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Control of transcription presides over a vast array of biological processes including through gene
regulatory circuits that exhibit multistability. Two- and three-gene network motifs are often found
to be critical parts of the repertoire of metabolic and developmental pathways. Theoretical models of
these circuits, however, typically vary parameters such as dissociation constants, transcription rates,
and degradation rates without specifying precisely how these parameters are controlled biologically.
In this paper, we examine the role of effector molecules, which can alter the concentrations of
the active transcription factors that control regulation, and are ubiquitous to regulatory processes
across biological settings. We specifically consider allosteric regulation in the context of extending
the standard bistable switch to three-gene networks, and explore the rich multistable dynamics
exhibited in these architectures as a function of effector concentrations. We then study how the
conditions required for tristability and more complex dynamics, and the bifurcations in dynamic
phase space upon tuning effector concentrations, evolve under various interpretations of regulatory
circuit mechanics, the underlying activity of inducers, and perturbations thereof. Notably, the
biological mechanism by which we model effector control over dual-function proteins transforms not
only the phenotypic trend of dynamic tuning but also the set of available dynamic regimes. In this
way, we determine key parameters and regulatory features that drive phenotypic decisions, and offer
an experimentally tunable structure for encoding inducible multistable behavior arising from both

single and dual-function allosteric transcription factors.

I. INTRODUCTION

Biological processes rely on intricate networks of gene
interactions that together encode a multitude of possible
cellular functions. Often, these genes produce proteins,
called transcription factors, that alter the expression of
other genes. Whether considering resource consumption
in E. coli [1] or stages in animal development such as digit
formation [2-4], vulval development [5, 6], or stem cell
differentiation [7-9], such biological systems can precisely
tune the relevant gene interactions toward many possi-
ble distinct phenotypes. This inherent multistability is
crucial to cell function, allowing signaling from the en-
vironment, from metabolic resource constraints, or from
other sources to induce systems toward what at times
can be dramatically different end states.

Determining from experimental data alone the exact
regulatory interactions that collectively drive multistable
dynamics, however, is another matter. Indeed, the sen-
sitivities of dynamics and steady state outcomes to both
internal and external tuning are challenging to disentan-
gle. To better understand these dynamics, it is useful to
explore simpler motifs that establish the building blocks
for multistability in higher-order networks.

One regulatory motif that has emerged as an integral
component of natural and synthetic genetic circuit de-
sign is the bistable toggle switch, in which each of the
two genes produces a protein that represses expression
of the other. Study of the lysis vs. lysogeny decision in
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bacteriophage lambda in the 1960-80s established the sig-
nificance of this motif experimentally [10-13], and subse-
quent research has modeled such motifs extensively using
Hill models [14-16]. As a two-state model, however, the
bistable switch sheds only partial light on the multista-
bility of realistic phenotypic expression in cells.

Insights into the emergence of multistable dynamics in
larger networks rely not only on the choice of model sys-
tem but also on the approach to modeling these motifs.
Existing literature on multistable cell fates during devel-
opment, for example, has made significant strides by con-
sidering gene networks in terms of the Waddington land-
scape [17], and discusses the dynamic thresholds, or bi-
furcations, that can emerge from gene circuits described
as attractor systems [18-21]. When linking this inter-
pretation to mathematical models, however, such studies
often represent systems using either a set of network-
free flow equations or a potential gradient. These ap-
proaches are undoubtedly useful for exploring dynamic
stability through the tuning of theoretically accessible
internal parameters such as dissociation constants, pro-
duction rates, and degradation rates. In this paper, we
directly link these properties to experimentally accessible
tuning knobs, and precisely specify how the relevant pa-
rameters are quantitatively controlled in living cells [22].

In fact, the activity of transcription factors of-
ten depends on the presence or absence of effector
molecules [22-31]. When targeting a repressor, for ex-
ample, an effector could bind and stabilize a protein in
its inactive configuration, which suppresses its function
and induces expression. Certain transcription factors are
also known to have context-dependent behavior, acting
as repressors at one promoter site along the DNA and
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activators at another [32, 33]. Exploring different inter-
pretations of the mechanistic role of effectors may then
reveal critical differences in tuned expression that allow
for complementary experimental investigation.

We thus focus on examining the role of the effector
concentration as a dynamical system parameter. Tuning
inducer concentration alone, we can then directly observe
corresponding shifts in dynamics. This framework offers
a perspective for parametrization that is accessible to the
experimentalist and also inherently to cell activity itself.
For example, researchers can directly input external non-
metabolizable effectors to study the dynamic shifts ob-
served in theory [34], and cells can also naturally use one
or more effectors, with two inducers driving cell fate de-
termination in the lac operon and in cell differentiation
during development, among other settings [16, 35]. Given
the extensive experimental evidence emphasizing the sig-
nificance of effectors as natural tuning knobs, we aim to
theoretically examine how dynamics respond to explicit
definitions for effectors and for the biological mechanism
of induction.

To analyze the roles of effector molecules in the emer-
gence of multistability, we specifically study extensions
of the toggle switch to three genes as shown in Figure 1.
These motifs remain simple enough to visualize and phys-
ically interpret, yet also provide an additional layer of
tunable gene interaction parameters that can allow more
complex multistable dynamics — in this case, tristability
and beyond. In exploring how a set of more than two
genes couple to collectively decide among multiple possi-
ble cell fates, we gain insights into how these interactions
drive dynamics in larger and more complex networks.

The three-gene toggle switch provides a powerful basis
for examining the emergence of tristability and higher-
order multistability in a range of biological contexts. The
motif is most directly useful in a synthetic setting, where
dynamic shifts can be tuned precisely through experi-
ments. However, the model can also help uncover how
various sets of three (or more) key genes interact to gen-
erate multistable cell fates in nature. For example, ex-
perimental work has observed sets of three “master reg-
ulator” genes that interact to drive protein expression
toward three or more distinct cell fate phenotypes, such
as in T helper cell differentiation [36] and stem cell dif-
ferentiation [37].

Recent work has already begun to examine the com-
prehensive picture of stable expression in such three-gene
toggles [38, 39]. Our study considers various approaches
to induction in an alternative Hill model for the three-
gene toggle. Within this reframed context for tuning
dynamics, we then investigate not only how the mech-
anisms of induction shift transcription factor activities
and stable state expressions, but also how the dynamic
topologies of the resulting fixed point landscapes evolve.

We begin in Section II by defining our model for the
three-gene toggle switch, and how to mathematically in-
corporate the regulatory activity of transcription fac-
tors as allosterically-inducible proteins. From this ini-
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FIG. 1: Network of three mutually-repressing genes.
Transcribing each gene g; produces a repressor with
average concentration denoted by R;.

tial framework, Section IIT then demonstrates the dif-
ferent types of dynamics possible as inducer concentra-
tions rise. In Section IV we highlight how the thresholds,
i.e., bifurcations, that separate different dynamic regimes
shift when perturbed away from an initial assumed sym-
metry in gene interactions. Section V explores the im-
pacts of additional induction and self-activation on the
complexity of dynamics and the number of stable steady
states possible for the three-gene toggle switch. In the
latter case in particular, we find that the biological inter-
pretation of the mechanism for dual repression and self-
activation, whether involving binding exclusivity or the
effector’s role, can significantly affect the types of dynam-
ics that unfold. In so doing, our work sheds light on the
complexity of dynamics possible from simple changes in
modeling choices, and on just how precisely inducer con-
centrations must be tuned under different conditions for
a system to access various dynamic regimes. The diverse
range of input-output responses demonstrated across the
different three-gene networks presented here only further
underscores the importance of understanding how these
results generalize to higher-order gene regulatory archi-
tectures.

II. THE THREE-GENE TOGGLE SWITCH

We first consider the most direct extension of the two-
gene bistable toggle switch to three genes, as depicted in
Fig. 1. Transcribing a given gene g; generates a protein
R; called a transcription factor, which can in turn bind to
the promoter region of either remaining gene. In this par-
ticular incarnation of the model, the transcription factor
prevents RNA polymerase (RNAP) from binding and ini-
tiating transcription, thereby repressing expression. We
begin by discussing how to model the dynamics of this
system of repressors before demonstrating the role of in-
duction in governing how dynamical behavior evolves as
a function of inducer concentration(s).
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FIG. 2: Expression of repressor 1 in the three-gene toggle switch. Equivalent definitions apply to expression of
repressors 2 and 3. (A) Thermodynamic states, weights, and rates for expression of repressor 1. The regulating
repressors (Ry and R3) bind non-exclusively to the target promoter region to suppress gene transcription. Each
repressor R; binds at the promoter region for repressor Ry with affinity K4;. (B) Thermodynamic states, weights,
and rates for expression of repressor 1 in the presence of inducers. Expression now depends on the active
concentration of each repressor R;, which is determined by a distinct inducer at concentration c;, defining the

probability of activity pact(c;).

A. The baseline model

The modeling of stability in basic switches and other
regulatory motifs has long been explored using the tools
of dynamical systems [15, 40-43]. To describe the ex-
pression patterns that arise from the three-gene toggle
switch architecture shown in Fig. 1, we define a dynamic
equation for each transcription factor repressor R; of the
form

dRz_ €Xpr ) o _l .
a aip; (Rw {quéz}) TiRZ' (1)

This general model form assumes that the dynamics of
gene transcription, i.e., the production of mRNA tran-
scripts, evolves at a timescale such that production can
be measured equivalently from the concentration of out-
put repressor R;. The first term of Eqn. 1 characterizes
protein production at a maximal rate a;, and depends
on the probability p;*"" that expression can occur. The
second term accounts for protein degradation at a rate
]./Ti.

Fig. 2(A) breaks down the possible regulatory states
and corresponding statistical weights that contribute to
the probability of expression p; *". This approach to de-
scribing biological regulation draws from well-established
statistical mechanical principles [44-54]. From this table,
and equivalent definitions for expression of repressors 2
and 3, we define the dynamics of this three-gene circuit

by the set of differential equations
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Each repressor R; binds non-exclusively with affinity K;;
to the promoter region for the gene that expresses repres-
sor R;. This repression coefficient K;; thus reflects the
characteristic concentration of repressor R; required to
strongly regulate R;’s expression. In other words, when
R; = K;;, the produced concentration of repressor R; is
half its maximum possible value.

Note that these equations describe transcription fac-
tor binding phenomenologically through a Hill function
model with coefficient n [55, 56]. This approach coarse-
grains out the molecular detail of precise binding site oc-
cupancies found in thermodynamic models, instead rep-
resenting the high cooperativity-limit of the thermody-
namic model. The Hill coefficient n thus does not nec-
essarily correspond to the number of bound repressor
molecules, but rather measures the sensitivity of output
response to binding.

While there are advantages to the specificity of ther-
modynamic models [57], using them to evaluate sta-
bility profiles quickly becomes intractable in higher-



dimensional networks, including those analyzed here. We
therefore take a Hill model approach for the remainder
of the discussion. Even without full knowledge of pre-
cise binding site occupancies, the Hill function offers a
strong fit to empirical data for gene regulatory dynam-
ics [14, 58]. The model also reflects the Hopfield barrier
for the sharpness of input-output response [59], meaning
that for a given coefficient n, the Hill model reflects the
strongest, most sigmoidal input-output response possible
for a system without energy expenditure. The Hill ap-
proach thus allows us to investigate dynamics under the
most input-sensitive model conditions, and to observe its
maximum capability for dynamic complexity.

We now have a model for the toggle switch that
depends on various theoretically accessible parameters,
specifically dissociation constants Kj;, production rates
a;, and degradation rates 1/7;. As pointed out previ-
ously, however, these parameters as written are not eas-
ily accessible experimentally, and are disconnected from
the underlying biology that controls them within living
cells. While the current model indicates that regulation
is controlled by the total concentrations of transcription
factors, these proteins are often themselves controlled by
the allosteric binding of effector molecules. Cells there-
fore respond to changes in the number of active tran-
scription factors.

In the following subsections we will use statistical me-
chanics to outline the role of effector molecules (specifi-
cally inducers) in defining transcription factor activity.

B. A statistical mechanical model for allosteric
induction

Shifting to an allosteric description of gene regulation,
we now argue that gene expression depends not on the
total concentration of the regulating transcription factor,
[TFot], but rather on the active concentration thereof,
ie.,

[TFact} = Pact (C) [TFtot]a (5)

where p,ct(c) is the probability that the transcription fac-
tor is active as a function of effector concentration c.
This probability can be defined by the Monod-Wyman-
Changeux (MWC) model [22-26, 29-31], which states
that when an effector at concentration ¢ can bind alloster-
ically at m sites on a transcription factor, the probability
that the transcription factor is active is

(1+K%)

1+ K—A) + e—me(l + K—j)

Pact(c) = (6)
(

where K4 and K; are the dissociation constants for
active and inactive repressor states, respectively, § =
1/kpT, and Ae = ¢; — €4 is the energy difference be-
tween inactive (e;) and active (e4) states. Repressors

are driven toward the inactive state upon effector bind-
ing when K; < K 4. Effectors obeying this condition are
referred to as inducers. Conversely, when K; > K4, re-
pressors are driven toward the active state, and effectors
act as corepressors. Examples of both phenomena have
been experimentally isolated in nature [60-62], but for
simplicity we will assume the case of K; < K4 in what
follows and refer exclusively to inducers.

Fig. 3(A) plots one possible probability curve pact(c)
in the induction setting with K; < K4 for a fixed set
of parameters. This function follows standard sigmoidal
behavior, with a sufficient increase in inducer concentra-
tion rendering repressor inactive. Depending on how we
define parameters, we can alter several key properties of
the input-output response from this probability function.
The leakiness represents the amount of activity at satu-
rating concentrations of inducer, i.e., pact(c = o0), and
the saturation conversely denotes the amount of activ-
ity in the absence of inducer (pact(c = 0)). The inducer
concentration at which the probability is half maximal
is denoted as the EC5q value, and the sharpness of the
input-output response curve at this inflection point in-
creases with an increasing Hill coefficient n. The MWC
parameters chosen therefore determine how effectively in-
ducers suppress the activity of repressors and the sensi-
tivity of the output response to an increase in inducer
concentration.

We determine the biologically permissible ranges for
these MWC parameters (K7, K4, and Ae¢) by making
several assumptions. First, the absence of inducer does
not imply the complete absence of inactive repressor, for
there may be some natural fractional error q. We sup-
pose, then, that in the absence of inducer,

pact(c = 0) >1—gq, (7)
or alternatively,

1 1
1_pact(C:0):]——1+6_ﬂAe:1+eﬁA€§q« (8)

Rearranging Eqn. 8, we obtain a condition for the energy
difference Ae between the inactive and active repressor
configurations that

—BAe q
e (9)

It follows that for the probability of activity to perfectly
saturate at unity in the absence of inducer, with ¢ = 0,
the energy of the inactive repressor state must signifi-
cantly exceed that of the active state so that Ae — oo
and the repressor is always active.

Gene expression is also generally “leaky,” meaning
there is typically a basal level of expression even in the
presence of a large concentration of repressor. We as-
sume that this leakiness is also reflected by the fraction
q such that a fraction of repressors less than ¢ are active



in the limit of infinite inducer concentration, with
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Rearranging Eqn. 10, we obtain a second condition
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Eqgns. 9 and 11 thus establish biologically reasonable
bounds on the dissociation constants K 4, ; and the en-
ergy difference Ae for a given “error” ¢ and number of
binding sites m.

Suppose, for example, that less than 10% (¢ = 0.1) of
repressors are active in the presence of infinite inducer
concentration. The parameters of this MWC model are
then bounded by

1
e PRe < = (12)
9
and
Ka\™
) > 9ePhe. 1
(K}) 2 9e (13)

Fig. 3(B) highlights several viable probability curves
within the bounded parameter regime defined by
Eqns. 12 and 13. We assume throughout that there are
m = 2 binding sites for inducers on repressors. For fixed
BAe = 4 and K4 = 150 uM, Fig. 3(B) then maps the
probability of activity as a function of molar inducer con-
centration for increasing dissociation constant K; < K.
As the ratio K 34 /K é decreases, approaching its lower
bound (denoted in cyan in Fig. 3), the curve’s inflec-
tion point shifts toward higher inducer concentrations.
This occurs because as K é increases and the inducer be-
comes less tightly bound to the inactive compared to the
active repressor, a higher inducer concentration is neces-
sary to sequester inactive repressors equivalently. Given
that the choice of parameters in Fig. 3(A) is also within
the biologically reasonable regime, we use these same pa-
rameters for the remainder of this work, unless otherwise
stated.

Note that increasing the number of inducer binding
sites m for the target repressor protein would increase
the cooperativity of inducer-repressor interactions, and
thus increase the sensitivity of response to the presence
of inducer. This would make the slope of the probability
function steeper at the inflection point. Keeping all other
properties fixed, an increase in m also decreases the in-
ducer concentration that is required to suppress repressor
activity.

While this role of induction has been widely discussed
and used in experimental literature, theoretical studies
leveraging this perspective for parametrization remain
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FIG. 3: Activity of repressors as a function of inducer
concentration ¢, for which K; < K4. (A) The
probability of active repressor as a function of inducer
concentration, with m =2, e =4 kT, K4 = 150 uM,
and K7 =5 puM. The saturation and leakiness limits
are denoted in blue and orange, respectively, and the
EC5, i.e., inducer concentration at which the
probability is half maximal, is marked in purple. (B)
Evolution of probability for different values of K, with
the curve in panel (A) shown again in green. The shift
in probability spans the range of allowable K values for
the specified parameter set up to the boundary at

Ky =6.77 uM, and assumes a fractional error of at
most ¢ = 0.1 in saturation and leakiness.

ongoing, with recent work demonstrating the utility of
induction in modeling the dynamics of simple gene reg-
ulatory motifs [57, 63]. In particular, the scope of this
approach has not been expanded to the more intricate
regulatory networks standard in nature. We now incor-
porate this definition for the probability of active repres-
sor into our model for gene expression dynamics in the
three-gene toggle switch.



C. The baseline model as a function of inducer
concentrations

Suppose now that each repressor produced from the
three-gene toggle circuit in Fig. 1 can be controlled by
its own inducer, each at concentrations ci, ¢z, and cs.
We will make the reasonable assumption that each re-
pressor responds to induction with the same sensitivity
and thus by the same probability function. As shown
in Fig. 2(B), this means that expression of repressor 1
depends on the concentrations of active repressors 2 and
3, namely, pact(c2) X Re and paet(c3) X Rz. We similarly
scale the regulatory contribution of R; to expression of
Ry and Rj3 by the probability pact(cy).

Eqns. 2 - 4 describing this system’s dynamics thus be-
come

e = Ry 4

it [1+(%)"] [14_(%)71 - (1)

- I Sy

@ iy (mam) [y (mamm)

% i [1+(W)nf?[1+<w)n] _%.(16)
31 42

We can simplify our model to a dimensionless form
through several assumptions. First, we assume for an-
alytic convenience that all repressors are produced (i.e.,
translated) and degraded at essentially the same max-
imal rates, independent of the underlying dynamics of
transcription. This sets a3 = a2 = a3 = a and 71 =
T = 73 = 7. We will also assume that a given repres-
sor binds to different promoter sites with the same affin-
ity, such that K21 = K31 = Kl, K12 = K32 = KQ,
and K13 = Koz = Kj. This allows us to re-express
Eqns. 14 - 16 by transforming ¢ = t/7, R; = R;/K;,
and @; = Ta/K;, from which we obtain the dimensionless
equations

dRy a o
@ T 1 Geenled) B T+ (el By 0D
dRy ds o
T}T a [1+(pact(cl)R1)n][1+(pact(cg)R3)n] R»,(18)
dRy a o
“dt 1+ (pact(c1)R1)™[1 + (pact(c2) Ra)"] R3.(19)

Finally, for most of the discussion in this work we
will simplify to a symmetric system in which all re-
pressors bind at all sites with equal affinity such that
K, = Ky = K3 = K (we will examine how breaking this
symmetry affects shifts in dynamics in later sections).
This assumption then means that a; = as = az = a, and
we arrive at the system of equations

dRy a o
@ T T () B+ () By )
dRy a o

T T e ) B (o] Y
T - ___ R4.(22)

dt [1+ (Pact(c1)R1)™][1 + (pact (c2) R2)"]

The original model defined by Eqns. 2 - 4 thus trans-
forms from a high-dimensional parameter space as a func-
tion of inherent system properties to an at most three-
dimensional parameter space defined by inducer concen-
trations ci, co, and c3 that can be directly controlled in
experimental settings. Note that the simplifying assump-
tions introduced here are in no sense necessary and we
could examine the much less symmetrical situations as
well, but we find that this parameter choice makes the
underlying dynamics most transparent.

III. REGIMES OF MULTISTABILITY

For a given Hill exponent n and maximal (dimension-
less) production rate @, we now explore the dynamic pro-
files possible for the three-gene toggle switch as a function
of inducer concentrations. In particular, we quantify the
thresholds, or bifurcations, as a function of inducer that
bring about fundamental shifts in dynamics. Our graphi-
cal analysis throughout this section will consider the large
cooperativity case n = 4 and choose a = 2. While we will
also address how much the dynamic thresholds change
with parameter choices, our focus in this section is specif-
ically on the effects of induction at various levels. To this
end, we begin by considering a system controlled only by
a single inducer.

A. Single inducer

Suppose a single inducer controls the dynamics of the
three-gene toggle switch by regulating the activity of
R;. This means that pact(c1) = pact(c) and paci(c2) =
Pact(c3) = 1 such that Ry and R3 are always maximally
active. Substituting these definitions into Eqns. 20 - 22,
we obtain the single-inducer model

de a _

an _ ___ R, 23
dt — 1+RyH(1+Ry (23)
dég a —

dRy _ a R, 24
0t @RI Ry @Y
it _ a Ry (25)

dt [1+ (Pacs(€)R1)"](1 + Rp)

For a given inducer concentration ¢, one then sets the
above equations to zero and solves to obtain the possible
steady state expressions.

We can first gain some analytical insight from these
equations by considering certain limit cases, specifi-
cally those regarding the existence of single-repressor-
dominant steady states, as a function of inducer concen-
tration.

Consider the existence of an Ry-dominant steady state
whereby Ry = R3 = ¢ such that R}, R} — 0. It follows
from setting Eqn. 24 to zero that such a steady-state
requires Ry = @. By similarly setting Eqns. 23 and 25 to
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the MWC model as specified in Fig. 3(A).

zero, it follows that Ry 3 = a/(1+ RYy). We can therefore
conclude that the system always has the following steady
state regardless of inducer concentration:

Roy= (B, R, ) = (=0 ——)  (20)

1+a " 1+ar
Similar logic for the existence of an R3-dominant state
leads to a similar predicted steady state
_ _ - a a _
RSS:(Rl? R27 R3):(1+dn71+anaa>' (27)
_ The conditions for an R;-dominant steady state, where
5, Ry — 0, follow from the same logic in Eqns. 23 - 25
as Ry = a and

1 + (pact(C)Rl)n .

Unlike the Ry and Rs-dominant states in Eqns. 26 and 27,
Eqn. 28 indicates that for the R;-dominant steady state
the concentrations of non-induced repressors Rs and Rj
depend on inducer concentration c¢. As ¢ increases and
the probability of activity decreases, the corresponding
repressor concentrations at steady state increase. This
also means, however, that at a sufficiently high inducer
concentration, RY, R — 0 can no longer hold true and
the steady state can no longer exist. Assuming that
Ry = Rs < e satisfies the specified condition, we can
derive the inducer bifurcation threshold by substituting
this inequality into Eqn. 28 and rearranging, leading to
the result

Ro= Ry = (28)

n
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oM |l
I
—

Pact (C) > (29)

At equality, the probability of Eqn. 29 thus represents a
bifurcation threshold, where for lower probabilities (i.e,
higher inducer concentrations) the system can no longer
exist at an R;-dominant steady state.

The results in Eqns. 26 - 29 therefore indicate that at
low inducer concentration the system is able to arrive at
a steady state in which any gene amongst the three can
dominate expression. When the probability of activity
drops below the threshold analytically approximated in
Eqn. 29, however, the presence of inducer is sufficient to
suppress R activity, and the system can thus no longer
maintain a steady state with R;-dominant expression.
The sensitivity of Ry activity to tuning then depends on
cooperativity (as approximated by Hill coefficient n) and
on the protein expression rate a.

Fig. 4(A) plots the probability threshold of Eqn. 29
as a function of n and a. Note that the beige region
of the heatmap depicts a regime where an R;-dominant
steady state is not possible at any inducer concentra-
tion. The threshold for existence relies on sufficient co-
operativity. Note, though, that when a 2 2, increasing
the expression rate has little effect on this cooperativity
bound. Fig. 4(B) plots the same relationship between
the parameters, now explicitly as a function of inducer
concentration (from the probability definition of Eqn. 6
in Section IIB).

The figure tracks cooperativities up to n = 10. While
it is not common for known multimeric transcription fac-
tors to extend beyond tetramers, plotting higher n ac-
knowledges the uncertainty that remains in the field re-
garding the cooperative mechanics of eukaryotic regula-
tion and particularly of enhancers [64]. Indeed, there are
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FIG. 5: Dynamics of the three-gene toggle switch with n = 4 and a = 2 for increasing inducer concentration c.
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Ry, and Rj steady state expression as a function of inducer concentration. (C) Fixed points for the three-gene
toggle switch at a low inducer concentration. (D) Fixed points for the three-gene toggle switch at an intermediate
inducer concentration. (E) Fixed points for the three-gene toggle switch at a high inducer concentration. In (C)-(E)
the stability of each fixed point is color-coded as in panels (A) and (B), with the expression levels for each fixed

point colored as in Fig. 1.

emerging cases of eukaryotic transcription factors func-
tioning as higher-order homomultimeric complexes, such
as FOXP3 in regulatory T-cells [65]. It is therefore use-
ful to observe whether such putative higher-order coop-
erativities would influence bifurcations observed in the
system.

We observe from the figure that the bifurcation thresh-
old for this dynamic shift is most sensitive to parameter
changes at the onset of the expression domain (i.e., at
minimum required n and @). For n 2 4 and a 2 2, both
parameters are sufficiently high that increasing either has
little effect on the threshold probability and correspond-
ing inducer concentration. It is therefore reasonable that,
to understand the complexity of dynamics possible for
the toggle switch, we choose n = 4 as representative of
dynamics in the highly-cooperative regime of the system
for the remainder of this work. This is also a biologically
reasonable choice, given the existence of homotetrameric
transcription factors such as p53 that are crucial to cell
fate decisions [66-68].

To show more completely how the dynamics evolve
with increasing inducer concentration, we now choose a
specific set of parameters (in this case from the highly

cooperative regime of n = 4 and a = 2) for Eqns. 23 -
25. At each inducer concentration, we numerically solve
for the fixed point repressor concentrations of these equa-
tions. We then determine the stability of each fixed point
by performing a linear stability analysis. We achieve
this by evaluating the Jacobian which, for our three-gene
network modeled by differential equations of the form
dR;/dt = fi(Ry, Ry, R3), is a 3 x 3 matrix with entries

_ Ofi
- OR;’

Jij (30)
The Jacobian matrix provides a first-order linear approx-
imation of behavior evaluated near a fixed point, with its
eigenvectors specifying the primary directions of dynam-
ical motion from the fixed point, and with its eigenvalues
reflecting the rates at which perturbations to the fixed
point grow or decay along the corresponding eigenvec-
tors. If all eigenvalues have negative real parts, pertur-
bation in any eigenvector direction of expression space
will decay back to the fixed point, indicating it to be a
stable equilibrium. If any of the eigenvalues have a posi-
tive real part, however, perturbation in the corresponding
eigenvector direction(s) will grow exponentially and the



system will move away from the fixed point, marking it
as unstable.

For the three-gene models examined throughout this
study, the unstable fixed points observed are character-
ized as saddle points. Mathematically, this distinction
arises because at least one eigenvalue is negative. Dy-
namic trajectories local to the fixed point thus move
away in some dimensional directions (positive eigenval-
ues) and approach in others (negative eigenvalues). The
number of positive eigenvalues determines the number of
dimensional directions of “escape” from the fixed point
and thus the “index” of the saddle. If we consider the
dynamics of protein expression within a potential land-
scape, expression levels local to the highest index saddle
essentially follow a hierarchical dynamic flow through ex-
pression space toward stable states, guided by the pres-
ence of saddle points with decreasing index.

Fig. 5 plots the resulting changes in the number of fixed
points and their expression levels through bifurcation di-
agrams, isolating the trajectories of the R; coordinate
of fixed points in Panel (A), and the (overlapping) Ry
and Rj3 coordinate fixed point trajectories in Panel (B).
Three types of fixed points emerge from analysis of the
Jacobian. Stable equilibria are denoted in blue, unstable
index-1 saddle points in red, and unstable index-2 saddles
in yellow.

At an intermediate inducer concentration, a saddle bi-
furcation occurs when a pair of fixed points annihilate
each other. The intermediate regime, represented in
Fig. 5(D), is still tristable, but the three stable states
are now only connected by two saddle points. From an
initial state with sufficient concentrations of all three re-
pressors, the system can thus evolve dynamically in one
of two ways: by either falling into a bistable potential
well favoring Ry or R3 expression, or by following a tra-
jectory directly stabilizing toward favoring R; expression.
Dynamics are therefore more restricted in this intermedi-
ate regime than in the low inducer regime, and no longer
equally likely to evolve toward any given stable state.

Finally, Fig. 5(E) shows fixed point expression levels at
a high inducer concentration, where the presence of in-
ducer sufficiently suppresses the activity of R, and the
system undergoes a saddle bifurcation to collapse down
to a bistable switch between Ry and Rs-dominant ex-
pression.

Fig. 5 thus allows us to determine the inducer con-
centration thresholds at which dynamic shifts occur, in-
cluding the shift between tristable and bistable dynam-
ics. Given a distribution of stable state expression levels
in the data, we could then distinguish between systems
in the low inducer regime or in the more dynamically
restricted intermediate regime. Fig. 5(B) also highlights
that it is only at intermediate inducer concentrations that
the system does not necessarily stabilize to a state exclu-
sively favoring a single gene’s expression, which uniquely
distinguishes the low vs. intermediate inducer concentra-
tion regimes of tristability.

Given the relatively narrow concentration range for the
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FIG. 6: Change in inducer concentration range (shaded
region) of the intermediate dynamic regime for
increasing dissociation constant K, overlaid with the
corresponding activity probability curves from Fig. 3.
Note that regardless of K parametrization the
intermediate regime is found within the same range of
probabilities 0.749 < paci(c) < 0.867 (bounded in grey).

intermediate dynamic regime, it is natural to ask how
sensitive this window is to changes in allosteric interac-
tion and to changes in the cooperativity, or ultrasensi-
tivity, of expression response to induction. Regarding
sensitivity to allostery, altering the ratio of K4 and K
for an inducer binding to a repressor shifts the inflection
point of the probability curve for activity toward higher
inducer concentrations, as previously seen in Fig. 3. We
thus observe in Fig. 6 that the log scale range of inducer
concentrations falling within the intermediate dynamic
regime does not change but shifts toward increasing value
ranges with increasing Kj. Since altering the ratio of
the dissociation constants does not affect the slope of
the probability curve at the inflection point, the inter-
mediate dynamic regime (for otherwise fixed values of m
and Ae) exists consistently across different K4/K; for
0.749 < pact(c) < 0.867.

The size of the intermediate regime may more likely
change with a decrease in cooperativity. Fig. 4(B) indi-
cates that at @ = 2, bistability is possible for n > 3, but
the threshold for shifting from tristability to bistability
shifts toward lower inducer concentrations for n < 4. It
is thus unclear from Fig. 4 alone whether the range of in-
ducer concentrations allowing the intermediate dynamic
regime would expand, contract, or remain the same for
a smaller cooperative Hill coefficient. Indeed, Fig. 7
demonstrates how the regimes of multistability evolve
in response to varying cooperativity. As the Hill coef-
ficient increases from n = 3 (the bound above which
the system can exist in one of three possible dynamic
regimes), the inducer concentration at which the sys-
tem bifurcates from tristable to bistable dynamics rises
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FIG. 7: Change in the regions of multistability for

n € [3,4]. Each dynamic region is color-coded as
denoted in Fig. 5, with the seven-fixed point tristable
regime (purple), five-fixed point tristable regime (light
purple), and three-fixed point bistable regime (red).
Note that for approximately n < 3 the most complex
dynamic regime is the light purple tristable regime with
five fixed points.

but not significantly when viewed in the log scale. The
threshold separating the two distinct regimes of trista-
bility, however, does significantly change. The inducer
concentration range corresponding to the intermediate
regime diminishes with increasing cooperativity, since in-
creased cooperativity means a more sensitive response in
gene expression to the binding of repressors that empha-
sizes the bias away from R; expression with increased
induction. The tristable threshold begins to approach
an apparent asymptote at n = 4, confirming our earlier
finding that increasing cooperativity to n = 4 has little
effect on the dynamics.

B. Two inducers

Activity in gene regulatory networks is not always re-
stricted to control from a single effector. Our frame-
work allows for induction by multiple effectors, whether
synthetically through additional experimentally-inputted
non-metabolizable inducers [34], or through naturally-
occurring coordinated inducer activity. The direct in-
volvement of small molecule effectors is particularly im-
portant, for example, in metabolic sugar-inducible oper-
ons. Two effectors coordinate expression in these operons
— the nucleotide messenger cAMP (with its concentration
determined by the presence of glucose), and a carbon
source [35, 69, 70]. For other natural inducer pairs, such
as in cell differentiation, we are still learning how these ef-
fectors actually induce cell fates [16], and this motivates
us to consider how dynamics in our three-gene toggle

10

C (M)

108
108 10° 104 10°
Cq (M)

FIG. 8: Phase diagram for evolving inducer
concentrations ¢; and ¢y (regulating activity of R; and
Rs, respectively). Each color-coded region corresponds
to a phase defined by a different number of fixed points
(seven in dark purple, five in light purple, three in red,
and one in blue). Both inducers obey Eqn. 6 for the
probability of activity with the same fixed parameters
m=2,e=4kgT, Ky =150 uM, and K; =5 uM.

switch evolve in the presence of two inducers. We specif-
ically extend to a system in which two repressors R; and
R, are controlled by inducer concentrations ¢; and cy,
such that dynamics evolve by the differential equations

de a _

dRy _ 2 ____ R, 31
A ey ey R By
dRQ a —

dRy _ L ___ R, 32
dt [1 4 (pact(c1)R1)"](1 + RY) 2 (32)
dits _ a — Ry. (33)

dt - [14 (pact(c1)R1)"J(1 + pact(c2) RE)

Fig. 8 plots the shifts in dynamic regions of phase space
(color-coded by the number of fixed points) for inducer
concentrations ¢; and cy. Sufficiently high concentrations
of both inducers render the target repressors largely in-
active, such that the system enters a monostable regime
(plotted in blue) that stabilizes to a single point reflecting
expression of only the remaining non-induced repressor.

The bifurcation line seen at p4(c) ~ 0.725 in Fig. 5 for
one dimension now becomes a set of two linear thresh-
olds intersecting at approximate inducer concentration
2.3 x 1075 M (i.e., the approximate probability pa(ci) =
pa(cg) = 0.7. This intersection defines four regions with
one (monostability in blue), two (bistability in red), or
three stable points. Note that analytically we can show
that the thresholds separating tristable from bistable dy-
namics for ¢; and c¢p are equal to those in Eqn. 29 (see
Appendix A). In the purple region of Fig. 8, all three
stable points are most dynamically accessible as both in-
duction probabilities approach 1. Note that when the
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FIG. 9: The change in bifurcation thresholds in a single inducer system as « rises. (A) The number of fixed points
as a function of inducer concentration. The purple threshold denotes the transition between distinct tristable
dynamic regimes (i.e., seven or five fixed points), and the green threshold denotes the transition between tristable
and bistable dynamics (five or three fixed points, respectively). The system corresponds to that analyzed in Section
IIT A, with « = 1. (B) The change in the inducer concentration threshold at which the tristable (purple) transition
occurs as a function of a. The dark purple curve corresponds to a system where « targets regulation of the induced
repressor, Ri. The light purple curve is for a system where a affects regulation of a non-induced repressor, in this
case Ry. (C) The change in the inducer concentration defining the threshold separating tristable from bistable
dynamics as a function of «. The specific colors again correspond to the different targets for perturbation bias, with
dark green targeting the induced repressor and light green the non-induced repressor.

probability of active repressor reaches 1 for one of the re-
pressors, the transition points along the axis of the other
repressor reflect the bifurcations for the single-inducer
system of Fig. 5, as expected. Increasing K é for one of
the inducers would shift the curve so that the intersection
of its asymptote with the corresponding inducer axis oc-
curs at a higher concentration. This trend matches what
we expect from the single inducer analysis.

The results observed for one and two inducers extend
naturally in the three inducer regime, with tristability
when all inducer concentrations are sufficiently small,
monostability when all are sufficiently large, and bistabil-
ity elsewhere. Similarly to how bifurcations transformed
into a linear curve in two-dimensional phase space when
moving from one to two regulating inducers, as in Fig. 8,
the three inducer case likewise extends these curves into
corresponding bifurcation planes in three-dimensions.

IV. EFFECTS OF INDUCTION IN SYSTEMS
PERTURBED AWAY FROM SYMMETRY

So far, we have assumed for simplicity that a given re-
pressor binds different promoter sites with the same affin-
ity (for example, Ry binds the promoters for Ry and R3
expression with the same affinity such that Ko = K31 =
K1), and that protein expression is repressed with equal
strengths K; = Ko = K3 = K. While this symmetric
setting allows us to observe the evolution of complex bi-
furcation diagrams, the fact remains that many biological
systems are naturally perturbed away from symmetry. It
is therefore useful to introduce biases into the relative re-
pression strengths of a given protein, defined such that

the model can still take a dimensionless form using the
same transformations that generated Eqns. 17 - 19 and
Eqns. 20 - 22. This allows us to determine the sensitivity
of the bifurcation thresholds to various perturbations.

Returning to the single-inducer case of Section IIT A,
suppose that we keep all parameters fixed but introduce
bias into regulation by the inducer-targeted R;. R; regu-
lates Ry and R3 expressions by binding to the respective
promoter sites with affinities K and K31, respectively.
We now let K31/Ko1 = «, with K5 and all remaining
dissociation constants equal to K as before. The dynam-
ics are then defined by the differential equations

de a _

dkiy _ __ R, 34
dt — 1+RyH)(1+Ry (34)
dég a —

dRy _ a R, 35
-0t @RIy T
it _ a4 Ry (36)

T n
dt [1 + (—”“;(C) Rl) }(1 +Ry)

In Section ITTA, we observed three distinct dynamic
regimes, with decreasing complexity (i.e., number of fixed
points) as the inducer concentration rose. Fig. 9(A) plots
these shifts in dynamic regimes explicitly as changes in
the number of fixed points, with the purple threshold de-
noting the bifurcation between distinct tristable regimes,
and the green threshold denoting the bifurcation between
tristable and bistable dynamics. The system assumes
equal interaction strengths among all repression-binding
event types, i.e., a = 1.

We now demonstrate how these bifurcations shift as
we move away from symmetry. Fig. 9(B) reveals a nar-



row window of perturbation away from symmetry for
which a seven-fixed-point regime exists. Expressed dif-
ferently, the dark purple curve indicates a window of only
0.946 < « < 1.028 for which a system with sufficiently
high concentrations of all three repressors is equally likely
to stabilize to any of the three possible stable states. The
dark green curve in Fig. 9(C) shows that the threshold
separating tristable from bistable dynamics is little af-
fected by small perturbations around o« = 1 and by more
sizeable perturbations o < 1, for which Ry has a weaker
affinity for the Ry promoter than for the R3 promoter.
Favoring affinity to Ry for o > 1, however, begins to af-
fect the threshold inducer concentration noticeably. At
a 2 1.42; the system becomes bistable regardless of in-
ducer concentration.

Combining the information in dark purple and dark
green in Fig. 9(B) and (C), we conclude that for a < 0.95
and 1.028 < a < 1.42 only two dynamic regimes are pos-
sible (with the seven-fixed point regime no longer viable
at any inducer concentration). The perturbation thresh-
old beyond which tristability of any kind is no longer
possible occurs at o ~ 1.42.

Alternatively, we can consider a perturbation bias that
affects regulation by a repressor that is not targeted by
an inducer, such as Ro. In this case, setting K52/ K12 = «
and all remaining coefficients (including Kj2) to K, we
obtain the equations

de a _

ke _ — 37
i~ (1+Ry)(1+Ry) (87)
dRQ a _

alvy _ ! E— 38
it Ga@RA T R 38)
ng a

= — ——— — R3.  (39)

The light purple and green curves in Fig. 9(B) and (C)
indicate the change in thresholds as « rises and alters the
regulatory bias of Ry. Fig. 9(B) shows that the change in
this threshold as a increases from 1 (such that R, has a
stronger binding affinity for the promoter of the induced
Ry than for R3) is comparable to the change observed in
the system case described by Eqns. 34 - 36. Decreasing
« to favor stronger binding to the promoter for the non-
induced R3, however, dampens the system’s response to
bias. The system denoted in light purple thus has a larger
window of perturbation away from symmetry where the
seven-fixed-point tristable regime is possible, with the
window now favoring regulation of the non-induced over
the induced repressor’s expression.

The light green curve in Fig. 9(C), on the other hand,
indicates that perturbation bias aimed to affect regula-
tion by the non-induced repressor Ry in fact has no effect
on the threshold between tristability and bistability un-
til @ 2 1.45. We conclude that, unlike the first case
targeting the induced repressor, perturbations targeting
a non-induced repressor only influence how complex the
system’s tristable dynamics can become.
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V. THE THREE-GENE TOGGLE SWITCH
WITH SELF-ACTIVATION

The systems analyzed thus far focus exclusively on
mutual repression. Systems exhibiting a bistable toggle
switch, however, can also be modeled with gene prod-
ucts not only repressing other genes but also stimulating
their own expressions through self-activation, as shown in
Fig. 10(A). Fig. 10(B) highlights protein production and
regulatory binding at a given promoter site (in this case
for gene g1 ), where the protein produced can act either as
a repressor targeting other genes or as an activator of its
own expression. These dual repression and self-activation
capabilities are observed across a range of gene network
motifs with varying complexity, including applications in
the bacteriophage lambda switch [10, 12, 47], stem cell
and developmental differentiation [16], and mammalian
cell cycle progression [71]. We now consider the effect of
self-activation on stability in the three-gene context.

The following sections assume, as in our previous base-
line model from Section IIA, that different repressors can
bind non-exclusively at a given gene promoter site to reg-
ulate expression. There are two possible ways, however,
to incorporate activator binding. First, we analyze cases
in which activators compete with repressors for the pro-
moter such that an activator cannot bind if any repres-
sor is bound, and vice versa. Section V A 2 then explores
non-exclusive binding, where both an activator and a re-
pressor can bind simultaneously at a given promoter site
such that repressors temper the effect of activation.

Given that all proteins in this self-activating network
can act as either repressors or activators, we are inter-
ested not only in whether they bind competitively or non-
exclusively to the DNA, but also in determining what
defines a protein’s activity as a repressor or an activator.
To do this, we highlight two biological mechanisms, and
how protein activities in each case are tuned by distinct
quantitative roles for effector binding. In Fig. 11(A), it
is the binding site identity alone that determines a pro-
tein’s function as a repressor or activator. For example,
if a protein binds to its own gene’s promoter site then it
functions as an activator, and otherwise as a repressor.
The activity of activator proteins is then defined by the
same effector binding event that captures repressor activ-
ity, with both protein types rendered inactive by effector
binding.

On the other hand, Fig. 11(B) presents a setting in
which effector binding directly determines protein func-
tion. Since effector binding induces a protein conforma-
tional change (favoring expression in the inducer case),
we propose in this case that effector binding alters a pro-
tein’s configuration from that of an active repressor to
that of an active activator. Past precedent exists for
modeling such effector-driven dual function transcrip-
tion factors. For the arabinose operon, for example, the
presence of arabinose induces a conformational change
in AraC and thus determines its interaction with the
DNA as either a repressor or an activator [72-74]. Ef-
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FIG. 10: Gene expression in the three-gene toggle switch with self-activation. (A) Network of three
mutually-repressing genes g;, each producing a protein at average concentration R; that can either repress
expression of Rj; or activate its own expression. (B) Regulatory binding and expression at the promoter site for
gene 1. Note that a comparable illustration applies to genes 2 and 3.
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FIG. 11: Two approaches to defining proteins as repressing or activating, depending on the function of effector
binding. (A) Effector binding renders proteins inactive regardless of function because the binding site independently
confers repressor vs. activator identity. (B) Effector binding directly determines whether a protein exists in a
repressing or activating configuration, with a binding effect altering the protein from an active repressor to an active

activator.

fector molecules can also indirectly control transcription
factor function by determining whether transcription fac-
tors recruit corepressors or coactivators when bound to
the DNA, such as for steroid hormone receptors [75, 76].

We demonstrate in the following discussion how these
different interpretations of effector-regulated activity
lead to distinct dynamics for competitive repressor-
activator binding and in particular for non-exclusive
binding. In comparing the two types of mechanisms for
effector activity, we continue to define thermodynamic
states and weights for a system that does not explic-
itly involve long-range binding through DNA looping,
although this could actually occur in nature. Models
incorporating such looping have been considered in sim-
pler single operon studies through grand canonical en-
semble interpretations [54, 77], and could be adapted
to our expanded structure and definition for induction.
Our discussion here, however, will remain consistent with

the analysis presented thus far, examining extensions
of the bistable toggle switch to three genes with self-
activation, and will focus specifically on the dynamics
deriving specifically from our model of effector activity
among repressors and activators.

A. Competitive repressor-activator binding

We begin by considering competitive binding, with
thermodynamic states, weights, and rates as depicted
in Fig. 12. If we first assume that the binding site de-
termines a protein’s role as a repressor or an activator,
then the activity of a given protein R; tuned by inducer
concentration ¢; depends on the probability pact(c;), as
shown in Fig. 12(A). In line with the baseline model, a
given protein is expressed at a maximal rate a in the
absence of bound regulating proteins. A bound activa-
tor, however, now increases expression to a + b. From
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these states and weights, we then define the dynamics of
protein expression by

dRi a—i—(a—&-b(%)" R
a1 () (R (e (B T
(40)
dRy a+(a+b(%)” Ry
dt 14+ ()" + () + () + (@) T
(41)
dRs a+(a+b) ()" Rs

dt 14 )+ R+ ()

By transforming R; = R;/K,,t=t/7,a=7a/K;, and
b= 7b/ K1, we obtain the dimensionless form

dR: _ _a+(atbRy A
At 1T+ Ry + (58)" + (69)" + (58)" (56)"

(43)
dR; a+(@+b) ()" -
ar, ! I
A 14 R+ (5% + () + () ()"

(44)
dRs a+ (a+b)(5)" 7
ans ! I
1R+ ()" + (G + (%) ()"

(45)

where K?) = Ky/K, and K® = K3/K,. For simplic-
ity, we assume equal binding affinities such that K =
K®) = 1. We now examine how the system’s dynamic
profile evolves with increasing inducer concentration, and
how the increasing influence of activator binding toward
expression affects the dynamic landscape.

1. Induction via Case (A)

We introduce self-activation in the induced setting of
“Case (A)” from Fig. 12(A) to observe how it alters the
dynamics of the baseline model. Given the states and
weights listed, and assuming K = K®) = 1 and a
single inducer c targeting R;, Eqns. 43 - 45 become

B ar@eBpu@R g

At~ 1+ [pact(c)R1)" + R} + R + ReRy 7
(46)

dRy a+ (a+b)Ry B

At~ 1+ [pact(c)Ra]" + R} + RY + RERy 0
(47)

dRs a+ (a+b)Ry B

At~ 1+ [pact(O)Ra)" + RS + RE + ReRy
(48)

To allow direct comparison to the original single-inducer
model in Eqns. 23 - 25, where n = 4 and a = 2, we again
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set n = 4 and now choose maximal expression to satisfy
a—+b=2.

Fig. 13 directly compares the dynamics that emerge.
Panel (A) plots the bifurcations for the baseline setting
previously shown in Fig. 5, with panel (B) highlighting
the fixed points at low inducer concentration in three-
dimensional expression space. Panel (C) plots the bifur-
cations for the comparable system with self-activation in
Eqns. 46 - 48, with panel (D) again highlighting the low
inducer regime. While any number of possible (a, b) pairs
can satisfy @ + b = 2, for closest comparison, we choose
the limit case of @ = 2 and b = 0, at which weak activator
binding has a negligible impact on expression.

Fig. 13(C) shows that self-activation does not affect
stable expression levels or the system’s dynamics at high
inducer concentrations. It does, however, influence the
remaining saddle points, further accentuating expression
of the dominant proteins. For example, the index-2 sad-
dle becomes more centered in expression space at the
half-maximal expression level. Also, for each index-1 sad-
dle that includes R; as a dominant protein, the dominant
protein expression levels become more pronounced com-
pared to those that are suppressed. This means that each
saddle point allowing significant R; expression is further
from the stable points it dynamically links. If the sys-
tem were to begin with half-maximal expression of each
protein, for example, any trajectories leaning toward the
R, — Ry or R; — R3 switches will take longer to stabilize
because they must travel further to approach an index-
1 saddle before veering off toward a stable point. We
can thus think of these stable states as lying in deeper
potential wells, making the related systems less likely to
transition from one stable state to another.

As one might expect, the differences between the base-
line model and our chosen parametrization of the self-
activation model are subtle, but the key property of self-
activation is the further tunability possible through the
additive expression effect from b. Increasing the strength
of activation while maintaining a constant maximal ex-
pression level @+ b can lead to significant dynamic trans-
formations. Fig. 14 now fixes the system at a low inducer
concentration for @+ b = 2, and plots the bifurcation di-
agram with dynamics tuned as a function of expression
b. As b increases from zero, all fixed points shift toward
lower expression while retaining the typical dynamic pro-
files observed in Fig. 13. Plotting how the fixed points
shown for (@,b) = (2,0) would change with increasing
inducer concentration, for example, would generate two
dynamic phase shifts to arrive at a bistable switch be-
tween Ry and Rs expression, with results comparable to
those shown in Fig. 5.

With sufficiently strong activation, however, at b ~
1.47 the system no longer retains the index-2 saddle
point. This is evidenced by the fixed point plot high-
lighted at b = 1.5 in Fig. 14. Moreover, b = 1.52 marks
a bifurcation threshold from tristable to quadristable ex-
pression, where the previously index-2 fixed point essen-
tially transforms into a stable point. Rather than com-
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FIG. 13: Comparison of the dynamics for the three-gene toggle switch without and with the presence of
self-activation. In both settings, the Hill coefficient is n = 4 and we set the same maximal production level. (A)
Bifurcation diagrams for Ri, Ro, and Rj3 steady-state expressions without self-activation as a function of inducer
concentration, as previously shown in Fig. 5(A). Maximal production is set at @ = 2. (B) Fixed points at low inducer
concentration. (C) Bifurcation diagrams for steady-state expression with self-activation as defined by Equs. 43 - 45.
Rates are set at @ = 2 and b = 0 for maximal production @ + b = 2. (D) Fixed points at low inducer concentration.

prising of a set of switches between R; and Rj expression,
the high b system now brings together a set of switches
between on or off expressions for each protein. Note that,
as the bifurcation point, b = 1.52 shares properties be-
tween the two system phases it straddles. As shown in
Fig. 14, it allows the quadristable dynamics observed for
higher b at low inducer concentration, but still reduces
to a single bistable switch at high inducer concentration
(as is characteristic of the small b regime). Systems ap-
proaching the limit where expression can only occur in
the presence of bound activator, on the other hand, as in
the highlighted example (a,b) = (0,2) of Fig. 14, reduce
down to tristability at high inducer concentration, allow-
ing either Ro-dominant expression, Rs-dominant expres-
sion, or none.

2. Induction via Case (B)

We now compare Case (A) above to the dynamics aris-
ing in an alternative induction setting where the effector
molecule binding determines whether a protein is active
as a repressor or as an activator. Fig. 12(B) outlines the

thermodynamic states and weights in this setting, from
which we model the system with the differential equa-
tions

dRy _ i+ (@+0)[(1—pact()B]” B
At~ 1+ [(1 = pact(c))Ra]" + Ry + Ry + RyRE "
(49)
dRy a+ (a+b)Ry R
At~ 1+ [pact(c)Ra]" + R} + R + RERy 0
(50)
dRs3 a+ (a+b)Ry _
afly ! ) R
dt L+ [pact(c) Ry ]™ + Ry + RY + RYRY
(51)

For reasons that become clear once plotted, we consider
systems allowing a larger maximal expression of a+b = 4.
Specifically, we will set @ = b = 2 for equally strong con-
tributions from the basal and activated expression levels.

Fig. 15 compares the system defined by induction case
(A), now for @ = b = 2, with the corresponding model
in panel (B) for the alternative induction approach high-
lighted in Eqns. 49 - 51. We observe that in the low
inducer concentration regime, while the dynamical struc-
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FIG. 14: Bifurcation diagrams for Ry, Ry, and R3 expression at a low inducer concentration and at fixed a4 b = 2 as

a function of increasing activating strength (b). The corresponding set of fixed points are shown in three-dimensional
expression space beneath the bifurcation diagrams, specifically highlighting each distinct dynamic phase represented
by (@,b) = (2,0) (also shown in Fig. 13(B)), (a,b) = (0.5,1.5), (a,b) = (0.48,1.52), and (@, b) = (0,2).

ture remains the same, the saddle points allowing R ex-
pression are skewed toward favoring R; expression. In
this regime, a low inducer concentration means a high
probability p.ci(c) of Ry acting as a repressor, and low
probability 1 — paet(c) of acting as an activator. With
[1 — pact(¢)]R1 — 0 in Eqn. 49, R; expression is es-
sentially limited only by regulatory repression from Rs
and Rj3, while the remaining two repressors are addition-
ally regulated by pact(c)R;. The resulting skewness of
the central cluster to favor R; places the Ry and Rs-
dominant stable states in deeper potential wells. It thus
requires a less significant perturbation to transition out
of the R;-dominant stable state into one of the other
stable states.

Since all Rij-expressing saddle points are spatially
closer together in panel (B) compared to panel (A), this
also means that case (B) of induction does not require as
high an inducer concentration to transition to an inter-
mediate dynamic regime. This also shifts the bifurcation
that separates tristable from bistable dynamics to occur
at a higher inducer concentration. When the inducer
concentration is sufficiently high, the system transforms
into one where R; expression is effectively regulated by
components beyond just Ry or R3. This shifts the saddle
point toward a slightly higher R; concentration, which
serves to deepen the potential well between the Ry and
R5-dominant stable states.

B. Non-exclusive repressor-activator binding

We now turn to systems in which repressors and acti-
vators bind non-exclusively at a gene’s regulatory region.
This means that at a given promoter site, a gene’s expres-
sion can be regulated not only by the presence of one or
both repressors produced by the remaining two genes,
but also by the possible additional presence of bound ac-
tivator. As in the competitive binding case visualized
in Fig. 12, this non-exclusive binding system retains the
same possible states for a given promoter site, namely
(i) the state with no bound transcription factors (with
an expression rate a), (ii) states with one or both pos-
sible repressors bound (with an expression rate 0), and
(iii) states with activator bound alone (with an expres-
sion rate a + b). Additional states, however, account for
activated expression in the presence of one or both avail-
able repressors. In these states, activated expression is
suppressed by the presence of bound repressor, defined
by a corresponding rate a + b — d.

Upon deriving a set of differential equations in dimen-
sionless form for the expression of proteins Ri, Rs, and
R3 from the corresponding thermodynamic states and
weights (see Appendix B for details), we have, as in the
competitive binding setting, a system defined by basal
expression @ and additional activated expression b, with
the maximal expression level constrained to @ + b = 2
to facilitate comparison across models. Given the non-



18

N

A 4

o stable ﬂ", o stable
® unstable (index 1) | | ° unst?ble (index 1) ‘ ‘
unstable (index 2) S ! 3 unstable (index 2) | |
: J," 3 : : : :
& 2 o < 2 o
: : : i : \ : :
3 3 3 3 , | :
1 | | | 1 I . i
: ‘ ‘ : A :
| | | | ° |
| | | 3 S 3
0 : “ . Od—-——‘ : :
108 10°® 1107 1072 108 10°® 107 1072

inducer concentration, c (M) inducer concentration, c (M)

I
I
I
I
I
I
I
J [

3 R 4
° 2 1 3
4% 1 _ 4, 1 2 % 1 2 3 !
R, R <
2 R,
(B) 4 i 4 ‘ , ‘
* stable ;‘ ! o stable ! !
® unstable (index 1) e ! ® unstable (index 1) !
unstable (index 2) ® ! 3 unstable (index 2) ! !
i o i i i i
o' 2 : X i o2 i i i
| ) | =2 | | |
1 1 1 S— s s
O | : | O ' Li '
1078 10°° roo107t 1072 1078 10°® 107 107?

inducer concentration, ¢ (M) inducer concentration, c (M)

I '

I

I |

I I

I I

I I

I I
J L b

3 3
3
e’ 2 —am e’ 2 —am
L & ) o e 2
.
B, = . l ¢ l C
0 * B 0 x m 1 l
Ry g L 3 4 Ry 2 L 3 4 0 °
4% 12 4% 12 0 1 2 3 4
R, R> Ry
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inducer concentrations. The low and high inducer concentrations chosen are the same in (A) and (B), and the
intermediate inducer concentrations selected highlight the same intermediate dynamic regime. (A) The competitive
repressor-activator binding case in which inducer binding controls transcription factor activity regardless of its
ultimate function as a repressor or activator. (B) The competitive repressor-activator binding case in which inducer
binding transforms a protein from a repressing conformation to an activating form.
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FIG. 16: Number of stable fixed points in case (A) of non-exclusive repressor-activator binding. The plots highlight
stable points at low (10~8 M) and high (10=2 M) effector concentrations in panels (A) and (B), respectively, for
varying rate parameters @, b, and d, where @ +b = 2 and d < a + b. The diagrams on the right hand side of panel
(A) represent the types of stable points observed in each regime at low effector concentration, i.e., with eight
(yellow), seven (orange), six (brown), five (green), four (teal), or three (blue) stable points. The diagrams on the
right side of panel (B) represent the types of stable points observed in each regime at high effector concentration,
i.e., with three (blue), two (dark blue), or one (purple) stable point(s).

exclusive binding conditions modeled here, expression
now also depends on the strength of repression from d,
where d < @ + .

The following subsections focus on the impact of effec-
tor concentration and the relative strengths of activation
and repression on dynamic stability. This allows us to de-
termine the range of dynamic landscapes possible within
this parameter space under different interpretations for

effector activity, and the sensitivity of the resulting dy-
namics and bifurcations to each of the rate parameters.

1. Induction via Case (A)

We first consider Case (A) from Fig. 11, in which the
binding of the effector molecule renders proteins inactive
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FIG. 17: Heatmap tracking the minimum effector
concentration (M) at which the stable state with no
gene expression can exist for the system with
non-exclusive activator-repressor binding (case (A)).
Measurements span the range of rate parameters
allowed by the constraints a +b=2andd<a+ I_), with
the x-axis denoting increasing strength of repression d,
and the y-axis denoting decreasing strength of
activation with increasing a. Beige represents the
parameter space in which a stable state without
expression does not exist at any effector concentration.

regardless of whether they are functioning as repressors
or activators. Continuing our convention of choosing R;
as the target of effector binding, the concentration of R;
is thus scaled by the probability of activity pact(c), re-
gardless of function, where we assume that all proteins
interact with effectors through the same MWC model
and binding affinities. Fig. 22 and Eqns. B5 - B7 of
Appendix B define the corresponding states and weights
along with the resulting dimensionless differential equa-
tions, incorporating the role of pact(c).

Evaluating the fixed points by numerical approxima-
tion, we find that allowing non-exclusive binding expands
the possible set of stable states to the maximum number
of combinatorial states, i.e., no expression, one gene ex-
pressing, two genes expressing, or all three expressing.
Determining the likelihood of each state being available
within the allowable rate parameter space offers insight
into how this more complex regulatory architecture pri-
oritizes expression.

Fig. 16(A) tracks the number of possible stable states
that exist at low effector concentration (¢ = 1078 M).
The maximum number of stable states occurs in the yel-
low region where d ~ 0 and @ < 0.5 (b > 1.5). This
represents systems in which repressor binding has negli-
gible or no effect on expression, and gene expression relies
heavily on bound activators.

As @ and d increase, the complexity of the dynamic
landscape diminishes, with the number of possible stable
points falling until @ > 0.5 and d > 0.5. This threshold
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combination is sufficient to render the system tristable
at low effector concentrations, and is similar to what we
observed in the previous competitive binding models of
Sections VA1 and VA2.

Beyond the three possible single-gene expression
states, which exist at low effector concentrations for all
possible rate parameter combinations, the stable state
in which both Ry and Rs dominate survives across the
broadest allowable parameter space. Such a state is no
longer possible only if @ > 0.5 and d > 0.5. The ro-
bustness of this state makes sense given that the model
in question specifically tunes R; expression via effector
concentration. This targeted tuning thus more indirectly
(and weakly) affects the existence of a stable (0, Ry, R3)
state. Fig. 16(A) also indicates that the repression pa-
rameter d drives the loss of the (R;,0, R3) and (R, R, 0)
states in parameter space. Essentially, once repressors
play an active role in regulation (no longer d — 0), dual
repressor and activator activity implies that the system
can only express R, significantly in a stable state when
it is the only protein being expressed.

Generally, as effector concentrations increase, the num-
ber of available stable fixed points decreases until the
system reaches monostable, bistable, or tristable dynam-
ics, as shown in Fig. 16(B). When a < 1, such that
activation contributes more strongly than basal expres-
sion, a high effector concentration suppresses all gene ex-
pression. When the system approaches the limit case of
largely unregulated expression (i.e., @ — 2 and d — 0) it
is tristable, expressing either Ry, Rs, or both. Otherwise,
in the relatively weak activation regime that remains, the
system collapses to the bistable toggle switch between Ry
and Rj.

Figs. 17 and 18 illustrate further how the system
evolves toward these different regimes as the effector con-
centration increases, and how sensitive the different sta-
ble states are to a change in effector concentration. These
figures plot (respectively) the minimum and maximum ef-
fector concentrations necessary for different stable fixed
points to exist, where Fig. 17 specifically highlights the
minimum concentration for the stable state with no gene
expression. At the maximum concentration threshold, a
bifurcation occurs where a sufficiently high effector con-
centration prevents the system from stabilizing to the
state with no expression. Beige denotes the part of pa-
rameter space where a given fixed point does not exist at
any effector concentration, and yellow denotes the space
where the fixed point survives at high effector concentra-
tion.

Notably, the heatmaps of Fig. 17 and Fig. 18(A) di-
rectly overlap, indicating a close relationship between the
existence of a stable state in which no genes express, and
the existence of a state that expresses one of the two
genes not impacted by the effector (Ry or R3). The ex-
istence of these three stable states is thus defined almost
fully by the strength of activation as reflected by the pa-
rameter a. As a rises, three regimes emerge with different
dynamic trends for these stable states as the effector con-
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FIG. 18: Heatmaps tracking the maximum effector concentrations (M) at which stable states can exist with the
non-exclusive activator-repressor binding model described in Fig. 11(A). The measured values represent bifurcation
thresholds for the existence of these states. The heatmaps track (A) stable states expressing one of the genes that

does not directly interact with effector, i.e.

, (0, R2,0) and (0,0, R3), (B) the stable state in which both genes not

impacted by effector are expressed, i.e., (0, R2, R3), (C) stable states expressing two genes including the
effector-controlled Ry, and (D) the stable state expressing all three genes. Measurements span the range of rate
parameters allowed by the constraints @ +b = 2 and d < a@ + b, with the x-axis denoting increasing strength of
repression d, and the y-axis denoting decreasing strength of activation with increasing a. Beige represents the region
of parameter space in which the stable state cannot exist at any effector concentration, and yellow indicates that the

stable state is possible at all effector concentrations.

centration increases. When a < 0.5, all three states are
possible until an intermediate effector concentration is
reached, beyond which only the state suppressing all ex-
pression can exist among the three. When 0 < a <1, we
observe that a tradeoff occurs at an intermediate effec-
tor concentration, where the system’s ability to stabilize
to an Ry or Rsz-dominant state at low concentrations is
swapped for the system’s ability to suppress all expres-
sion. This indicates a regime of strong activation com-
pared to basal expression in which an increase in effector
concentration causes a fixed point to emerge and take the
place of states that existed at lower concentrations. Fi-

nally, in the weak activation regime of @ 2 1, the system
can always stabilize to an Ry or R3-dominant state at all
effector concentrations and never suppresses all expres-
sion. Note in all of these regimes that the strength of
repression (d) has negligible or no effect on the existence
of the three states.

Fig. 18(B)-(D) highlights stable fixed points where
more than one type of protein is expressed. The exis-
tence of such points relies on weak repression (d < 0.5).
As a rises and the strength of activation decreases accord-
ingly, we observe increases in the effector concentrations
at which these stable points vanish. The heatmaps in-



dicate that as repression strength rises, a higher value
of @ and thus a weaker degree of activation is needed
for the system to stabilize to these states, with the state
in (B) responding most gradually and the state in (D)
most sharply as repression strength increases. Finally,
the span of effector concentrations indicates that the bi-
furcation thresholds for these points are more responsive
to changes in activation strength than those of the single-
protein expression states shown in Fig. 18(A).

We thus conclude from Fig. 18 that expressing more
than one gene at a stable steady state is only possible in
a system with weak repression, whereas repression has es-
sentially no effect on expression of genes not targeted by
effector (R and R3 here). Additionally, while weakening
activation strength always expands the range of effector
concentrations at which these stable fixed points can ex-
ist, only states that do not express the effector-targeted
genes can exist at all effector concentrations (the yellow
regions of Fig. 18). These regions require weaker acti-
vation strength compared to the strength of unregulated
expression, with this requirement even more strict for
the state expressing more than one gene. The results
demonstrate that by tuning these parameters and test-
ing varying effector concentrations, one can transform a
system to express different numbers of genes at stable
steady state depending on which combinations are most
relevant for a desired function.

2. Induction via Case (B)

An alternative interpretation for effector activity,
shown in Case (B) of Fig. 11, transforms the available
states and weights from the non-exclusive case such that
the concentration of transcription factor R is scaled by
Pact (€) when repressing expression of other proteins, and
scaled by 1 — pact(c) when activating its own expression
(see Appendix B and corresponding Fig. 23 for the ther-
modynamic states and weights and for the corresponding
model form).

By evaluating the resulting differential equations for
fixed points, we obtain plots in Fig. 19 highlighting the
types of stable points possible at low (108 M) and
high (1072 M) effector concentrations when tuning @ and
d. Fig. 19(A) indicates that, regardless of activation
strength (@) and repression (d), the system can always
stabilize to a state in which either Rs or Rs dominates
at low effector concentrations. When 0.5 < a < 1.3 and
d > 0.3 (purple region), the system can only exist as a
bistable switch between these two states. When repres-
sion is weak (small d), the system can also stabilize to a
state expressing both genes (regardless of @). Meanwhile,
the strength of activation solely determines whether it is
possible for the system to suppress expression altogether
or to stabilize to an R;-dominant state. For sufficiently
strong activation (a < 0.5), it is possible for regulation
to suppress all expression, and it is only under weak ac-
tivation (@ 2 1.3) that it is possible for the system to
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express the effector-targeted R;.

At high effector concentration, Fig. 19(B) indicates
that the most complex dynamic landscape occurs when d
is very small and a is very large, i.e., when there is effec-
tively no positive or negative regulation in the network.
Such a system can stabilize to either Ry or R3-dominant
states, or to a state in which any combination of two
or more proteins dominates (including effector-targeted
R1), as shown in the green region. Moving slightly away
from this corner, the system loses the ability to express
all three genes, a change that is more sensitive to in-
creased repression than increased activation. Increas-
ing repression (d) while keeping @ high suppresses the
system’s ability to express effector-targeted R;. In this
case, the dynamics become comparable to a self-activated
bistable switch, as in the dark blue region of Fig. 19(B),
or the simple bistable switch between Re and Rs, as in
the purple region. Increasing activation (decreasing a)
while keeping repression relatively weak (d < 0.5), on
the other hand, means that if the system expresses more
than one gene in its stable state, one of them must be
the effector-targeted R, as seen in the blue region. In a
strongly activating regime with small a, dynamics center
on expression of Ry, either stabilizing to an R;-dominant
state or suppressing all expression (purple region). If
a — 1 as in the dark purple region of Fig. 19(B), how-
ever, the system chooses one of these fates depending on
d, only expressing a gene if repression (d) remains small.

As previously shown in Fig. 17 and Fig. 18 for Case
(A), we can also more closely investigate for Case (B)
how different parametrizations for activation and repres-
sion influence the range of effector concentrations for
which the different types of stable fixed points emerge.
Fig. 20 tracks the minimum effector concentrations at
which fixed points become possible within the parameter
space, while Fig. 21 tracks the maximum effector con-
centrations. Given that Case (B) differs from Case (A)
only in its treatment of Ry, it follows that Fig. 18(A)-(B)
and Fig. 21(C)-(D) show no difference in the expression
patterns for those stable states that exclusively express
one or both of the non-targeted genes, i.e., (0, Ry,0),
(0,0, R3), and (0, Ry, R3). A slight difference occurs for
states expressing one of the two non-targeted genes when
@ =1 and d < 0.5. Under these conditions, where Case
(A) would allow these states to exist at all effector con-
centrations, there is instead still an upper bound shown
in Fig. 21(C) for Case (B) beyond which the states cannot
exist. This means that when effectors determine whether
a protein acts a repressor or an activator, and the system
neither favors nor disfavors activation, minimizing the ef-
fect of repression is not sufficient to allow expression at
all effector concentrations, and that this can only be true
if the system explicitly favors activation with a > 1.

States expressing the effector-targeted R; in Case (B)
offer a stark contrast to those in Case (A). In Case (A),
the R;-dominant stable state was not included amongst
the plots of Fig. 17 and Fig. 18 because it can exist for
essentially the same range of low effector concentrations
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FIG. 19: Number of stable fixed points in case (B) of non-exclusive repressor-activator binding. The plots highlight
stable points at low (1078 M) and high (1072 M) effector concentrations in panels (A) and (B), respectively, for
varying rate parameters @, b, and d, where @ + b = 2 and d < @ + b. The diagrams on the right hand side of panel
(A) represent the types of stable points observed in each regime at low effector concentration, i.e., with four (blue),
three (dark blue), or two (purple) stable points. The diagrams on the right side of panel (B) represent the types of
stable points observed in each regime at high effector concentration, i.e., with six (green), five (teal), four (blue),
three (dark blue), two (purple), or one (dark purple) stable point(s).

from 10~8 M to approximately 5x 10~° M) regardless of
@ and d. In Case (B), however, this is only observed for
a 2 1.4, as seen in Fig. 20(B) and Fig. 21(B). Further,
if a <1 (with some exceptions), the state can only exist
at larger effector concentrations ranging from approxi-
mately 107% M to the highest sampled 10~2 M. Thus,
when activation is particularly strong, the phase space
for R;-dominant expression spans the same range of con-

centrations observed for Case (A). When activation is
disfavored as the source of protein production compared
to the basal level of expression, however, R;-dominant
expression emerges as a viable stable state only at high
effector concentrations lying outside of the previously es-
tablished range.

Considering the stable state in which all expression is
suppressed, Fig. 17 and Fig. 20(A) demonstrate that re-
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FIG. 20: Heatmap tracking the minimum effector concentration (M) at which stable states can exist with
non-exclusive activator-repressor binding model described in Fig. 11(B). Measurements span the rate parameters
allowed by the constraints @ + b = 2 and d < a + b, with the x-axis denoting increasing strength of repression d, and
the y-axis denoting decreasing strength of activation with increasing a. The heatmaps track (A) the stable state in
which no genes are expressed, (B) the stable state in which only the effector-targeted R; is expressed, (C) stable
states expressing two genes including the effector-controlled Ry, and (D) the stable state expressing all three genes.
Beige represents the part of parameter space in which the stable state cannot exist at any effector concentration.

gardless of the effector’s role in regulating R, this type
of stable state can exist only when activation is favored
(@ < 1) over the basal rate. The strong resemblance be-
tween these plots also indicates that, in the viable region
of parameter space, tuning @ and d similarly affects the
minimum concentration necessary for the state to exist.
We observe small differences at the two visible thresholds:
a = 0.5 separates the high-activation regime in which the
state always exists at low effector concentration from the
regime characterized by a particular threshold effector
concentration; and a = 1 denotes the upper bound of a

for which the (0, 0,0) state can exist at any effector con-
centration. Compared to Case (A), when a = 1 Case (B)
requires an even weaker level of repression d to prevent
the system from being able to suppress all expression.

Unlike Case (A), for Case (B) the existence of the
(0,0,0) stable state does not immediately imply its vi-
ability for all effector concentrations above the minimum
threshold. Fig. 21(A) shows that, in a regime of inter-
mediate activation strength where 0.6 < a < 1, there
is an upper bound on the effector concentration. These
intermediate conditions mark a regime in which the ef-
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FIG. 21: Heatmaps tracking the maximum effector concentrations (M) at which stable states can exist with
non-exclusive activator-repressor binding model described in Fig. 11(B). The measured values represent bifurcation
thresholds for the existence of these states. The heatmaps track (A) the stable state in which no genes are expressed,
(B) the stable state in which only the effector-targeted R; is expressed, (C) stable states expressing one of the genes
that does not directly interact with effector, i.e., (0, R2,0) and (0,0, R3), and (D) the stable state in which both
genes not impacted by effector are expressed, i.e., (0, Ry, R3). Measurements span the rate parameters allowed by
the constraints @ + b = 2 and d < @ + b, with the x-axis denoting increasing strength of repression d, and the y-axis
denoting decreasing strength of activation as a rises. Beige represents the region where a stable state never exists at
any effector concentration, and yellow indicates that the stable state is possible at all effector concentrations.

fector concentration can be manipulated to tune stable
expression off and on.

Finally, we consider stable states expressing more than
one protein including the effector-targeted R;. Whereas
Fig. 18(C)-(D) indicates that these states can exist for
Case (A) at low effector concentrations up to values be-
tween 107 M and 107 M when repression d is small,
Fig. 20(C)-(D) indicates an overlapping regime of exis-
tence but with distinctly different dependencies on both

rate parameters and on effector concentrations. In fact,
these panels reveal that such states can only exist at
higher effector concentrations above approximately 10~4
M, and that they further rely on there being sufficiently
weak activation.



VI. DISCUSSION

Significant strides have been made since the founda-
tional work of the 1960s to uncover the mechanisms by
which cells regulate gene expression and the interactions
within vast gene networks that facilitate nuanced changes
in expression. This has led to a large body of both
experimental and theoretical work studying a number
of commonly observed motifs including simple two-gene
switches, oscillators, and feed-forward networks, among
others [1, 14, 16, 22, 78-84]. Even with these significant
advances in knowledge, more remains to be explored. In
fact, for E. coli, perhaps the most well-studied simple
model organism, we still do not understand how more
than ~ 60% of its genes are regulated [85]. As the field
progresses in obtaining and interpreting high-throughput
data, we will likely uncover additional aspects of gene reg-
ulation that require more nuanced modeling. We expand
upon the valuable existing work to consider a range of
other motifs for modeling gene regulatory expression.

Much existing literature from a statistical physics per-
spective (and outside the realm of machine learning in
high-dimensional networks) focuses on networks that ul-
timately tune expression of a single protein on or off,
and rely on small-scale motifs. Our primary interest lies
in biological settings with many cell fates, particularly in
developmental and immune processes, that clearly rely on
coordinated regulatory efforts in the expression of mul-
tiple genes. This type of analysis calls for consideration
of higher-order gene regulatory motifs such as the three-
gene toggle switch we implement.

There is also still much to be learned about the pro-
teins responsible for gene regulation. In particular, we do
not fully understand the mechanisms by which effector
molecules control the transcription factors that regulate
expression. Given the prevalence of induction in the bio-
physical literature as an experimental tool for tuning ex-
pression, we are further motivated to use the three-gene
toggle switch to consider allosteric regulation. Impor-
tantly, by studying an intricate network that can involve
both repression and activation, we can also explore how
the biological interpretation of allosteric induction im-
pacts dynamics.

At the core of our analysis is a baseline model of three
genes in which each gene represses all others. By har-
nessing inducers as tuning knobs controlling the concen-
tration of active repressor(s), we observe how tuning ac-
tivity through an MWC interpretation of allosteric in-
duction limits or broadens the scope of dynamics, and
how robust (or sensitive) bifurcations separating differ-
ent dynamic regimes are to changes in cooperativity and
relative gene interaction strengths.

In the first half of the paper we observe that the simple
three-gene toggle switch, in which only one of the three
genes can dominate expression in a stable state, follows a
trajectory of decreasing dynamic complexity as inducer
concentration(s) increase. There are two notable take-
aways from analysis of the three dynamic regimes that
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become possible. First, we observe that the bifurcation
separating bistable from tristable dynamics varies little
as the strength of cooperativity increases, and that the
maximum level of gene expression observed remains con-
sistent as inducer concentrations rise. This facilitates the
fitting of model parameters to experimental data, since
altering the K of our p,et(c) function becomes the only
way to noticeably shift this bifurcation threshold. Mean-
while, when not at a low cooperativity level, the bifurca-
tion separating different tristable regimes depends most
strongly on perturbation of the model’s regulatory in-
teraction structure away from symmetry. By determin-
ing the probabilities of stabilizing at each of the possible
three stable points from different initial conditions at a
low inducer concentration, one can determine how close
the system is to the “symmetric” setting (i.e., equally
strong repression among all genes) that we model. If the
system tuned by one inducer is instead bistable at all
inducer concentrations, it follows that this arises from
a strongly skewed set of repression strengths explicitly
favoring one gene, rather than from allosteric regulation.

While the baseline model demonstrates the utility of
allosteric regulation as a tool for identifying the physical
parameters driving expression in experimental data, the
second half of the paper highlights how the mechanism
by which allosteric regulation controls transcription fac-
tor activity can significantly alter the dynamics. We show
this in a model for the three-gene toggle switch that al-
lows for self-activation. Introducing activators that com-
petitively bind to sites along the DNA does not affect the
stable expression levels observed in the baseline model,
but decreases the probability of transitioning from one
stable state to another (without increased noise), placing
stable states in deeper potential wells within the poten-
tial landscape. When self-activation is sufficiently strong,
or when activators and repressors bind non-exclusively
along the DNA, it becomes possible for the system to sta-
bilize while expressing more than one gene. Understand-
ing the parameter conditions, including the ranges of ef-
fector concentrations, that allow different stable states
to emerge is a useful tool for determining how cells tune
activity to coordinate expression of multiple genes.

We also find across several case studies with compet-
itive and non-exclusive repressor/activator binding that
the biological interpretation of the effector’s role in regu-
lation matters, whether an effector’s binding determines
activity regardless of function as a repressor or an acti-
vator, or whether it directly determines function. Con-
sidering first systems in which activators compete with
repressors to bind along the DNA, changing the effector’s
role does not alter either the types of dynamic phases
possible or the responses to increasing effector concentra-
tions. In the case where the effector determines protein
function, however, the effector concentrations at which
bifurcations occur shift to higher values, and it becomes
easier to transition out of an R;-dominant state and more
difficult to transition out of an Ry or Rs dominant state.
In the non-exclusive binding settings, our findings under



the two interpretations of the effector reveal distinct dif-
ferences in the types of phases observed across parameter
space, as well as in the ranges of effector concentrations at
which different types of stable points could be observed.

Tuning effector concentration(s) thus allows us to dis-
tinguish among these biologically distinct models for the
same gene regulatory motif, even when the particular
set of stable states observed is characteristic to multi-
ple models. For instance, in both the competitive (with
strong activation) and non-exclusive binding settings, it
is possible for the system to stabilize at low effector
concentrations to any of the three single-gene-dominant
states, or to a state suppressing all expression. As the
effector concentration increases, however, the candidate
models have divergent responses and are thus distinguish-
able. If the system becomes tristable to either suppress
all expression or allow expression of one of the genes not
targeted by the effector, the system identifies as com-
petitive repressor-activator binding. If expression be-
comes suppressed entirely, the system instead allows non-
exclusive binding, with the binding site determining tran-
scription factor function (and the effector only determin-
ing protein activity). Finally, if the system transforms
to a bistable switch between no expression and expres-
sion of the effector-targeted gene alone, this implies non-
exclusive binding where effector presence directly deter-
mines transcription factor function.

The mathematical interpretation of the biological
mechanisms for induction embedded in the models we
study have a significant impact on the types of dynamics
observed within parameter space. Our analysis therefore
complements existing work on the direct incorporation
of effector-driven transcription factor activity into mod-
els of gene regulation while further motivating the rig-
orous definition of how effectors function. In so doing,
the work presents a theoretical approach through which
it would be feasible to uncover such properties (and the
model parameters that allow them) in conjunction with
experiments. As evidenced by the diverse outputs that
are possible from the three-noded networks studied here
when subjected to a range of effector inputs, there is con-
siderable richness to the input-output responses of these
systems. Our findings underscore the importance and
the challenge of understanding how such outcomes are
realized in even more complex regulatory architectures,
and invite dialogue with ongoing experimental efforts to
reveal the full scope of the allosterome.
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Appendix A: Analytic bifurcations for the two
inducer model

In this appendix, we show analytically that the
linear thresholds separating (ci,cs) parameter space
into tristable, bistable, and monostable regions in Sec-
tion IIIB are the same as those derived for the single
inducer model in Section IIT A.

The first key bifurcation indicator with respect to ¢y
is the loss of the R;-dominant stable state in transition-
ing from tristable to bistable dynamics. Assuming that
RQS — 0 as in the single inducer setting, Eqns. 31 - 33
indicate a steady state solution

Rss == (Rla RQa RS)

- (a, 1+ [paz(cl)d]”’ 1+ [paj(cl)a]n)'

(A1)

Since our assumption of the relative expression levels re-
quires Ry = R3 < ¢, it follows that

¢ Z 14+ [pact (Cl>d]n (Az)

and thus that the R; dominant steady state exists for

n g—l

2-1, (43)

Pact (Cl ) >

Q|

which is the same as the result derived in Eqn. 29 in the
case of the single inducer.

We can derive the same result for paet(ca) by deter-
mining the bifurcation point with respect to co at which
the system no longer stabilizes to an Ro-dominant state.

Appendix B: Non-exclusive repressor-activator
binding in the three-gene toggle switch

In Section V B we discuss the three-gene toggle switch
with self-activation where repressors and activators can
bind non-exclusively at a gene’s regulatory region. This
appendix outlines the analytic model and how it is mod-
ified under different interpretations of effector activity.

Fig. 22 shows the thermodynamic states, weights and
rates related to non-exclusive binding. Note that these
include the same states (and corresponding rates) de-
scribing competitive binding in Fig. 12(A), but with three
additional states in which an activator and either one or
two repressors can be bound simultaneously at the rele-
vant gene regulatory site. In these additional states, the
presence of repressor(s) dampens expression from its ac-
tivated rate to a+b—d. The states and weights depicted
translate into a corresponding system of equations for the
evolution of expression. Omitting the role of effector, the
change in R; expression, for instance, is
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NON-EXCLUSIVE REPRESSOR/ACTIVATOR BINDING: CASE (A)
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FIG. 22: Expression of each protein R; in the three-gene toggle switch with self-activation and non-exclusive binding
for repressors and activators. Effector binding is defined as in Fig. 11(A).
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where a is the rate of protein production when gene transcription is unregulated, a + b is the rate with bound self-
activator, and a + b — d is the previous rate attenuated by the presence of bound repressor. Note that the second
line of Eqn. B1 rearranges the first to separate protein production into three physically meaningful terms: (i) protein
expression in the presence of repressors only, (ii) expression exclusively due to activation, and (iii) expression in the
presence of both repressors and activators. Rescaling variables in Eq. B1 and in the equivalent equations for Ry and
R3 expression such that R; = R;/K,, t =t/7, a = 7a/K;, b = 7b/K;, and d = 7d/ K1, we define our non-exclusive
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NON-EXCLUSIVE REPRESSOR/ACTIVATOR BINDING: CASE (B)
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FIG. 23: Expression of each protein R; in the three-gene toggle switch with self-activation and non-exclusive binding
for repressors and activators. Effector binding is defined as in Fig. 11(B).

binding model in dimensionless form by the set of differential equations
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with d < @+ b, K® = Ky/K;, and K® = K3/K;. As in Section V A 1, our analysis for this model assumes equal
binding affinities such that K ? = K(®) = 1, and assumes a maximal production rate @ + b = 2.
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Unlike the competitive binding case, the model defined in Eqns. B2 - B4 depends on two independent parameters: (i)
unregulated (basal) protein expression @, with corresponding b = 2—a denoting additional expression from activations,
and (ii) the strength of repression from d. We now explicitly incorporate the role of effector molecules in two ways.

First, Fig. 22 defines effector activity as described by Case (A) of Fig. 11, where the active concentration of a
protein indexed by 7 iS pact (C)RZ' regardless of its function as a repressor or an activator. Therefore, for the system
containing one effector at concentration ¢ that targets R;, the dimensionless Eqns. B2 - B4 in induction Case (A)
become

dR; a R

“dt 1+ Rp][1+ Ry

b[pact (c) Ra]" (@ — d)[pact(c) Ra]"[Ry + Ry + Ry R} b
Tt Do @R U F pa@ B0 F BT Y 0 (B5)
bRy (@~ DR (Ipacs (VR + RS+ [pace (€) R RS )

dRz - a .
W @R ] T4 1+ [Pact () Ra]"][1 + RE[1 + R B (B9)
dRs a bRy (a—d)RY ([pact(c)Rl]” + RY + [pace () R1]™ Rg) i

T @RI By TR [1+ [pact(c) Ra]"][1 + R3][1 + R3] “fe (BT

Evaluating Eqns. B5 - B7 for fixed points, we obtain the results discussed in Section V B 1.

An alternative interpretation for effector activity, described by Case (B) of Fig. 11, transforms the available states
and weights to those in Fig. 23, where the concentration of R; is scaled by p.ct(c) when repressing expression of other
proteins, and scaled by 1 — pact(c) when activating its own expression. For the system containing only one effector at
concentration ¢ targetting R, activity, Eqns. B2 - B4 thus become

ARy _ a b[(1 = pace () Ra]" | (@—d)[(1 = pact(c)) Ra|"[Ry + R + RyRy]
i OB T4 0 pe )R O 0= (@) B+ BRI Ry e (BY)

bRy (@~ DR ([pac (R + RE + [pace()R1]" RS )

dRz - a B
A L+ P QR+ B 1+ B [+ @R IRy P
dRs3 a bR (a—d)Ry ([Pact(C)Rl]" + Ry + [pact(C)Rﬂ”RS) _

T b ORI R LR z e

(B10)

1+ Ry [1+ [pace () Ra]"[1 + RE][1 + Ry]

Evaluating Eqns. B8 - B10 for fixed points, we obtain the results discussed in Section V B 2.
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