest
expression shift is identified. The sequences for this promoter are split into a group that contain that mutation
and all sequences that do not carry that mutation. The model of LaFleur et al. [56] is used to predict a
transcription rate for every possible transcription start site in the sequence. The model takes different
elements of the σ70 factor into account. We then visualize the predicted transcription rate for every possible
transcription start site and look for a de novo promoter.

S2.4 Computational identification of transcription factor binding partner using
Tomtom

After generating hypotheses about putative binding sites in each promoter region, our next task is
to identify which transcription factor binds to each of these binding sites. To do this, one approach is
by comparing our putative binding sites with datasets of transcription factor binding sites that have
been previously reported in the literature. If a query binding site shares large similarities with a known
binding site, we can then hypothesize that the query binding site likely has the same binding partner
as that known binding site.

To perform this motif comparison, we use the algorithm Tomtom, which identifies which known
binding motifs have statistically significant similarities with a given query binding site sequence. In
particular, Tomtom searched for hits for both the forward sequences of the known binding motifs as
well as the reverse complement of the known binding motifs. For each query-target pair, Tomtom
produces an optimal alignment and scores the overlapping region using a chosen distance metric. In
our case, we choose to use Euclidean distance. Tomtom then computes a p-value under the null
hypothesis that the two motifs are drawn independently from the same probability distribution, and
reports a corresponding q-value that estimates the false discovery rate. We retain only motif matches
that exceed a minimum q-value of 0.5 and a minimum overlap length of 15.

In this analysis, the known binding sites are downloaded from RegulonDB and Ecocyc. RegulonDB
contains 4897 binding sites and EcoCyc contains 2781 binding sites. There are many duplicated or
overlapping binding sites within each database and between the two databases. We first removed the
duplicated entries and combined regions with more than 90% overlap within RegulonDB and EcoCyc
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databases separately. This resulted in 3319 binding sites in RegulonDB and 2763 binding sites in
EcoCyc. Finally, we consolidated the two databases by merging sequences with over 90% overlap, and
we have a final list of 4426 binding sites across the two databases.

After a transcription factor binding partner is found at a particular binding site, we use the sequence
of that particular binding site as the query sequence for Tomtom and search it against all target
sequences with a minimum q-value of 1. This allows us to generate plots to plot the distribution of
transcription factor binding p-values and q-values at that particular site and visualize the p-value and
q-value of the transcription factor that is determined as a hit relative the p-values and q-values of other
transcription factors.
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S3 Compendium of All Promoters in Our Study
In this section we give a description of our compendium of every promoter we studied in our

experiments. In some ways, the compendium is an organized but informal notebook of all the
genes we considered as an aid to those who are interested in a summary of what was found for
each promoter under different conditions. In another sense, the compendium is a visual summary
of the huge dataset that emerged from our study. We also refer interested readers to the online
resources http://rpdata.caltech.edu/data/interactive_footprints.html and http://rpdata.
caltech.edu/data/all_data.pdf.

For each promoter, we show a cartoon figure of annotated binding sites and the conditions they
were identified in. To set both notation and to define the visual icons used in the paper and in this
section, Figure S4(A) presents an example which describes our color scheme for labeling activator
binding sites, repressor binding sites, binding sites of dual function and binding sites for sigma factors.
Each of the figures in our compendium also shows the information footprints that reveal our results for
these promoters in relevant growth conditions. Figure S4(B) gives an example of the way we will show
our information footprints throughout the compendium. Figure S4(C) shows one of our most useful
ways of visualizing our data with a compact figure that shows for each growth condition of interest the
regions of the promoter in which something interesting was found. In this figure, we show both the
emergence of de novo transcription start sites as well as putative binding sites.

In this long compendium, for each promoter, we briefly review the literature to identify binding sites
that have been previously annotated and judge if the binding sites were identified in our experiments.
Previously annotated binding sites from the literature can escape detection in our experiments for a
variety of reasons, e.g., the growth conditions in which the original discovery of the binding site was
made are not included in the set of conditions that we used. As a result, the transcription factor of
interest might not bind at all in our experiments. It is also possible that binding sites were identified
in previous work using strains or conditions in which there was over-expression of a transcription
factor. Since our E. coli strain is not over-expressing any transcription factors, the effect of lower
transcription factor copy numbers might result in circumstances in which binding is not measurable.
Our own earlier theory-experiment dialogue has used transcription factor copy number and plasmid
copy number as a key tuning variable that can lead to 1000-fold changes in gene expression, so it is
clear that copy number effects are crucial and can make the difference between a measurable effect
and not [39, 53]. Transcription factors that regulate their promoter by interacting with other binding
sites through action at a distance, e.g. by DNA looping, are also hard to identify, since the additional
binding sites required for regulation might not be included in our reporter construct, as we only study
a 160 base pair region around the transcription start site.

We are cognizant that this is an extremely long compendium. Our reason for including it is driven
by a philosophical conundrum of this era of big data in biology. How do we find ways to talk about our
data other than in giant spreadsheets? We decided here to make the specific details of every promoter
available for those who might have interest in a given promoter. The full compendium can be found
under this link: http://rpdata.caltech.edu/data/reg-seq_compendium.pdf.
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Figure S4. Key for regulatory cartoons and information footprints. (A) Binding sites for activators
are shown using teal boxes. Repressor binding sites are shown using orange boxes. -10 and -35 regions of σ70

are shown in blue boxes. Transcription start sites are indicated by arrows. (B) Information footprints are
displayed as mutual information per position. For easier interpretation, each position is averaged with its two
neighbors on each side. Each position is colored by the average expression shift at that position, indicating if a
mutation decreases expression on average (shown in teal, indicative of a binding site for an activator) or
increases expression on average (shown in orange, indicative of a repressor). (C) For each promoter where
regions in information footprints were identified as putative binding sites, we show a figure that highlights
such regions. Each base is colored by being either repressor-like (increasing expression when mutated), in red,
or activator-like (decreasing expression when mutated), in blue. If a footprint was classified to contain a de
novo promoter, the bases are highlighted in green instead.
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S4 SI Tables and Figures

Growth Condition of Lysate Final Concentration of Supplement(s) Added
M9-Glucose 0.5% Glucose, 1 mM cAMP

M9-Arabinose 0.5% Arabinose, 1 mM cAMP
M9-Xylose 0.5% Xylose

LB None Added
Stationary Phase (1d) 1 mM cAMP

Leucine 10 mM Leucine
Phenazine Methosulfate 100 µM Phenazine Methosulfate

2,2 Dipyridyl 5 mM 2,2 Dipyridyl
Gentamicin 5 mg/l Gentamicin

Copper Sulfate 2 mM Copper Sulfate
Heat Shock None added

H2O2 2.5 mM H2O2

High Osmolarity (LB + 750 mM NaCl) 200 mM NaCl, 150 mM KC1, 1 mM cAMP

Table S2. Growth Conditions for lysates used for mass spectrometry and associated
supplements added. Notes: A supplement of 1 mM cAMP, a known co-factor for CRP binding, was used
for our initial mass spectrometry runs of M9-glucose, M9-arabinose, stationary phase, and high osmolarity
growth conditions, where we expected there to be annotated (e.g. mglB and araB) or predicted (e.g. yadI )
binding sites of CRP. Since no significant enrichment for CRP was found for any of these runs, cAMP was not
added to lysates for the other growth conditions. For high osmolarity, we based the concentration of
supplemented salts on Figure 3 of Shabala et.al [128], which show measurements of intracellular salt
concentrations for growth in external media of varying NaCl concentrations.

Time Duration Flow (nl/min) %B
0:00 0:00 300 2
7:30 7:30 300 6
90:00 72:00 300 25
120:00 30:00 300 40
121:00 1:00 300 98
130:00 9:00 300 98

Table S3. Liquid chromatography gradient parameters for mass spectrometry. Mobile Phase A
contains 0.2% formic acid, 2% acetonitrile, and 97.8% water. Mobile Phase B contains 0.2% formic acid, 80%
acetonitrile, and 19.8% water.
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Global Settings
Ion source type NSI
Spray voltage 1500 V
Ion transfer tube temperature 275 C
Polarity Positive
MS1 Scan Settings
Resolution 120000
Normalized AGC target 250
Maximum IT 50 msec
Scan range 375-1600 m/z
MS2 Scan Settings
Resolution 50000
Normalized AGC target Standard
Maximum IT Dynamic
Loop time 3 sec
Isolation window 0.7 m/z
NCE 35
Spectrum data type Centroid
Fixed first mass 110 Z

Table S4. Mass spectrometry scan settings for TMT samples
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Sequest HT Settings
Enzyme name Trypsin (Full)
Max. missed cleavage 2
Min. peptide length 6
Max. peptide length 144
Precursor mass tolerance 10 ppm
Fragment mass tolerance 0.02 Da
Max. equal modification 3
Dynamic modification Oxidation/ +15.995 Da (M)
Dynamic modification (peptide terminus) Acetyl/ + 42.011 Da (N-Terminal)
Dynamic modification (peptide terminus) Met-loss/ - 131.040 Da (M)
Dynamic modification (peptide terminus) Met-loss+Acetyl/ - 89.030 Da (M)
Static modification (peptide terminus) TMTpro/ + 304.027 Da (N-Terminal)
Static modification TMTpro/ + 304.027 Da (N-Terminal)
Static modification Carbamidomethyl/ + 57.021 Da (C)
Percolator
Target/Decoy selection Concatenated
Validation based on q-Value
Target FDR (Strict) 0.01
Target FDR (Relaxed) 0.05

Table S5. Search parameters for Protein Discoverer 2.5
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Figure S7. Clustering of conditions for yadE, ybaY, yadI and tmaR. Results of hierarchical clustering
are displayed. Footprints are shown for the genes in the upper panel in Figure 8. Numbers indicate which that
there is a footprint shown for this specific condition.
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Figure S8. Inferred putative binding sites for the araB promoter.
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Figure S9. Annotated regulation and information footprints for the cusCFBA promoter.
Footprints are shown for growth in minimal media with glucose, when induced with coppers sulfate and for
shock in minimal media with glucose at 2.5 pH and with 1 mM of glutamic acid.
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sulfate. Highlighted is CpxR in orange.
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Figure S12. Inferred putative binding sites for the yqaE promoter.
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Figure S13. Annotated regulation and information footprints for ftsK promoter ftsKp1 .
Footprints are shown for growth in minimal media with glucose, and induction with gentamicin or hydrogen
peroxide.
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Figure S14. Information footprints for the dinQ promoter. Footprints are shown for growth in
minimal media with glucose, induction with gentamicin and induction with hydrogen peroxide.
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Figure S15. Annotated regulation and information footprints for the recN promoter. Footprints
are shown for growth in minimal media with glucose, induction with gentamicin, and induction with hydrogen
peroxide.
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Figure S16. Information footprints for the acrZ promoter. Footprints are shown for minimal media
with glucose, LB, induction with 2,2-dipyridyl, induction with phenazine methosulfate, and induction with
sodium salicylate.
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Figure S17. Inferred putative binding sites for the predicted promoter for yjbJ.
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Figure S18. Inferred putative binding sites for the predicted yadI promoter.
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Figure S19. P-values for known binding sites matching with the putative activator site of yadI.
The top six hits for CRP are highlighted in orange.
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Figure S20. Inferred putative binding sites for ybaY promoters.
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Figure S21. Mass-spec results for ybiY-ybiW. Left to right: ybiY1 (covering -50 to +30), ybiY2 (-50 to
-5), ybiY3 (-5 to 30). Highlighted in orange is the transcription factor YciT.
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Figure S22. Mass-spec results for intE-xisE-ymfH. Highlighted in orange is the transcription factor YhaJ.
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Figure S23. Annotated regulation and information footprints for the ompR promoters.
Footprints are shown for all four promoters, which are aligned such that 0 is the location of the transcription
start site off ompRp1. Conditions shown are cold shock at 19C, induction with gentamicin, shock in LB with
high salt concentration and stationary phase after 72h.
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Figure S24. Annotated regulation and information footprints for the tolC promoters. Footprints
are shown for all four promoters, which are aligned such that 0 is the location of the transcription start site off
tolCp1. Conditions shown are growth in minimal media with glucose, induction with sodium salicylate or
phenazine methosulfate and for magensium starvation.76
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Figure S25. Annotated regulation and information footprints for the crp promoters. Footprints
are shown for all three annotated crp promoters (top crpp1, middle crpp2, bottom crpp3) in minimal media
with glucose or xylose as carbon sourses, and for stationary phase after 24h or 72h.
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Figure S26. Annotated regulation and information footprints for the galEp promoters.
Footprints are shown for all three promoters, which are aligned such that 0 is the location of the transcription
start site off galEp1. Conditions shown are growth in minimal media with glucose, acetate or galactose as
carbon source and for stationary phase after 72h.
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