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The formation, dissolution, and dynamics of multiparticle complexes is of fundamental interest in the study
of stochastic chemical systems. In 1976, Masao Doi introduced a Fock space formalism for modeling classical
particles. Doi’s formalism, however, does not support the assembly of multiple particles into complexes. Starting
in the 2000s, multiple groups developed rule-based methods for computationally simulating biochemical systems
involving large macromolecular complexes. However, these methods are based on graph-rewriting rules and/or
process algebras that are mathematically disconnected from the statistical physics methods generally used to
analyze equilibrium and nonequilibrium systems. Here we bridge these two approaches by introducing an
operator algebra for the rule-based modeling of multiparticle complexes. Our formalism is based on a Fock
space that supports not only the creation and annihilation of classical particles but also the assembly of multiple
particles into complexes, as well as the disassembly of complexes into their components. Rules are specified
by algebraic operators that act on particles through a manifestation of Wick’s theorem. We further describe
diagrammatic methods that facilitate rule specification and analytic calculations. We demonstrate our formalism
on systems in and out of thermal equilibrium, and for nonequilibrium systems we present a stochastic simulation
algorithm based on this formalism. The results provide a unified approach to the mathematical and computational
study of stochastic chemical systems in which multiparticle complexes play an important role.
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I. INTRODUCTION

Large complexes of classically behaving particles play
a central role in a variety of scientific disciplines. For ex-
ample, many essential biological processes depend on large
complexes formed by proteins, nucleic acids, and/or other
macromolecules. A common theme in such systems is “com-
binatorial complexity” [1], i.e., that an immense (and often
infinite) variety of molecular complexes can form from a
relatively small number of interaction rules governing the as-
sembly of a relatively small number of molecular components.
Nevertheless, mathematical methods for analyzing stochastic
chemical systems that exhibit such combinatorial complexity
have yet to be developed.

In 1976, Masao Doi [2,3] introduced a Fock space formal-
ism for modeling many-body systems of classical particles.
This approach was further developed by others [4–6] and
has proven useful in the study of diffusion-limited aggrega-
tion [7–9] and other problems in statistical physics [10–12].
As in quantum field theory, Doi’s formalism supports the
creation and annihilation of particles but does not sup-
port the assembly of preexisting particles into complexes.
Consequently, analyzing systems that involve multiparticle
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complexes using this formalism requires specifying one dis-
tinct field for every distinct species of complex. This makes
Doi’s formalism unwieldy for analyzing systems that exhibit
substantial combinatorial complexity.

Consider, for example, the homopolymer system illustrated
in Fig. 1. This system comprises one type of component
particle having two sites capable of forming an interaction. In
thermal equilibrium the system’s behavior is governed by two
quantities: the chemical potential of the particles and the en-
ergy of interaction [Fig. 1(a)]. Out of equilibrium the system
is governed by four rate parameters describing the appearance
and disappearance of particles, as well as their mutual binding
and unbinding [Fig. 1(b)]. Despite how simple this system is
to describe in words and pictures, modeling this system in
Doi’s formalism is complicated because the above rules lead
to an infinite number of possible polymeric complexes. To
apply Doi’s formalism, one must define an infinite number of
fields, one for every species of complex. For equilibrium sys-
tems, one must then manually specify the chemical potential
of each species [Fig. 1(c)]. For systems out of equilibrium,
one must manually specify the rate of reaction between all
reacting sets of species [Fig. 1(d)]. In doing so, one must take
care that the chemical potentials and/or reaction rates written
down are expressed correctly as functions of the underlying
model parameters, as Doi’s formalism provides no means of
computing these quantities.

Clearly something is missing. Ideally, the formalism one
uses to describe systems of multiparticle complexes should
allow one to mathematically derive the set of possible com-
plexes, the chemical potentials of each complex, and the rates
of reaction between complexes from the underlying rules and
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FIG. 1. Homopolymer in zero dimensions. The system comprises a single species of component particle, with each particle having two
domains capable of forming heterotypic interactions. (a) In thermal equilibrium, system behavior is governed by the chemical potential (μ)
and interaction energy (ε). (b) Out of equilibrium, the system is governed by the kinetic rates for monomer creation (r1), monomer annihilation
(r2), interaction formation (r3), and interaction dissolution (r4). (c) The rules in panel (a) generate an infinite number of possible complexes:
x-chains and x-rings for all x = 1, 2, . . ., each complex with a distinct chemical potential. The log terms in the chemical potentials of the
x-rings result from their rotational symmetry. (d) The rules in panel (b) result in an infinite web of reactions between different polymeric
complexes, with reaction rates proportional to r3 and r4 in ways that depend nontrivially on the identities of the specific reactants and products.

their associated parameters. This paper develops a formalism
that does this.

The problem of combinatorial complexity has long
been recognized in the field of computational systems
biology. Starting in the 2000s, researchers studying bio-
logical signaling pathways began developing “rule-based”
approaches for simulating chemical systems of multipar-
ticle complexes [1,13–19]. Some of these efforts have
produced sophisticated software ecosystems, such as BioNet-
Gen [14,16,18,20] and Kappa [17,21]. These simulation
approaches, however, are based on formal representations that
do not lend themselves to analytical calculations using the
mathematical methods of statistical physics. For example,
BioNetGen is based on a process algebra describing the for-
mation and dynamics of port graphs (i.e., graphs with edges
attached through ports) [22], while Kappa is based on the
κ-calculus process algebra [17,21]. As a result, work in this
area has been confined to computational analyses rather than
analytic calculations.

Here we bridge the divide between Doi’s mathematical for-
malism and rule-based methods for computationally modeling
biochemical systems. Using a Fock space for classical parti-
cles reminiscent of but distinct from that of Doi, we develop
an operator algebra that allows not only for the creation and
annihilation of particles, but also for the assembly of particles
into complexes. We show that this operator algebra allows one
to mathematically analyze equilibrium and nonequilibrium
systems that are defined in a rule-based manner and can also
be used as a basis for computational analyses using stochastic
simulations.

After introducing how microstates and macrostates are rep-
resented, we apply the formalism to three systems in thermal
equilibrium: a monomer system, a homodimer system, and
a homopolymer system. Next we show how our formalism
can be used to define and analyze nonequilibrium systems,

both through the analytic derivation of master equations and
through computational analysis carried out using a stochastic
simulation algorithm. We end by illustrating the versatility
of our formalism, showcasing the variety and complexity of
system behavior that can arise from positing different sets of
rules.

II. FOUNDATIONS

A. Microstates

Following Doi we define a set S of microstates where each
microstate s ∈ S corresponds to a unit vector |s〉. The resulting
set of pure states forms an orthonormal basis for the Fock
space. The vector |ψ〉 describing the system is then given by
a probabilistic mixture of pure states,

|ψ〉 =
∑
s∈S

ps|s〉, (1)

where ps represents the probability of the system being in state
s. It is useful to define the sum of all possible states as the
“sum vector”

|sum〉 =
∑
s∈S

|s〉. (2)

The expectation value of any operator O is then given
by 〈sum|O|ψ〉, and probability normalization requires that
〈sum|ψ〉 = 1.

The Fock space supports systems both in and out of thermal
equilibrium. In equilibrium, the state vector |ψ〉 for the system
(which is taken to be in the grand-canonical ensemble) can be
expressed in terms of a Hamiltonian operator H that assigns a
free energy to each microstate:

|ψ〉 = e−βH

Z
|sum〉, where Z = 〈sum|e−βH|sum〉 (3)
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is the partition function, β = 1/kBT where kB is the Boltz-
mann constant and T is temperature, and H|s〉 = Hs|s〉, where
Hs denotes the free energy of state s. The dynamics of the
system state |ψ〉 out of equilibrium is described by

d

dt
|ψ〉 = W |ψ〉, (4)

where W is a transition operator. We call this the “microstate
master equation.” In terms of the scalar transition rates Ws→t

from microstate s to microstate t , the transition operator is

W =
∑
s,t∈S

Ws→t (|t〉〈s| − |s〉〈s|). (5)

Note that the first term in the summand reflects the flow of
probability into pt , while the second term reflects the flow
of probability out of ps. We call these the “reaction” and
“depletion” terms, respectively.

B. Macrostates

Unlike in Doi’s formalism, the microstates in our formal-
ism represent not only the externally observable properties
of particles but also their unobservable internal states. These
internal states are, in fact, what make particles in our formal-
ism identifiable and thus allow complexes to be constructed
from preexisting particles. We therefore distinguish between
the microstates of a system (represented by the |s〉 vectors)
and the macrostates of the system.

In this work we focus on zero-dimensional (i.e., well-
mixed) populations of particles and complexes. Assuming
there are K possible observably distinct species of complex,
each macrostate is characterized by a vector �n = (n1, . . . , nK ),
where each nk quantifies the number of complexes of species
k. The corresponding macrostate vector is defined to be the
sum of all microstate vectors consistent with the macrostate,
i.e.,

|�n〉 =
∑
s|�n

|s〉. (6)

Note that |sum〉 = ∑
�n |�n〉, and that the probability of the

system being in a macrostate �n given |ψ〉 is

P(�n) = 〈�n|ψ〉. (7)

In equilibrium systems, each macrostate is an eigenstate of the
Hamiltonian:

H|�n〉 = −
∑

k

nkμk|�n〉, (8)

where μk is the (bare) chemical potential of species k. Conse-
quently, the probability of the system having macrostate �n is a
product of species-specific Poisson distributions, i.e.,

P(nk ) = 1

Zk

eβμknk

nk!
, where Zk = exp[eβμk ]. (9)

In nonequilibrium systems, this probability becomes a func-
tion of time t and evolves according to the “macrostate master
equation”

d

dt
Pt (�n) =

∑
�n′

W�n�n′Pt (�n′), (10)

where W�n�n′ = 〈�n|W |�n′〉/〈�n′|�n′〉 are the macrostate-specific
transition rates. In later sections we compute these W�n�n′ from
the transition operator W , but instead of calculating each rate
directly we find it simpler to calculate the vector

|J (�n)〉 = W †|�n〉. (11)

We call |J (�n)〉 the “flux projector” since taking the inner
product of it with |ψ〉 yields a vector of probability fluxes,
i.e., Ṗt (�n) = 〈J (�n)|ψ (t )〉.

III. MONOMER IN EQUILIBRIUM

A. Microstates and macrostates

We now illustrate our formalism for the simple case of
monomeric particles in equilibrium. The particles are repre-
sented using a hard-core boson field, A, which is assumed to
have N excitation modes. Each mode Ai is indexed by a num-
ber i ∈ N = {1, . . . , N} that represents the internal state of
the corresponding particle. This index allows the formalism to
track individual particles that are outwardly identical. In what
follows we keep N finite for concreteness, but all physically
meaningful calculations are performed in the N → ∞ limit.

Each mode Ai can be in one of two orthonormal states:
|1〉i represents the presence of a particle with internal state
i, while |0〉i represents its absence. Microstates are given
by tensor products over all modes. Specifically, a microstate
representing particles having indices I ⊆ N is represented by

|I〉 =
⊗
i∈N

{|1〉i if i ∈ I,

|0〉i otherwise. (12)

These states are orthonormal, i.e., 〈I|J 〉 = δIJ . The result-
ing macrostates of the system are

|n〉 =
∑

I:|I|=n

|I〉, for n = 0, . . . , N. (13)

The vacuum state, |0〉 = |∅〉, is both a microstate and a
macrostate.

These definitions readily extend to systems defined by mul-
tiple fields. Consider a mixture of monomer species A and B.
The microstate comprising A monomers having indices I and
B monomers having indices J is given by

|I,J 〉A,B = |I〉A ⊗ |J 〉B, (14)

where the subscripts indicate the Fock space in which each
state vector lives. The corresponding macrostates and sum
states are given by analogous tensor products. Systems with
three or more fields are defined similarly.

B. Mode and field operators

We now define four types of mode-specific operators:
creation, annihilation, presence, and absence operators. The
creation operator for mode i is defined to be Âi = |1〉i〈0|i.
When applied to a microstate |I〉, this operator has the effect

Âi|I〉 =
{

0 if i ∈ I,

|I ∪ {i}〉 otherwise. (15)
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The corresponding annihilation operator is defined to be Ǎi =
Â†

i and has the effect

Ǎi|I〉 =
{|I \ {i}〉 if i ∈ I,

0 otherwise. (16)

The presence operator is defined as Āi = ÂiǍi. Āi|I〉 is one if
i ∈ I and zero otherwise. The absence operator is defined to
be Ãi = ǍiÂi = 1 − Āi. Note that Āi and Ãi are self-adjoint.

We highlight several key algebraic properties of these oper-
ators. First, creation and annihilation operators are nilpotent,
i.e., Â2

i = Ǎ2
i = 0. Second, the commutator

[Ǎi, Â j] = δi j (1 − 2Āi ) (17)

is very different than what one finds in the harmonic oscillator
algebra, and thus in other algebras used to model classical
particles [2,6]. Third, the commutator

[Āi, Â j] = δi j Â j (18)

plays an important role later when constructing multiparticle
complexes from component particles. Appendix A lists some
additional useful properties.

We further define field-specific creation, annihilation,
presence, and absence operators as sums over all of the corre-
sponding mode operators, i.e.,

Â =
∑

i

Âi, (19)

and similarly for Ǎ, Ā, and Ã. These field operators satisfy the
useful commutation relations

[Ǎ, Â] = N − 2Ā, [Ā, Â] = Â. (20)

Macrostates are given by

|n〉 = Ân

n!
|0〉. (21)

Here the combinatorial factor corrects for each set of modes
being summed over n! times in the operator product Ân. Note
that |n〉 = 0 if n > N , since this would cause every term in Ân

to contain at least one factor of Â2
i . Applied to a macrostate,

one finds that

Â|n〉 = (n + 1)|n + 1〉, Ā|n〉 = n|n〉, (22)

Ǎ|n〉 = (N − n + 1)|n − 1〉, Ã|n〉 = (N − n)|n〉. (23)

See Appendix A for a derivation of these results.
In the large N limit, the number of modes that are excited

in any macrostate |n〉 with substantial physical probability be-
comes negligible compared to N . In what follows we therefore
approximate Eq. (23) as

Ǎ|n〉 ≈ N |n − 1〉, Ã|n〉 ≈ N |n〉. (24)

By similar logic we can also approximate [Ǎ, Â] ≈ N , etc.
Finally, it is useful to consider the coherent state,

|z〉 =
∞∑

n=0

zn|n〉 = ezÂ|0〉. (25)

This allows one to express the generating function for the
distribution over macrostates as 〈z|ψ〉. Note that setting z = 1
recovers the sum state, i.e., |1〉 = |sum〉.

C. Hamiltonian operator

In what follows we assume that each system of interest is
contained within a volume V . For a gas of monomers, the
relevant Hamiltonian is H = −μĀ, where μ denotes a bare
chemical potential. We use the term “bare” to emphasize that
μ determines the excitation probability for each independent
mode Ai, whereas the concentration of monomers depends
on μ, N , and V . The generating function for the equilibrium
probability distribution over macrostates is found by:

〈z|ψ〉 = 1

Z
〈0|ezǍeβμĀeÂ|0〉 (26)

= 1

Z
〈0|ezǍeλÂ|0〉 (defining λ = eβμ) (27)

= 1

Z

∏
i

〈0|iezǍi eλÂi |0〉i (28)

= 1

Z

∏
i

〈0|i(1 + zǍi )(1 + λÂi )|0〉i (29)

= 1

Z
(1 + zλ)N (30)

=
(

1 + zλ

1 + λ

)N

. (31)

In the first step we used the fact that f (Ā)g(Â)|0〉 =
g( f (1)Â)|0〉 for any functions f and g. The resulting quan-
tity λ is the per-mode fugacity corresponding to chemical
potential μ. In the second step we used the fact that operators
for different modes commute. In the third step we used the
nilpotency of Âi to truncate the expansion of each exponential.
Finally, we used the normalization requirement 〈1|ψ〉 = 1 to
determine the partition function Z = (1 + λ)N . The result is
the generating function for the binomial distribution corre-
sponding to N modes with a per-mode excitation probability
of λ/(1 + λ). From this generating function we find that the
expected concentration of monomers is

〈Ā〉
V

= 1

V

d

dz
〈z|ψ〉

∣∣∣∣
z=1

= 1

V

Nλ

1 + λ
= λ′

1 + V λ′/N
, (32)

where λ′ = N
V λ. Keeping 〈Ā〉/V constant while taking N →

∞ requires holding λ′ approximately constant and thus rescal-
ing λ ∼ V

N . In this limit we get

〈z|ψ〉 = e(z−1)V λ′ ⇒ |ψ〉 = e−V λ′ |V λ′〉. (33)

The corresponding partition function is Z = eV λ′
. Note that

〈z|ψ〉 is the generating function for a Poisson distribution with
mean V λ′. We thus see that

μ′ = kBT log λ′ = μ + kBT log
N

V
(34)

is the effective chemical potential, i.e., the chemical potential
appropriately renormalized to account for the N modes avail-
able for excitation in volume V . It is therefore μ′, not μ, that
reflects the physically measurable chemical potential.

Note that the appearance of the quantity N/V within a
logarithm may appear unusual, as this quantity has units, but
it makes sense in the context of our formalism. At a fixed bare
chemical potential μ, the concentration of particles [A] will
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be proportional to the density of Fock space modes, N/V . The
effective chemical potential μ′, which by definition is equal to
kBT log[A] up to an additive constant, must therefore receive
an additive contribution of kBT log(N/V ) to its value. Looked
at in a mathematically identical but conceptually different
way, if we keep μ fixed and simply change the units in which
V is measured, then [A] will scale with the quantity N/V (as
it should), and so μ′ should additively shift as kBT log(N/V ).

IV. HOMODIMER IN EQUILIBRIUM

A. Composite operators

Multiparticle complexes are represented as products of
mode operators for three kinds of fields: particle fields, in-
teraction fields, and site fields. For example, we define the
creation operator for a dimer of two A particles by the com-
posite operator

D̂i j = Îi j âiâ j ÂiÂ j, (35)

which is the product of mode operators for a particle field A,
an interaction field I , and a site field a. More specifically,
Âi and Â j create the two component particles, Îi j registers
that these two particles interact with one another, and âi and
â j respectively indicate that the Ai and Aj particles are each
participating in an interaction and are therefore not free to
interact with additional particles. Note that the index of the
dimer creation operator is the pair of monomer indices, (i, j).
Since the monomer is symmetric, we assume that Îi j = Î ji,
and so D̂i j = D̂ ji. Note also that D̂ii = 0 because of the nilpo-
tency of Âi and âi. The number of internal states for the
dimer is therefore ND = (N

2

) ≈ N2/2. The dimer annihilation,
presence, and absence operators are defined in terms of the
creation operator in the same manner as for a single particle:

Ďi j = D̂†
i j = Ǐi j ǎiǎ j ǍiǍ j, (36)

D̄i j = D̂i jĎi j = Īi j āiā j ĀiĀ j, (37)

D̃i j = Ďi jD̂i j = Ĩi j ãiã j ÃiÃ j . (38)

The field operator D̂ is given by D̂ = 1
2

∑
i, j D̂i j , where the

factor 1/2 compensates for double counting in the sum. The
field operators Ď, D̄, and D̃ are defined similarly.

The homodimer system also comprises free monomers. We
represent these by a separate composite field M defined by the
mode operator M̂i = Âiãi. The corresponding number of inter-
nal states is NM = N , and the three related mode operators are
M̌i = Ǎiãi, M̄i = Āiãi, and M̃i = Ãiãi. The corresponding field
operators are defined as sums over i. Note that the inclusion
of ãi in M̂i ensures that M̄ does not count A particles that are
components of dimers, M̌ does not annihilate such particles
(which would leave dangling I and a modes), etc.

The macrostate comprising m monomers and d dimers is
then given by

|m, d〉 = M̂m

m!

D̂d

d!
|0〉. (39)

Using [ãi, â j] = −δi j âi and Â2
i = 0, one can readily verify

that M̂ and D̂ commute. The corresponding coherent state is

therefore

|zM, zD〉 =
∞∑

m=0

∞∑
d=0

zm
Mzd

D|m, d〉 = ezM M̂+zDD̂|0〉. (40)

B. Sectoring by species

Now consider a Hamiltonian in which each A particle has
chemical potential μ and each interaction has Gibbs free en-
ergy ε:

H = −μ
∑

i

Āi + ε
1

2

∑
i, j

Īi j . (41)

To compute the equilibrium state of the system, we re-express
the Hamiltonian as a sum of terms that operate separately on
monomers and dimers. Using the identity 1 = ãi + āi, we split
the Hamiltonian into two parts, H = HM + HD, where

HM = −μ
∑

i

Āiãi, HD = −μ
∑

i

Āiāi + ε

2

∑
i, j

Īi j . (42)

These operators satisfy the commutation relations

[HM, M̂] = −μMM̂, [HD, D̂] = −μDD̂,

[HM, D̂] = 0, [HD, M̂] = 0, (43)

where μM = μ and μD = 2μ − ε are the bare monomer and
dimer chemical potentials. Next we compute the generating
function:

〈zM, zD|ψ〉 = Z−1〈0|ezM M̌+zDĎe−β(HM+HD )eM̂+D̂|0〉
= Z−1〈0|ezM M̌+zDĎeλM M̂+λDD̂|0〉
≈ Z−1〈0|ezM M̌eλM M̂ezDĎeλDD̂|0〉. (44)

In the first step we used Eq. (43) and defined the fugacities
λM = eβμM and λD = eβμD . The second step follows from the
approximation (see Appendix B)

[M̂, Ď] = 1

2

∑
i, j

(M̂i + M̂ j )Ďi j ≈ 0. (45)

This commutator is not exactly zero because annihilating
a dimer frees up A modes that can be used to create two
monomers. By way of comparison, however,

[M̂, M̌] = NM − 2M̄ and [D̂, Ď] = ND − 2D̄ (46)

have terms that scale as N and N2, respectively. The effect
of the commutator [M̂, Ď] on a physical state is consequently
negligible in the large N limit. This reflects the fact that the
number of modes available to create a monomer is not limiting
in the physically meaningful regime.

Next we insert a copy of the identity operator,

1 =
∑
m,d

|m, d〉〈m, d|
m!d!

, (47)

into the right-hand side of Eq. (44) and observe that only the
|0〉〈0| term survives. Consequently,

〈zM, zD|ψ〉 ≈ Z−1〈0|ezM M̌eλM M̂ |0〉〈0|ezDĎeλDD̂|0〉
= Z−1〈zM |λM〉〈zD|λD〉. (48)
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Setting 〈1, 1|ψ〉 = 1 we find that Z ≈ ZMZD, where ZM and
ZD are the respective partition functions for the monomer and
dimer species. We thus obtain

|ψ〉 ≈ |ψ〉M ⊗ |ψ〉D, (49)

where |ψ〉M describes a monomer-only system, |ψ〉D de-
scribes a dimer-only system, and both have the same Poisson
form as in Eq. (33).

There are two important caveats to the result in Eq. (49).
First, the sectors for distinct species are only independent in
the N → ∞ limit. For example, the right-hand side of Eq. (49)
has nonzero |m〉 ⊗ |d〉 terms for all values of m � N and d �
N/2, whereas each |m, d〉 term on the left-hand side is nonzero
only if m + 2d � N . Second, this sectoring result holds only
in equilibrium systems; indeed, the populations of particles in
different sectors will generally be coupled out of equilibrium.

Finally, we discuss the scaling behavior of the system
with N and V . As in the previous section, requiring the con-
centration of monomers 〈M̄〉/V to be constant as N → ∞
reveals an effective monomer chemical potential of μ′

M =
μM + kBT log NM

V . Similarly, requiring the concentration of
homodimers 〈D̄〉/V to be constant as N → ∞ reveals an
effective dimer chemical potential of μ′

D = μD + kBT log ND
V .

These relations are realized by renormalizing the parameters
of the Hamiltonian so that

μ′ = μ + kBT log
N

V
and ε′ = ε − kBT logV (50)

are held constant. In terms of these quantities, the effec-
tive dimer chemical potential is μ′

D = 2μ′ − ε′ − kBT log 2,
where the logarithmic term accounts for the symmetry of
the molecule. This system is therefore exactly renormaliz-
able. We thus see that, to maintain a fixed concentration of
dimers, the bare interaction energy ε must become weaker as
system volume increases. This makes sense: If V increases
while monomer concentration stays fixed, then the number
of monomers available to bond to a given monomer will
increase in proportion to V . To keep the probability of the
given monomer forming a dimer constant, the bare interaction
energy ε must weaken as V increases so that e−βε ∝ V −1. This
implies that e−βε′ = Ve−βε will be fixed.

C. Gallery operators

Consider more generally a system that realizes K distinct
species of complex. Let Ĝk denote the creation operator for
complex k and assume that

[Ḡk, Ĝk′ ] = δkk′Ĝk . (51)

We refer to the vector �G = (Ĝ1, . . . , ĜK )� as the “gallery,” as
it exhibits creation operators for all possible complexes. The
gallery allows us to define the coherent state

|�z〉 = exp{�z� �G}|0〉, (52)

where �z = (z1, . . . , zK )� is a vector of scalars. As in the
monomer and homodimer systems, the generating function for
a system |ψ〉 is 〈�z|ψ〉, and the sum state is

|sum〉 = e
∑

k Ĝk |0〉 = |�1〉. (53)

The macrostates of the system are given by

|n1, . . . , nK 〉 =
[

K∏
k=1

Ĝnk
k

nk!

]
|0〉, (54)

and the effects of the four field operators on macrostates are

Ĝk|n1, . . . , nK 〉 = (nk + 1)|n1, . . . , nk + 1, . . . , nK 〉,
Ḡk|n1, . . . , nK 〉 = nk|n1, . . . , nK 〉,
Ǧk|n1, . . . , nK 〉 ≈ Nk|n1, . . . , nk − 1, . . . , nK 〉,
G̃k|n1, . . . , nK 〉 ≈ Nk|n1, . . . , nK 〉, (55)

where Nk is the number of internal states for species k.
Because different complexes can share internal compo-

nents, the Hamiltonian can be defined in a rule-based manner
as in Eq. (41) instead of on a species-by-species basis. As
we will see in later sections, such rule-based definitions can
require far fewer than K terms. If there are no energetic in-
teractions between separate complexes, then the Hamiltonian
can be equivalently expressed as

H � −
∑

k

μkḠk, (56)

where μk is the bare chemical potential for species k. The
generating function for the equilibrium state then factorizes,
i.e.,

|ψ〉 =
⊗

k

|ψ〉k, where |ψ〉k = e−V λ′
k |V λ′

k〉, (57)

and where λ′
k = eβμ′

k and μ′
k = μk + kBT log Nk

V are the effec-
tive fugacity and chemical potential of species k. We note that
it may or may not be possible to renormalize the parameters
of the Hamiltonian so that all the effective chemical poten-
tials are independent of V . For example, this is possible in
the homodimer system but not in the homopolymer system
discussed in the next section.

D. Factory operators

Hamiltonians of the form in Eq. (56) describe systems of
noninteracting particles and might understandably be viewed
as trivial. They become less trivial, however, in systems com-
prising large (or infinite) numbers of distinct complexes, with
each complex having a chemical potential that is a function
of the parameters used to define the Hamiltonian. In such
systems, merely enumerating different species of complex and
determining their chemical potentials can be nontrivial. In
such cases it is natural to instead define the set of possible
complexes implicitly by specifying the rules for their con-
struction, and to use these rules to then compute the different
species of complex and their associated chemical potentials.
We now show how our formalism enables this.

In the case of the homodimer, the sum state can be ex-
pressed as

|sum〉 = eF2 eF1 |0〉, (58)

where

F1 =
∑

i

Âiãi, F2 = 1

2

∑
i, j

Îi j âiâ j ĀiĀ j . (59)
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Here F1 = M̂ creates free monomers, while F2 joins two
monomers into a dimer. Specifically, F2 tests for the presence
of two particles, Ai and Aj , and if these already exist it joins
them into a dimer Di j . Note that neither A particle can be part
of an existing dimer due to the excitation of site fields ai and
a j . For example,

F2
F2

1

2
|0〉 = 1

4

∑
i, j,k,l

Îi j âiâ j ĀiĀ j Âk ãiÂl ãl |0〉 (60)

= 1

4

∑
i, j,k,l

Îi j âiâ j ÂiÂ j (δikδ jl + δilδ jk )|0〉 (61)

= |0, 1〉, (62)

where the first step uses the identities âiãi = âi and [Āi, Â j] =
δi j Âi. We will soon show more generally that

F p
2

p!

Fq
1

q!
|0〉 =

{|q − 2p, p〉 if q � 2p,
0 otherwise. (63)

Summing this over all p and q establishes the |sum〉 state in
Eq. (58).

The sum of states for complexes generated in any sys-
tem can thus be specified by a vector of operators �F =
(F1, . . . ,FL )� via

|sum〉 = eFL . . . eF1 |0〉. (64)

We call this vector the “factory.” We emphasize that the order
of the operators within the factory is important, as these oper-
ators, unlike gallery operators, do not generally commute.

Using the factory instead of the gallery to define the set of
possible complexes in a system can have an important advan-
tage: The factory often comprises far fewer operators than the
gallery. This is not the case for the homodimer system, but it
is so for the homopolymer system presented in Sec. V.

There is a disadvantage, however, to defining a system
using the factory: One loses access to the generating function.
One can, of course define a coherent state analogous to |�z〉 via

|�x〉 = exLFL · · · ex1F1 |0〉, (65)

where �x = (x1, . . . , xL )�. It is questionable, however, how
useful the corresponding generating function 〈�x|ψ〉 is for anal-
ysis. As we will see, each term in the expansion of Eq. (65)
can yield multiple distinct mixtures of complexes. One thus
generally cannot read off the macrostate distribution P(�n)
from the expansion of 〈�x|ψ〉.

E. Wick’s theorem

The algebraic manipulations needed to show Eq. (63) be-
come unwieldy as p and q become large. Wick’s theorem,
a foundational result in quantum field theory, makes these
calculations significantly more straightforward by providing
a systematic procedure for reordering operators in a multiop-
erator product.

To see how Wick’s theorem can be applied to our formal-
ism, define the compound operators Āa

i = âiĀi and Âa
i = âiÂi.

Ignoring the interaction field I for the moment, each term in
the expansion of the left-hand side of Eq. (63) has the form

Āa
i1 · · · Āa

i2q
M̂ j1 · · · M̂ jp |0〉. (66)

Note that all compound presence operators appear to the left
of all creation operators. We refer to this as “productive or-
dering.” Given an operator product X1X2 · · · Xn, we denote
its productive ordering by P (X1X2 · · · Xn). Each term in the
Taylor expansion of the factory representation is productively
ordered because the instructions for assembling each complex
are applied after the instructions for creating its components.
In contrast, each term in the expansion of the gallery repre-
sentation in Eq. (39) has the form

M̂i1 · · · M̂im Âa
j1 · · · Âa

j2d
|0〉. (67)

The key difference from Eq. (66) is that this term contains
only creation operators, all of which commute.

Every term of the form in Eq. (66) is in fact equal to a sum
of terms having the form in Eq. (67) with m = q − 2p and
d = p. To transform the former to the latter, we iteratively
apply the exchange rule

Āa
i M̂ j = M̂ jĀ

a
i + δi j Â

a
i (68)

until no Āa
i operators appear to the left of any M̂ j operators.

Each application of the exchange rule adds another term to the
expansion. The result is a sum of operator products such that
all Āa

i in each product appear to the right of all M̂i and Âa
i . Such

products are said to be “normally ordered.” More generally, an
operator product is normally ordered if all presence operators
appear to the right of all creation operators. The normally
ordered form of an operator product X1X2 · · · Xn is denoted
by N (X1X2 · · · Xn). Normally ordered products are useful be-
cause any such products containing presence operators vanish
when applied to the vacuum state.

Wick’s theorem provides an equality between productively
ordered and normally ordered operator products. To state
Wick’s theorem, we define a “contraction” between two op-
erators Xi and Xj to be

(69)

The contraction of two specific operators within a larger prod-
uct X1X2 · · · Xn removes these operators from the product and
replaces them with their contraction, i.e.,

(70)

A key assumption of Wick’s theorem is that the contraction
of any two operators in a product is “central,” i.e., it commutes
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with all other operators in the product. For the homodimer algebra, the only contractions needed to transform Eqs. (66) to (67)
are of the form

(71)

These contractions are indeed central, i.e., [Âa
j , M̂ j] = [Âa

j , Āa
i ] = 0.

Applied to our context, Wick’s theorem states that any productively ordered operator product is equal to the sum of all possible
normally ordered contractions:

(72)

=
∑

all contractionsC
N (C(X1X2 . . . Xn)) (73)

For example, applying Wick’s theorem to the right-hand side of Eq. (60) gives

(74)

= M̂kM̂l Ā
a
i Āa

j + δik Âa
i M̂l Ā

a
j + δil Â

a
i M̂kĀa

j + δ jkÂa
j M̂l Ā

a
i + δ jl Â

a
j M̂kĀa

i

+ δikδ jl Â
a
i Âa

j + δilδ jk Âa
i Âa

j . (75)

When applied to the vacuum state, only the last two
terms in Eq. (75) survive, thus yielding the expression in
Eq. (61), where each term in the summand derives from

Āa
i Āa

j M̂kM̂l |0〉 = (δikδ jl + δilδ jk )Âa
k Âa

l |0〉. (76)

More generally, Wick’s Theorem allows us to transform terms
in the expansion of the factory expression for the sum vector
[Eq. (64)] into a sum of terms in the expansion of the gallery
expression for the sum vector [Eq. (53)].

F. Formal diagrams

We now introduce diagrammatic methods that aid in
computations involving Fock space operators. Each diagram
indicates an operator product or sums of such products over
internal states. Figure 2 shows several examples. The indices
of mode operators are written as index names inside open dots
[Fig. 2(a)]. Mode operators are indicated by the decorated
operator name written next to their respective dots. Multiple
operator names written next to the same dot indicate that those
operators share the same index. Modes that have two indices
are written next to lines that connect the two dots representing
those indices. A closed dot indicates summation over the
corresponding index. Field operators are thus distinguished
from mode operators through the use of closed rather than
open dots. Symmetry factors are also kept explicit [Fig. 2(b)].

This diagrammatic notation is helpful in computations in-
volving Wick contractions; we demonstrate this by deriving
Eq. (63). The effect of each Wick contraction is illustrated
in Fig. 2(c), where contracting an Āa operator (part of F2)
with F1 = M̂ eliminates the F1 and replaces the Āa in F2

with an Âa. To avoid unnecessary notation going forward, we
represent this operation using the same diagrams but showing
only the decorations on the A operators. Now consider the
left-hand side of Eq. (63) with p = 2 and q = 5 [Fig. 3(a),
line 1]. Because the two F2 operators are applied after the five
F1 operators, this product is productively ordered [Fig. 3(a),
line 2]. Next we use Wick’s theorem to convert this to a sum

(a)

(b)

(c)

FIG. 2. Diagrammatic notation for operator products and sums
thereof over internal indices. (a) Examples of simple and compound
mode operators. (b) Examples of simple and compound field opera-
tors. (c) Wick contraction relevant to the homodimer system.
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(iv)

(vi)

(vi)

(iv)

(a)

(b)

(i)

(ii)

(iii)

(v)

(i) (ii)

(iii)

(v)

FIG. 3. Diagrams facilitate algebraic calculations. (a) Evaluation
of the p = 2, q = 5 term of Eq. (63) in terms of normally ordered
operator products. (b) Result of the computation in panel (a) applied
to the vacuum state.

of normally ordered products [Fig. 3(a), lines 3–8]. We also
evaluate the combinatorial coefficients that arise due to dis-
tinct contractions producing topologically identical products.
Consider, for example, the coefficient for term (iii). For the
first contraction, there are five choices of M̂ and four choices
of Āa. For the second contraction, there are four remaining
choices of M̂ but only one possible choice for Āa—that which
is linked with the first Āa through an I field. Since inter-
changing the order in which the contractions are performed
does not change the result, we divide the result by two. This
yields a combinatorial coefficient of (5 · 4) × (4 · 1)/2!. The
combinatorial coefficients for the other terms follow similarly.

Each normally ordered term in lines 3–8 yields one of the
operator products shown in lines 9–11, as indicated. We leave
it to the reader to check that the combinatorial coefficients
computed in lines 3–8 do in fact match those shown in lines
9–11, which are as expected based on symmetry considera-
tions. Note in particular that all terms except term (vi) contain
Āa operators. Consequently, only term (vi) survives when this
result is applied to the vacuum state [Fig. 3(b)].

We are now in a position to evaluate the left-hand side of
Eq. (63) for general values of p and q (Fig. 4). If q < 2p,

assuming 

FIG. 4. Diagrammatic proof of the factory/gallery equivalence
for the homodimer system.

then Fq
1 does not supply enough M̂ operators to contract all

the Āa operators supplied by F p
2 . The expression therefore

vanishes. If q � 2p, however, then there are q!/(q − 2p)!
ways to contract all the Āa with all the M̂, thereby leaving
p copies of D̂ and q copies of M̂. The resulting combinatorial
factor replaces the 1/q! with 1/(q − 2p)!, thus providing the
factors needed to correct the redundancies in D̂p and M̂q. This
completes the derivation of Eq. (63) and thus the proof of the
factory/gallery equivalence for the homodimer system.

V. HOMOPOLYMER IN EQUILIBRIUM

We now turn to a system that is far simpler to define in a
rule-based manner than in a species-based manner. Consider
a factory comprising two operators:

F1 =
∑

i

Âiãib̃i, F2 =
∑
i, j

ĀiĀ j âib̂ j Ĵi j . (77)

This is similar to the homodimer factory, but F2 differs in that
it forms an asymmetric (rather than symmetric) bond between
two A particles. Specifically, the summand in F2 occupies a
site ai on the Ai monomer, a site b j on the Aj monomer, and
forms a bond Ji j between them. F2 is not multiplied by a
symmetry factor because Ji j �= Jji. These factory operators are
represented graphically in Fig. 5(a). We define a rule-based
Hamiltonian for this system in the familiar way:

H = −μ
∑

i

Āi + ε
∑
i, j

J̄i j, (78)

as represented in Fig. 5(b). The resulting gallery [Fig. 5(c)] is
far more complex than that of the homodimer: It comprises
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(a)

(c)

(b)

(d)

(e)

(f)

FIG. 5. Diagrammatic specification of the homopolymer system.
(a) The factory. (b) The Hamiltonian. (c) The resulting gallery.
(d) The Ĉx and R̂x operators comprising the gallery, and (e) the four
contraction rules for the system. For conciseness, panels (c)–(e) hide
all operator names except for the decorators on the A operators. (f)
An example algebraic calculation carried out using the commutation
rules in panel (e).

creation operators for polymer chains and polymer rings of all
lengths. Here x-chains and x-rings are created by the operators

Ĉx =
∑

i1,...,ix

Âi1 · · · Âix âi1 · · · âix−1

× b̂i2 · · · b̂ix Ĵi1i2 · · · Ĵix−1ix , (79)

R̂x = 1

x

∑
i1,...,ix

Âi1 · · · Âix âi1 · · · âix

× b̂i1 · · · b̂ix Ĵi1i2 · · · Ĵix−1ix Ĵix i1 . (80)

These operators are more clearly expressed in diagrammatic
notation [Fig. 5(d)]. Note the factor of 1/x in Eq. (80); this is
needed to compensate for redundancy in the sum over internal
indices that results from x-rings having rotational symmetry.

The equivalent species-based Hamiltonian has an infinite
number of terms, each with its own bare chemical potential:

H � −
∞∑

x=1

(
μCx C̄x + μRx R̄x

)
, (81)

where μCx = xμ − (x − 1)ε and μRx = xμ − xε are the bare
chemical potentials for x-chains and x-rings. The correspond-
ing number of complex-specific microstates are NCx = Nx and

NRx = 1
x Nx. Putting these together, we obtain the effective

chemical potentials of each species:

μ′
Cx

= x(μ − ε) + ε + kBT log
Nx

V
,

μ′
Rx

= x(μ − ε) + kBT log
Nx

xV
. (82)

Unlike in the homodimer system, it is not possible to renor-
malize μ and ε so that all μ′

Cx
and μ′

Rx
are independent of

volume. Keeping μ′
C1

independent of N and V requires fix-
ing the value of μ′ = μ + kBT log N

V as in the monomer and
homodimer systems. Keeping all other μ′

Cx
independent of N

and V then requires fixing ε′ = ε − kBT logV . The effective
chemical potentials for all species thus become

μ′
Cx

= x(μ′ − ε′) + ε′,

μ′
Rx

= x(μ′ − ε′) − kBT log x − kBT logV. (83)

Constraining the concentrations of all Cx species to be inde-
pendent of V therefore requires that the concentration of all Rx

species scale as V −1. We note, however, that the converse is
not possible, i.e., one cannot choose a definition for μ′ and ε′
so that the concentrations of all ring species are independent
of V .

We therefore conclude that, for the homopolymer system to
behave sensibly in the V → ∞ limit, the concentrations of all
chain polymers must remain fixed, whereas the concentrations
of all ring polymers must vanish. This makes sense: As V
increases, the number of free ends with which the free end
of an x-chain can interact increases in proportion to V . To
preserve the concentrations of all x-chains, e−βε must scale as
V −1. The probability of one free end of an x-chain interacting
with the other free end of the same polymer will thus scale as
V −1, and the concentration of all ring polymers will also scale
as V −1.

Given Eq. (83), defining η = eβ(μ′−ε′ ) and computing

log Z =
∞∑

x=0

eβμCx +
∞∑

x=0

eβμRx , (84)

we find that the log partition function density of the system is,
for 0 < η < 1,

log Z

V
= eβε′

1 − η
− log(1 − η)

V
. (85)

The left and right terms of the resulting expression are the
respective contributions from chains and rings. The V −1 scal-
ing of the second term reflects the vanishing of ring species as
V → ∞. The remaining chain contribution diverges as η → 1
from below. In this limit, defining δ = 1 − η, the concentra-
tion of A particles diverges as

〈Ā〉
V

= 1

β

∂

∂μ′
log Z

V
≈ eβε′

δ2
. (86)

Since the concentration of each chain species Cx is given by
eβμ′

Cx = eβε′
ηx, the distribution of chain lengths is distributed

exponentially with decay rate log η and flattens out as η → 1
from below. The mean and variance of these chain lengths
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therefore diverge as

〈x〉 = η

1 − η
≈ 1

δ
, var(x) = η

(1 − η)2
≈ 1

δ2
. (87)

To show the equivalence of the factory and gallery rep-
resentations of the homopolymer system, we again invoke
Wick’s theorem. In this case, however, the allowable con-
tractions are more complex. Paralleling the analysis for the
homodimer, we define the compound operators

M̂i = Âiãib̃i, Âa
i = Âiâib̃i, (88)

Âb
i = Âiãib̂i, Âab

i = Âiâib̂i, (89)

Āa
i = Āiâib̃i, Āb

i = Āiãib̂i. (90)

These six operators obey the contraction rules

, (91)

(92)

These rules are shown diagrammatically in Fig. 5(e). The
reader may notice that the first two contraction products are
not central, and thus violate an assumption of Wick’s theorem.
We find, however, that Wick’s theorem still holds if we allow
contraction products to participate in additional contractions.
Fully contracted operator products therefore have all Āa

i and
Āb

i operators participating in one contraction each, whereas
each Â operator may participate in zero, one, or two contrac-
tions.

We can use the above contraction rules to derive the com-
plexes generated from any given term in |sum〉 = eF2 eF1 |0〉.
Figure 5(f) shows the result for one such term. A generalized
version of this computation is used in Appendix C to prove
the factory/gallery equivalence for the homopolymer system.

VI. NONEQUILIBRIUM SYSTEMS

A. Species-based formalism

We now turn to the problem of determining the macrostate
master equation [Eq. (10)] given a rule-based microstate mas-
ter equation [Eq. (4)]. We start, however, by investigating
how to specify and analyze a more standard species-based
microstate master equation.

Species-based master equations are built from individual
reactions, each of which annihilates a specified set of com-
plexes and creates a new set in their place. Suppose there are
H distinct species-specific reactions. The transition operator
in Eq. (4) will then have the form

W =
H∑

h=1

rh(Qh − Q̀h), (93)

where rh is the rate at which reaction h occurs, Qh is a
“reaction operator” that effects this reaction when applied to a
macrostate |�n〉, and Q̀ is a corresponding “depletion operator.”
Each reaction operator has the form

Q =
K∏

k=1

Ĝpk

k

pk!

Ǧqk

k

qk!
, (94)

where �q = (q1, . . . , qK ) is an abundance vector that describes
the reactants and �p = (p1, . . . , pK ) is a vector that describes
the products. For the sake of simplicity we assume that �p and
�q do not overlap (i.e., pk = 0 and/or qk = 0 for every k).
Applying the conjugate of this operator to the macrostate, one
finds that

Q†|�n〉 = N�p 
(�n, �q, �p)|�n + �q − �p〉, (95)

where


(�n, �q, �p) =
∏

k

(
nk + qk − pk

qk

)
1(nk � pk ), (96)

with 1 denoting the indicator function. 
 is an integer coef-
ficient that depends on �n, �p, and �q, but not otherwise on the
details of the reaction, and

N�p =
∏

k

(
Nk

pk

)
≈

∏
k

N pk

k

pk!
(97)

is the number of distinct product microstates created when Q
is applied to a single reactant microstate.

In our formalism, the depletion operator Ò corresponding
to any reaction operator O is given in terms of the microstate-
specific components via

O =
∑
I,J

oIJ |J 〉〈I| ⇒ Ò =
∑
I,J

oIJ |I〉〈I|, (98)

where I and J index all microstates of the system and oIJ
is the rate at which |I〉 is transformed into |J 〉. Note that,
by this definition, all depletion operators are self-conjugate.
In Appendix D we show that Eq. (98), together with the
assumption of nonoverlapping �p and �q, leads to a depletion
operator corresponding to Q of

Q̀ =
∏

k

(
G̃k

pk

)(
Ḡk

qk

)
. (99)

Applying Q̀† = Q̀ to the macrostate then gives

Q̀|�n〉 = N�p 
(�n, �q, �q)|�n〉. (100)

Adding back the subscript h on �p and �q and using Eq. (11),
we obtain an expression for the flux projector:

|J (�n)〉 =
H∑

h=1

rhN�ph{
(�n, �qh, �ph)|�n + �qh − �ph〉

− 
(�n, �qh, �qh)|�n〉}. (101)

The difficulty with this species-based formulation is that,
in systems that admit multiparticle complexes, the form of the
transition operator in Eq. (93) does not reflect the underlying
simplicity of the system. Rather, the rates rh and reaction
operators Qh are derived quantities that follow from an (often
much smaller) set of informally stated rules. Furthermore,
even manually specifying the right-hand side of Eq. (93) can
be tricky: A small number of rules can lead to a very large
(or even infinite) number of reactions H , and both rh and Qh

can depend in nontrivial ways on the elemental parameters
that govern those rules. We now show how our formalism
addresses this problem by enabling the rule-based definition
of W .
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B. Rule-based formalism

We specify the transition operator in a rule-based manner
as follows. Suppose we have a system defined by L reaction
rules. For each rule l , we specify a rate rl and a “reaction rule
operator” Rl . The transition operator is then given by

W =
L∑

l=1

rl (Rl − R̀l ), (102)

where R̀l is the depletion operator corresponding to Rl .
Suppose a rule operator R is able to drive M different

species-specific reactions. For each reaction m, let �qm denote
the number of reactant species and �pm the number of product
species. We find that

R†|�n〉 =
M∑

m=1

σm
(�n, �qm, �pm)|�n + �qm − �pm〉, (103)

where σm is the number of distinct product microstates that
can result from each reactant microstate in an m-type reaction.
The depletion operator R̀ follows from the rule operator R
using Eq. (98). Applying R̀† = R̀ to |�n〉,

R̀|�n〉 =
M∑

m=1

N�pm 
(�n, �qm, �qm)|�n〉. (104)

Adding back the l indices, we obtain the flux projector

|J (�n)〉 =
L∑

l=1

Ml∑
m=1

rlσlm{
(�n, �qlm, �plm)|�n + �qlm − �plm〉

− 
(�n, �qlm, �qlm)|�n〉}. (105)

C. Macroscopic master equation for the homopolymer

We now illustrate the rule-based formalism from subsec-
tion B above by using it to derive the macrostate master
equation for the homopolymer system. Out of equilibrium, the
dynamics of this system can be defined by L = 4 reaction rule
operators:

R1 =
∑

i

Âiãib̃i, R3 =
∑
i, j

Ĵi j âib̂ j ĀiĀ j,

R2 =
∑

i

Ǎiãib̃i, R4 =
∑
i, j

J̌i j ǎib̌ j ĀiĀ j . (106)

Here R1 creates a monomeric particle, R2 = R†
1 destroys a

monomeric particle, R3 creates an interaction between two

particles, and R4 = R†
3 destroys an interaction. Note that these

four operators are given by the factory operators of Sec. V and
their conjugates. The corresponding depletion operators are

R̀1 =
∑

i

Ãiãib̃i, R̀3 =
∑
i, j

J̃i j ãib̃ j ĀiĀ j,

R̀2 =
∑

i

Āiãib̃i, R̀4 =
∑
i, j

J̄i j āib̄ j ĀiĀ j . (107)

Diagrammatic representations of these rule operators and de-
pletion operators are shown in Fig. 6(a).

In Sec. V we showed that the macrostates of the homopoly-
mer system are given by

|�c, �r〉 = |c1, r1, c2, r2, . . .〉 =
∞∏

x=1

Ĉcx
x

cx!

R̂rx
x

rx!
|0〉, (108)

where cx and rx respectively indicate the number of chains
and rings of length x. To compute the macroscopic master
equation, we determine the expression for the flux projector

|J (�c, �r)〉 =
4∑

l=1

rl (R
†
l − R̀l )|�c, �r〉. (109)

We now evaluate Eq. (109) term by term. To ease notation,
we show in the macrostate only the elements of �c and �r that
change on application of each operator and denote the un-
changed elements by an ellipsis. The l = 1 term corresponds
to monomer creation. As illustrated in Fig. 6(b), R1 maps a
single microstate (corresponding to no reactants) to σ1 ≈ N
microstates (corresponding to all possible monomer states).
By Eqs. (103) and (104),

(R†
1 − R̀1)|�c, �r〉 ≈ N{|c1 − 1, . . .〉 − |. . .〉}. (110)

R2 maps a single monomeric particle microstate to σ2 = 1
microstate (i.e., no products), and so

(R†
2 − R̀2)|�c, �r〉 = (c1 + 1)|c1 + 1, . . .〉 − c1|. . .〉. (111)

The effects of R3 and R4 are more complex. R3 can effect
three different types of reactions depending on the reactants.
First, R3 can join together an x-chain and y-chain (x < y) to
get an (x + y)-chain; this can be done in σ3 = 2 different ways
[Fig. 6(c)]. Second, R3 can can join together two x-chains to
get a 2x-chain; this can be done in σ3 = 2 ways [Fig. 6(d)].
Third, R3 can join together the ends of an x-chain to get an
x-ring; this can be done in only σ3 = 1 way [Fig. 6(e)]. We
therefore find that

(R†
3 − R̀3)|�c, �r〉 =

∑
x<y

2{(cx + 1)(cy + 1)|cx + 1, cy + 1, cx+y − 1, . . .〉 − cxcy|. . .〉}

+
∑

x

2

{
(cx + 2)(cx + 1)

2
|cx + 2, c2x − 1, . . .〉 − cx(cx − 1)

2
|. . .〉

}

+
∑

x

{(cx + 1)|cx + 1, rx − 1, . . .〉 − cx|. . .〉}. (112)

Similarly, the inverse operator R4 can separate an (x + y)-chain into an x-chain and y-chain (x < y) in σ4 = 2 ways, can
separate a 2x-chain into two x-chains in only σ4 = 1 way, and can cut an x-ring to get an x-chain in σ4 = x different ways.
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(c)

(d) (e)

(b)

(a)

FIG. 6. The eight types of species-specific reactions that occur in the nonequilibrium homopolymer system. (a) Diagrammatic represen-
tations of the four reaction rule operators and their corresponding depletion operators. (b) R1 maps the vacuum state to N different monomer
microstates, while R2 maps each monomer microstate to a single vacuum state. [(c)–(e)] The three types of species-specific reactions effected
by R3 and R4. (c) R3 can link an x-chain and y-chain together in two different ways, while R4 can split an (x + y)-chain into an x-chain and
y-chain in two different ways. (d) R3 can link two x-chains together in two different ways, while R4 can split a 2x-chain into two x-chains in
only one way. (e) R3 can circularize an x-chain in only one way, while R4 can linearize an x-ring in x different ways. Nodes are shown as open
dots in panels (b)–(e) to indicate specific internal states; the numbers below each node indicate example values for the internal index i of each
component particle.

Consequently,

(R†
4 − R̀4)|�c, �r〉 =

∑
x<y

2{(cx+y + 1)|cx − 1, cy − 1, cx+y + 1, . . .〉 − cx+y|. . .〉}

+
∑

x

{(c2x + 1)|cx − 2, c2x + 1, . . .〉 − c2x|. . .〉}

+
∑

x

x{(rx + 1)|cx − 1, rx + 1, . . .〉. − rx|. . .〉}. (113)

The depletion terms in these expressions can be simplified as follows:

∑
x<y

2cxcy +
∑

x

cx(cx − 1) +
∑

x

cx = n2
chain,

∑
x<y

2cx+y +
∑

x

c2x +
∑

x

xrx = nlink, (114)

where nchain = ∑
x cx is the total number of chains and nlink = ∑

x[(x − 1)cx + xrx] is the number of links among all chains and
rings.
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Evaluating the inner product 〈J (�n)|ψ (t )〉, we thus obtain the macroscopic master equation for the homopolymer:

d

dt
P(. . .) = Nr1P(c1 − 1, . . .) + r2(c1 + 1)P(c1 + 1, . . .) + r3

⎡
⎣∑

x<y

2(cx + 1)(cy + 1)P(cx + 1, cy + 1, cx+y − 1, . . .)

+
∑

x

(cx + 2)(cx + 1)P(cx + 2, c2x − 1, . . .) +
∑

x

(cx + 1)P(cx + 1, rx − 1, . . .)

⎤
⎦

+ r4

⎡
⎣∑

x<y

2(cx+y + 1)P(cx − 1, cy − 1, cx+y + 1, . . .) +
∑

x

(c2x + 1)P(cx − 2, c2x + 1, . . .)

+
∑

x

x(rx + 1)P(cx − 1, rx + 1, . . .)

⎤
⎦ − [

Nr1 + r2c1 + r3n2
chain + r4nlink

]
P(. . .). (115)

To verify this result we focus on the depletion term, i.e., the
coefficient of P(�c, �r). The overall monomer creation rate is
Nr1. This makes sense, as r1 is the per-mode rate of excitation
of the A field. r1 must therefore scale as V/N . The r2 term
reflects our assumption that only A particles engaging in no
interactions are able to be annihilated; it does not scale with V
or N . The r3 term reflects the fact that new interactions form
between the a-end of one chain and the b-end of either another
chain or the same chain (r3 scales as V −1). The total number
of available reactants in the system is therefore n2

chain. The r4

term reflects the assumption that any link can be annihilated
regardless of the complex in which it occurs (r4 does not scale
with V or N).

VII. SIMULATIONS

A. Numerical solutions

Our formalism enables the exact numerical solution of the
microstate master equation—at least when N is sufficiently
small. One first defines a set of modes M, as well as a set
of mode-specific rules R = {(Rli, rl )}, where l indexes the
qualitatively different rules as in Eq. (102), and i indexes the
internal states of the particles that each rule acts on (so that
Rl = ∑

i Rli). The transition operator is then computed using

W =
L∑

l=1

rl

∑
i

(Rli − R̀li ). (116)

Given an initial state vector |ψ (0)〉, the state at time t is
computed using

|ψ (t )〉 = exp {tW }|ψ (0)〉. (117)

Figures 7(a)–7(c) show the results of this computation for
three example systems: a monomer system (N = 20), a
homodimer system (N = 4), and a homopolymer system
(N = 3).

The primary limitation of this approach is that it requires
computations involving very large vectors and matrices: |ψ〉
is a 2|M|-dimensional vector, W is a 2|M| × 2|M| matrix, and
|M| is polynomial in N , e.g., |M| = N for the monomer,
|M| = 2N + (N

2

)
for the homodimer, and |M| = 3N + N2

for the homopolymer. Even using sparse matrix methods, we
have found the direct evaluation of Eq. (117) to be imprac-
tical for all but very small values of N . Nevertheless, these
deterministic simulations provide a valuable way to check the
accuracy of the stochastic simulations that we now describe.

B. Stochastic simulations

Our formalism also enables stochastic simulations of
the microstate master equation using the Gillespie algo-
rithm [23,24]. Importantly, these stochastic simulations can be
carried out using much larger values of N . Algorithm 1 is one
algorithm that does this. After explaining how the algorithm
works, we illustrate its operation by stepping through one
iteration of the algorithm for a homodimer system. We then
present computational results obtained using this algorithm
and discuss the algorithm’s current limitations.

The input to Algorithm 1 consists of two strings, strans

and sinit . The string strans specifies the set of rules and their
corresponding rates, while sinit specifies the initial state of
the system, |s0〉. The output of the algorithm is a trajectory
object T , the downstream parsing of which provides time
traces for the abundances of all single particles and com-
plexes. We emphasize that this algorithm only tracks the
excitation states of modes. In particular, there is no need
during the execution of the algorithm to enumerate the dif-
ferent possible species of complex or even to track which
species occur. Rather, time traces for the abundances of differ-
ent complexes are determined only during the postprocessing
of T .

After processing its inputs, the algorithm sets time t to
zero and the trajectory object T to be the empty set. Next,
the function Initialize takes strans and sinit as inputs and
outputs four sets of objects:

(i) O is the set of all mode-specific operators (i.e., cre-
ation, annihilation, presence, and absence operators) for all
fields. Every O ∈ O has the attributes O.mode, O.rules, and
O.eligible. O.mode is a reference to the operator’s mode
M ∈ M. O.rules is a set of references to the rules R ∈ R that
include O in their operator product. O.eligible is a Boolean

023004-14



ALGEBRAIC AND DIAGRAMMATIC METHODS … PRX LIFE 3, 023004 (2025)

monomer homodimer homopolymer

(a) (b) (c)

(d) (e) (f)

FIG. 7. Simulations of nonequilibrium systems. [(a)–(c)] Deterministic and stochastic simulations for (a) a monomer system (N = 20),
(b) a homodimer system (N = 4), and (c) a homopolymer system (N = 3). [(d)–(f)] Stochastic simulations for the same systems as in panels
(a)–(c) using N = 100. Black dashed lines indicate mean abundances from deterministic simulations. Solid lines plot mean abundances from
500 stochastic simulations. Error bands indicate standard deviations in abundance across the stochastic simulations.

flag indicating whether O can be applied to |st 〉 without killing
it.

(ii) M is the set of all modes for all fields. Every M ∈ M
has the attributes M.operators and M.excited . M.operators is
a set of references to the four mode-specific operators (i.e.,
M̂, M̌, M̄, and M̃). M.excited is a Boolean value indicating
whether the mode is excited. If TRUE, then M̂ and M̃ are
ineligible, while M̌ and M̄ are eligible. If FALSE, then M̂ and
M̃ are eligible, whereas M̌ and M̄ are ineligible.

(iii) R is the set of all mode-specific rules, each defined
as a product of mode-specific operators. Every rule R ∈ R
has the attributes R.operators and R.rate. R.operators is a
set of references to the mode-specific operators O ∈ O that
comprise R. R.rate is the rate at which the rule is applied
when eligible.

(iv) C is the “state constructor,” i.e., the set of creation
operators that, when applied to |0〉, yield |st 〉, the system state
at time t . The specific C returned by Initialize corresponds

to |s0〉, which is specified by the string sinit . In particular, if the
user specifies that |s0〉 = |0〉, then C = {}.

O, M, and R are static, whereas C evolves in time. Also
note that

M = O.mode ⇔ O ∈ M.operators, (118)

R ∈ O.rules ⇔ O ∈ R.operators (119)

for all O ∈ O, M ∈ M, and R ∈ R.
After initialization, Algorithm 1 enters a for loop. Each

execution of the loop applies one rule R to the system state
|st 〉, then steps the system forward in time from t to t + �t .
The contents of this for loop are as follows:

(i) Line 5 identifies the set of eligible rules and saves
them in set R∗. This is the most computationally expensive
part of Algorithm 1, since it must loop through every pos-
sible rule and test that rule for eligibility using the function
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ALGORITHM 1. Gillespie simulation.

Data: strans, sinit , nmax

Result: T
/* Initialize time, trajectory, operators,

modes, rules, and state constructor. */

1 t ← 0
2 T ← {}
3 O,M,R, C ← Initialize(strans, sinit )

/* Carry out Gillespie algorithm. */

4 for n ∈ {1, . . . , nmax} do
5 R∗ ← {R : R ∈ R, IsRuleEligible(R)}
6 R, �t ← GillespieStep(R∗)
7 t ← t + �t
8 for O ∈ R.operators do
9 if O.type == “creat ion” then
10 C ← C ∪ {O}
11 FlipModeExcitation(O.mode)
12 if O.type == “annihilat ion” then
13 C ← C \ {O†}
14 FlipModeExcitation(O.mode)
15 T ← T ∪ (n, t,R, C)

/* Create operators, modes, rules, and initial

state constructor. */

16 Function Initialize(strans, sinit):
17 ...
18 return O, M, R, C

/* Compute whether rule is eligible. */

19 Function IsRuleEligible(R):
20 return Prod({O.eligible : O ∈ R.operators})

/* Randomly choose rule and time step using the

Gillespie algorithm. */

21 Function GillespieStep(R∗):
22 �r ← {R.rate : R ∈ R∗}
23 rtot ← Sum(�r)
24 �t ← SampleExponential(rate = rtot)
25 R ← Choose(set = R∗, weights = �r)
26 return R,�t

/* Flip excitation state of mode and

eligibility of corresponding operators. */

27 Function FlipModeExcitation (M):
28 M.excited ← NOT M.excited
29 for O ∈ M.operators do
30 O.eligible ← NOTO.eligible

IsRuleEligible. A rule R is eligible if and only if every
operator in R.operators is eligible.

(ii) Line 6 uses the rates of the rules in R∗ to ran-
domly sample a time step �t and a corresponding rule
R via the Gillespie algorithm, which is implemented by
GillespieStep. Time t is then incremented by �t .

(iii) Lines 8–14 update the state constructor C and the
excitation state of modes affected by the rule R. To do this,
a for loop is carried out over all operators O ∈ R.operators.
If O is a creation operator, then O is added to the state
constructor C. Alternatively, if O is an annihilation operator,
then the corresponding creation operator O† is removed from
the state constructor C. In either case, FlipModeExcitation
is applied to the mode M = O.mode. This flips the excitat ion
attribute of M, as well as the eligible attribute of all operators
in M.operators.

(iv) Finally, the loop stores a tuple reporting the updated
time t , the rule R, and the resulting state constructor C in the
trajectory object T .

We now illustrate how this algorithm works by following
it through initialization and one execution of the for loop.
Assume that the string strans specifies the following kinetic
rules for a homodimer system:

R1 =
∑

i

Âiãi, R3 =
∑
i< j

ĀiĀ j âiâ j Îi j,

R2 =
∑

i

Ǎiãi, R4 =
∑
i< j

ĀiĀ j ǎiǎ j Ǐi j . (120)

We further suppose that the string sinit specifies an initial state
containing four monomers having indices 2, 3, 5, and 7, i.e.,

|s0〉 = Â2Â3Â5Â7|0〉. (121)

Taking strans and sinit as input, the function Initialize re-
turns the following sets of objects:

M = {Ai}i ∪ {ai}i ∪ {Ii j}i< j,

O = {Âi, Ǎi, Āi, Ãi}i ∪ {âi, ǎi, āi, ãi}i

∪{Îi j, Ǐi j, Īi j, Ĩi j}i< j,

R = {Âiãi}i ∪ {Ǎiãi}i

∪{ĀiĀ j âiâ j Îi j}i< j ∪ {ĀiĀ j ǎiǎ j Ǐi j}i< j,

C = {Â2, Â3, Â5, Â7}. (122)

Here the indices i and j are understood to run over 1, . . . , N ,
and the rates rl corresponding to each Rli are kept implicit.
Initialize also sets the values of M.excited for all M ∈ M,
and of O.eligible for all O ∈ O. The value of M.excited
is TRUE for modes A2, A3, A5, and A7, and is FALSE for
all other modes (including all modes of the fields a and I).
Consequently, the set O∗ of eligible operators is

O∗ = {Âi, Ãi}i/∈{2,3,5,7} ∪ {Ǎi, Āi}i∈{2,3,5,7}
∪{âi, ãi}i ∪ {Îi j, Ĩi j}i< j . (123)

Now consider the first execution of the for loop. In line
5 of Algorithm 1, IsRuleEligible is evaluated on every
rule R ∈ R. Based on the eligibility of each operator in
R.operators, the eligible rules are found to be

R∗ = {Âiãi}i/∈{2,3,5,7} ∪ {Ǎiãi}i∈{2,3,5,7}
∪{ĀiĀ j âiâ j Îi j}i< j∈{2,3,5,7}. (124)

Next, GillespieStep chooses a random eligible rule R ∈
R∗ and a time increment �t that is then added to t . Suppose

R = Ā3Ā7â3â7 Î37 (125)

is chosen. Applying R to the initial state vector then yields the
updated state vector,

|s�t 〉 = R|s0〉 = Â2Â3Â5Â7â3â7 Î37|0〉. (126)

To register this change, the state constructor is updated to

C = {Â2, Â3, Â5, Â7, â3, â7, Î37}. (127)

Calls to FlipModeExcitation then set the excited attributes
of modes a3, a7, I37 to TRUE and flip the eligible attribute of

023004-16



ALGEBRAIC AND DIAGRAMMATIC METHODS … PRX LIFE 3, 023004 (2025)

the four operators corresponding to each of these modes. The
resulting set of eligible operators is

O∗ = {Âi, Ãi}i/∈{2,3,5,7} ∪ {Ǎi, Āi}i∈{2,3,5,7}
∪{âi, ãi}i/∈{3,7} ∪ {ǎi, āi}i∈{3,7}
∪{Ǐ37, Ī37} ∪ {Îi j, Ĩi j}i< j,(i, j)�=(3,7). (128)

Finally, the updated time t , the chosen rule R, and the updated
state constructor C are added as a tuple to the trajectory T .

In the next execution of the for loop, the set R∗ of eligible
rules is found by IsRuleEligible to be

R∗ = {Âiãi}i/∈{2,3,5,7} ∪ {Ǎiãi}i∈{2,5}
∪{Ā2Ā5â2â5 Î25, Ā3Ā7ǎ3ǎ7 Ǐ37}. (129)

It is worth noting the changes to R∗ vs Eq. (124). The
monomer annihilation rules Ǎ3ã3 and Ǎ7ã7 have been removed
because the modes a3 and a7 are now excited, making the
operators ã3 and ã7 ineligible. This prevents monomers joined
by interactions from being annihilated, thereby leaving dan-
gling interactions. In addition, all interaction creation rules
except Ā2Ā5â2â5 Î25 have become ineligible. This prevents the
A3 and A7 monomers, which are already interacting with each
other, from participating in multiple interactions. Finally, the
interaction annihilation rule Ā3Ā7ǎ3ǎ7 Ǐ37 becomes eligible,
allowing the newly formed bond to dissociate.

Figure 7 shows this stochastic algorithm applied to
monomer, homodimer, and homopolymer systems. Fig-
ures 7(a)–7(c) validate this algorithm by showing that the
mean abundance of each species found across 500 simulations
closely traces the mean abundance predicted by the determin-
istic algorithm. As noted above, however, these comparisons
can only be carried out at small N due to limitations of the
deterministic algorithm. This stochastic algorithm can be per-
formed at much larger values of N , e.g., Figs. 7(d)–7(f) show
such simulations performed using N = 100.

However, the size of N is still a limitation for Algorithm 1.
The bottleneck is line 5, which requires iterating through
all mode-specific rules in R and testing each one for eli-
gibility. This step takes o(|R|) time, and |R| is polynomial
in N : |R| = 2N for the monomer, |R| = 2N + 2

(N
2

)
for the

homodimer, and |R| = 2N + 2N2 for the homopolymer. That
said, Algorithm 1 was developed only as proof-of-principle
and has not been optimized for efficiency. Indeed, we expect
the bottleneck can be eliminated by using more sophisticated
methods for tracking which operators and rules are eligible
given the state constructor, thereby enabling simulations using
arbitrarily large values of N .

VIII. EXPRESSIVENESS

Our formalism provides a rule-based approach for defining
and analyzing a diverse array of stochastic chemical systems
in which multiparticle complexes can form. Here we illustrate
the expressiveness of our formalism by briefly considering
a variety of such systems, both in and out of equilibrium.
Although we are not aware of existing literature reporting
these specific results, our primary intention here is simply to
demonstrate the richness of models that can be constructed
from a small number of rules.

In equilibrium, systems are defined by a factory �F and a
Hamiltonian H. Putting the Hamiltonian aside for the mo-
ment, it is interesting to consider the qualitatively different
sets of complexes that can arise from simple changes to the
factory. This expressiveness is perhaps most apparent in poly-
mer systems. Figure 8 shows nine such polymeric systems
derived from variations on the homodimer and homopolymer
systems described in previous sections. Two such systems, the
isotropic homopolymer [Fig. 8(b)] and branched homopoly-
mer [Fig. 8(c)] are further analyzed below.

Out of equilibrium, systems are defined by a set of rules
with each rule Rl assigned a corresponding rate rl . Figure 9
shows five such nonequilibrium systems. These rules again
derive from variations on the homodimer and homopolymer
systems. Figure 9 also shows the results of stochastic simula-
tions carried out using Algorithm 1 for specific choices of the
rate parameters.

A. Isotropic homopolymer

We now analyze the isotropic homopolymer shown in
Fig. 8(b). This system is defined by one species of monomeric
subunit (A) with two sites (a and b) capable of participating
in two classes of symmetric interaction (I and J). We aim to
compute the partition function for the system assuming the
Hamiltonian

H = −μ
∑

i

Ā + ε

2

∑
i, j

(Īi j + J̄i j ). (130)

As with the homopolymer of Sec. V, the two factory oper-
ators for this system generate chains and rings. However, the
use of two distinct types of symmetric interaction complicates
these species. First, there are no self-interacting monomers.
Second, the I and J interactions alternate in all multimers. For
x-chains this means that, when x is even, there are two dif-
ferent species related by the exchange of I and J interactions.
When x is odd, there is instead only one-species of x-chain,
as exchanging I and J is equivalent to flipping the order of
the subunit indices. Moreover, x-rings occur only when x is
even. These rings have twofold mirror symmetry and twofold
rotational symmetry.

The log partition function density of the system is therefore
given by

log Z

V
=

∞∑
x=1

log Z(2x−1)-chain +
∞∑

x=1

log Z2x-chain

+
∞∑

x=1

log Z2x-ring. (131)

In terms of the effective chemical potential μ′ =
μ + kBT log N

V and effective interaction energy ε′ =
ε − kBT logV , as well as the control parameter η = eβ(μ′−ε′ )

(which represents the Boltzmann weight of a single particle
with a dangling bond), the single-complex partition functions
in Eq. (131) are

log Z(2x−1)-chain = eβε′
η2x−1,

log Z2x-chain = 2eβε′
η2x, (132)

log Z2x-ring = η2x

2xV
.
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(a) directed homopolymer

(b) isotropic homopolymer

(c) branched directed homopolymer

(d) isotropic gelling polymer

(f) directed heteropolymer

(g) isotropic heteropolymer

(h) capped isotropic homopolymer

(i) capped directed homopolymer

(e) hybridizing directed homopolymer (j) DNA-like hybridizing directed heteropolymer

FIG. 8. Factories defining various polymer systems. Each panel shows the factory operators used to define system in equilibrium. The
homopolymer system analyzed in Sec. V is shown in panel (a) for comparison.

Summing the terms in Eq. (131) we find that, for 0 < η < 1,

log Z

V
= eβε′

η

1 − η
+ eβε′

η2

1 − η2
− log(1 − η2)

2V
. (133)

As with the homopolymer, the partition function diverges
as η → 1 from below. Defining δ = 1 − η, we find that the
concentration of A particles diverges in this limit, scaling as

〈Ā〉
V

≈ 3eβε′

2δ2
. (134)

Again, this divergence is dominated by the x-chains even at
finite V . The factor of 3

2 difference between this result and the

homopolymer result in Eq. (86) reflects the fact that, while
both even and odd chains contribute to Eq. (134), there are
twice as many species of even chains (but the same number of
odd chains) as in the homopolymer system.

B. Branched directed homopolymer

Consider now the branched directed homopolymer system
shown in Fig. 8(c). This system is defined by one species of
monomeric subunit (A) with three sites (a, b, and c) capable
of participating in two classes of directed interaction (I and
J). We assume that the system is in thermal equilibrium and
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(a) heterodimer

(d) directed heteropolymer

(e) branched homopolymer

(c) cooperative binding

(b) occlusive binding

FIG. 9. Stochastic simulations of various nonequilibrium models. Shown are results for (a) a heterodimer system, (b) an occlusive binding
system, (c) a cooperative binding system, (d) a heteropolymer system, and (e) a branched homopolymer system. For each system, r+

l denotes
the rate at which the forward rule, Rl , is applied, while r−

l denotes the rate at which the reverse rule, R†
l , is applied. Solid lines indicate mean

abundances from 500 stochastic simulations using N = 100. Error bands indicate abundance standard deviations across the simulations.
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is governed by the Hamiltonian

H = −μ
∑

i

Ā + ε
∑
i, j

(Īi j + J̄i j ). (135)

The two factory operators for this system generate two broad
classes of complex: “trees,” which branch out from a single A
in which site c is unoccupied, and “groves,” which consist of
multiple trees branching out from a central closed ring. The
log partition function density of this system is therefore given
by

log Z

V
= Ztree +

∞∑
x=1

Zx-grove, (136)

where Ztree is the partition function for all trees and Zx-grove is
the partition function for all groves with trees extending off
a central x-ring. To proceed, we let ξ represent the partition
function for a tree with a dangling interaction extending off
the root. In terms of this quantity,

Ztree = eβε′
ξ, Zx-grove = 2xηx(1 + ξ )x

V x
, (137)

where η = eβ(μ′−ε′ ) is again the Boltzmann weight of a sin-
gle particle with a dangling bond. In Ztree, the factor of eβε′

removes the effect of the dangling bond. In Zx-grove, the factor
of ηx accounts for the particles and bonds in each x-ring, the
factor of 2x accounts for the fact that each bond in the x-ring
can be of type I or J , and the (1 + ξ )x factor accounts for the
fact that each A within the ring can either be bare or have
a tree attached. As with the homopolymer, the factor of 1

x

compensates for the rotational symmetry of the ring while 1
V

reflects the entropic cost of self-circularization.
We solve for ξ by noting that the self-similar structure of

each tree complex, which yields the recursion relation

ξ = η(1 + 2ξ + ξ 2). (138)

Solving this quadratic equation and using the limiting behav-
ior ξ ≈ η as η → 0, we derive

ξ = 1 − 2η − √
1 − 4η

2η
. (139)

Expressing Ztree and Zx-grove in terms of ξ and summing Zx-grove

over all x, we find that for 0 < η < 1
4 ,

log Z

V
= eβε′

(
1 − 2η − √

1 − 4η

2η

)
− log(1 − 4η)

2V
. (140)

As with the homopolymer system, the contribution from the
circularized (i.e., x-grove) species vanishes in the V → ∞
limit. We also find that the partition function is not defined
for η > 1

4 . In particular, the mean concentration of A particles
is found to diverge as δ = 1

4 − η → 0 according to

〈Ā〉
V

≈ eβε′

2
√

δ
+ 1

8V δ
, (141)

with the first and second terms respectively corresponding to
trees and groves. This result is qualitatively different from
the corresponding results for the directed homopolymer in
Sec. V and for the isotropic homopolymer analyzed above.
In particular, the circularized species (the groves) dominate
over the linear species (the trees) in the δ → 0 limit when V
is kept finite. The asymptotic behavior of the system therefore

depends on which limit one takes first, η → 1
4 or V → ∞.

Moreover, the divergence is milder than in the nonbranched
systems, scaling as either δ−1/2 or δ−1 (depending on how one
handles V ) rather than δ−2.

IX. DISCUSSION

We have introduced an algebraic formalism for the rule-
based modeling of multiparticle complexes in stochastic
chemical systems. This algebra is based on a Fock space that
allows not only the creation and annihilation of particles but
also the joining of particles into complexes based on specified
rules. The Fock space comprises three types of hard-core
boson fields; these represent particles, particle-particle inter-
actions, and occupied binding sites. We have also described a
formal diagrammatic approach that facilitates the use of this
algebra.

For equilibrium systems, we showed that the set of all
possible complexes can be rigorously specified by a “factory”
and a Hamiltonian. The factory is an ordered set of operators
that define how to construct complexes; the Hamiltonian is
an operator that specifies rules for computing the Gibbs free
energy of a complex based on its components. We showed
for multiple systems how these rule-based definitions can be
used to compute generating functions and partition functions
and to analyze scaling behavior near critical polymerization
concentrations.

For nonequilibrium systems, we showed how to rigorously
specify system dynamics in a rule-based manner. Specifically,
we showed how a set of reaction rule operators and corre-
sponding rates can be used to define the transition matrix of a
“microstate” master equation. From this transition matrix one
can then analytically compute the corresponding “macrostate”
master equation, which governs the time evolution of observ-
ables. We also developed a Gillespie algorithm based on our
formalism for simulating stochastic chemical systems based
on these rule operators and corresponding rates.

The essential feature of our formalism, one that distin-
guishes it from previous approaches for modeling many-body
systems of classical particles, is that it explicitly represents
internal particle states. These internal states endow each par-
ticle with its own identity, thus allowing preexisting particles
to join together into multiparticle complexes. Notably, our ap-
proach to modeling these internal states is consistent with the
behavior of quantum systems in the decoherence limit. In this
limit, the reduced density matrix for each particle becomes
diagonal with elements along the diagonal quantifying the
probability of each energy eigenstate [25,26]. The orthonor-
mal microstates in our formalism correspond to these diagonal
positions in the reduced density matrix (i.e., the energy eigen-
states), and the probabilities that multiply these microstates
correspond to the values of the reduced density matrix at these
positions. Classical particles, such as proteins, have many
distinct energy eigenstates corresponding to different internal
excitation modes, and the internal states of particles in our
formalism stand in for these modes. Our formalism assumes
a specific number N of such modes, but this choice does not
affect results when N is sufficiently large, and all physically
meaningful calculations are performed in the N → ∞ limit.
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We envision a variety of potential analytic applications
for our formalism. As in the work of Doi [2,3], it may be
possible to use the algebra we have introduced to carry out
diagrammatic perturbation theory calculations. As in the work
of Peliti [6] and Goldenfeld [5], it may also be possible to
identify a path integral formulation of this algebra. While our
analysis focused on zero-dimensional (i.e., well-mixed) sys-
tems, we expect that it should be straightforward to apply our
formalism to spatially extended systems in which diffusion
plays an important role (as in Refs. [2,3,5,6]).

We also expect our results will enable improvements to
existing rule-based modeling approaches. Our algebraic and
diagrammatic representations are substantially more compact
than those used by existing rule-based frameworks. In par-
ticular, the specification of reaction rules in BioNetGen and
Kappa requires that the user identify relevant sub-complexes
both before and after each transition, as well as identify which
specific particles before correspond to which specific particles
after. By contrast, our use of “hat” and “check” operators
eliminates this need, allowing users to specify rules using
a single operator product or diagram. Moreover, since the
underlying objects in our formalism (hard-core bosons) are
simpler than those in existing algorithms (e.g., port graphs),
the use of our formalism may allow existing Gillespie simu-
lation approaches to be streamlined. This would first require
reworking our proof-of-principle algorithm (Algorithm 1) so
that its computational cost does not increase with N . We
expect this should be possible using graph matching methods
and more advanced bookkeeping when computing the set of
eligible rules in line 5 of Algorithm 1.

Our formalism may further facilitate the development of
new hybrid analytical/computational approaches for rule-
based modeling. In particular, we envision the possibility of
supplementing rule-based Gillespie simulations with com-
puter algebra techniques, e.g., for identifying and coarse-
graining fast reactions in nonequilibrium systems. There are
other possibilities as well. Doi’s formalism has recently been
used as the basis for analyzing reaction-diffusion systems
using tensor networks and the time-dependent variation prin-
ciple [27]. Our algebra may enable such approaches to be
applied to chemical systems involving multiparticle com-
plexes. Alternatively, our formalism may facilitate the use of
finite state projection techniques [28].

In this paper we have focused on polymer systems, which
best illustrate how large complexes can arise from simple in-
teraction rules. Our initial motivation in pursuing this project,
however, was in biological systems. We specifically sought
to develop methods for modeling the biophysical mecha-
nisms of gene regulation. Gene regulation is controlled by
large protein-nucleic acid complexes [29,30], with individ-
ual DNA and RNA regulatory sequences able to nucleate
the formation of large numbers of different macromolecular
assemblies. A major goal in this field is to understand these
complexes as well as their effects on gene expression using
biophysical models, and substantial progress has been made
using both equilibrium models [31–34] and nonequilibrium
models [35–37]. In particular, biophysical modeling provides
a principled approach to deciphering how gene regulatory
programs are encoded in DNA and RNA sequences [38–42].
Such biophysical modeling efforts have been hindered by

combinatorial complexity, however, and rule-based software
has yet to be developed for modeling the sequence-dependent
equilibrium and nonequilibrium processes that these models
must describe. We anticipate that our work will help address
this need by providing a formal rule-based language in which
complex sequence-dependent biophysical models of gene reg-
ulation can be efficiently expressed and analyzed. Ultimately,
we expect that this work will facilitate the construction of
large biophysical models able to describe genome-wide reg-
ulatory codes.
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APPENDIX A: ALGEBRA OF MODE
AND FIELD OPERATORS

Since each mode represents a hard-core boson, mode-
specific creation and annihilation operators are nilpotent, i.e.,

Â2
i = Ǎ2

i = 0. (A1)

When multiplied by presence and absence operators for the
same mode, the creation and annihilation operators are readily
seen to satisfy

ĀiÂi = ÂiÃi = Âi, ÃiÂi = ÂiĀi = 0, (A2)

ÃiǍi = ǍiĀi = Ǎi, ĀiǍi = ǍiÃi = 0. (A3)

Presence and absence operators are both idempotent, i.e.,

Ā2
i = Āi, Ã2

i = Ãi, (A4)

and mixed products of presence and absence operators for the
same mode vanish:

ĀiÃi = ÃiĀi = 0. (A5)

From these properties and the fact that operators for distinct
modes commute, we get the following commutation relations
for mode operators:

[Ǎi, Â j] = δi j (Ãi − Āi ) = δi j (1 − 2Āi ), (A6)

[Āi, Â j] = [Âi, Ã j] = δi j Âi, (A7)

[Ãi, Ǎ j] = [Ǎi, Ā j] = δi j Ǎi. (A8)

Summing over indices gives the corresponding commutation
relations for field operators:

[Ǎ, Â] = Ã − Ā = N − 2Ā, (A9)

[Ā, Â] = [Â, Ã] = Â, (A10)

[Ã, Ǎ] = [Ǎ, Ā] = Ǎ. (A11)

These commutation relations, together with Ā|0〉 = 0, allow
us to compute the impact of each field operator on the
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macrostate |n〉,

Â|n〉 = Â
Ân

n!
|0〉

= (n + 1)
Ân+1

(n + 1)!
|0〉

= (n + 1)|n + 1〉, (A12)

Ā|n〉 = Ā
Ân

n!
|0〉

= 1

n!
[Ā, Ân]|0〉

= 1

n!

n−1∑
k=0

Ân−k−1[Ā, Â]Âk|0〉

= n
Ân

n!
|0〉 = n|n〉, (A13)

Ǎ|n〉 = Ǎ
Ân

n!
|0〉

= [Ǎ,
Ân

n!
]|0〉

= 1

n!

n−1∑
k=0

Ân−k−1[Ǎ, Â]Âk|0〉

= 1

n!

n−1∑
k=0

Ân−k−1(N − 2Ā)Âk|0〉

= 1

n!

n−1∑
k=0

(N − 2k)Ân−1|0〉

= 1

n!

(
nN − 2

n(n − 1)

2

)
Ân−1|0〉

= (N − n + 1)
Ân−1

(n − 1)!
|0〉

= (N − n + 1)|n − 1〉, (A14)

Ã|n〉 = Ã
Ân

n!
|0〉

= (N − Ā)
Ân

n!
|0〉

= (N − n)
Ân

n!
|0〉

= (N − n)|n〉. (A15)

APPENDIX B: NONCOMMUTATION OF MONOMER
AND DIMER OPERATORS

Here we derive the expression for [M̂, Ď] in Eq. (45). We
begin by evaluating the commutator on the individual com-

posite mode operators:

[M̂k, Ďi j] = Ǐi j[Âkãk, ǍiǍ j ǎiǎ j]

= δkiǏi j Ǎ j ǎ j[Âkãk, Ǎiǎi]

+ δk j Ǐi j Ǎiǎi[Âkãk, Ǎ j ǎ j]. (B1)

Considering the commutator in the k = i term and dropping
the subscripts for brevity, we find that

[Âã, Ǎǎ] = Â[ã, Ǎ]ǎ + [Â, Ǎ]ãǎ + ǍÂ[ã, ǎ] + Ǎ[Â, ã]ǎ

= Āǎ = ÂãǍǎ. (B2)

The same holds for the k = j term. Substituting these back
into Eq. (B1) and summing over k gives∑

k

[M̂k, Ďi j] =
∑

k

δkiÂiãi Ǐi j ǍiǎiǍ j ǎ j

+
∑

k

δk j Â j ã j Ǐi j ǍiǎiǍ j ǎ j

= (M̂i + M̂ j )Ďi j . (B3)

From this we recover Eq. (45).

APPENDIX C: FACTORY/GALLERY EQUIVALENCE
FOR THE HOMOPOLYMER

We now prove the equivalence of the factory and gallery
representations for the homopolymer system in Sec. V. As
with the homodimer, we do this by evaluating individual terms
in the Taylor expansion of eF2 eF1 |0〉, with factory operators
defined as in Fig. 5(a). By inspection we see that all full
contractions of F p

2 F
q
1 must consist of a product of x-chain (Ĉx)

and x-ring (R̂x) operators. Wick’s theorem therefore gives

F p
2 Fq

1 |0〉 =
∑

{cx,rx}|p,q



(p,q)
{cx,rx}

∞∏
x=1

Ĉcx
x R̂rx

x |0〉, (C1)

where cx denotes the number of x-chains, rx denotes the num-
ber of x-rings, {cx, rx}|p, q denotes all sets of these numbers
that are consistent with p bonds and q particles, i.e., which
satisfy

q =
∞∑

x=1

(xcx + xrx ), p =
∞∑

x=1

([x − 1]cx + xrx ), (C2)

and 

(p,q)
{cx,rx} is a combinatorial coefficient that quantifies the

number of distinct contractions that yield {cx, rx}|p, q.
We now compute 


(p,q)
{cx,rx}. The number of ways to partition

q monomers among cx distinct x-chains and rx distinct x-rings
is given by

ωq = q!∏∞
x=1(x!)cx+rx

. (C3)

Similarly, the number of ways to partition p bonds among the
x-chains and x-rings is

θp = q!∏∞
x=1([x − 1]!)cx (x!)rx

. (C4)

Since one can rearrange the x-chains among themselves and
the x-rings among themselves without changing the result, the
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number of unique partitions is the product of ωq and θq divided
by an exchange factor of πp,q = ∏∞

x=1 cx!rx!. Moreover, there
are σx = (x − 1)!x! distinct ways of constructing each x-chain
from a given set of x particles and x − 1 bonds, and ρx = x!x!
ways to construct each x-ring from a set of x particles and
x bonds. Note that the circular symmetry, which contributes
a factor of 1/x to this second quantity, is already accounted
for in the definition of the x-ring and should not be double-
counted here. We therefore find that



(p,q)
{cx,rx} = ωqθp

πp,q

∞∏
x=1

σ cx
x ρrx

x = p!q!∏∞
x=1 cx!rx!

. (C5)

Consequently,

eF2 eF2 |0〉 =
∑
p,q

1

p!q!

∑
{cx,rx}|p,q

p!q!∏
x cx!rx!

∏
x

Ĉcx
x R̂rx

x |0〉

=
∑

c1,c2,...

∑
r1,r2,...

∏
x

Ĉcx
x

cx!

R̂rx
x

rx!
|0〉

= e
∑

x (Ĉx+R̂x )|0〉. (C6)

This establishes the factory/gallery equivalence for the ho-
mopolymer.

APPENDIX D: DERIVATION FOR THE SPECIES-SPECIFIC
DEPLETION OPERATOR

Here we derive the species-specific depletion operator in
Eq. (99). First we express the species-specific reaction opera-
tor as

Q =
K∏

k=1

PkQk, where Pk = Ĝpk

k

pk!
, Qk = Ǧqk

k

qk!
. (D1)

The assumption of nonoverlapping �p and �q implies that Pk = 1
and/or Qk = 1 for all k. Because of this,

Q̀ =
K∏

k=1

P̀kQ̀k . (D2)

Note that this will generally not be true if any Pk and Qk

are both nonunity, since the depletion version of a product of

operators for a given field is generally not the product of the
depletion version of each operator.

Next we express Pk and Qk in terms of mode-specific
operators. Using the fact that the mode-specific creation and
annihilation operators are nilpotent (and dropping k to ease
notation),

P =
∑

I:|I|=p

∏
i∈I

Ĝi, Q =
∑

I:|I|=q

∏
i∈I

Ǧi. (D3)

Transforming Ĝi → G̃i and Ǧi → Ḡi, we obtain the corre-
sponding depletion operators

P̀ =
∑

I:|I|=p

∏
i∈I

G̃i, Q̀ =
∑

I:|I|=q

∏
i∈I

Ḡi. (D4)

Applying each of these operators to a macrostate |n〉, one finds
that

P̀|n〉 =
(

N − n

p

)
|n〉 =

(
G̃

p

)
|n〉, (D5)

Q̀|n〉 =
(

n

q

)
|n〉 =

(
Ḡ

q

)
|n〉, (D6)

and, therefore,

P̀ =
(

G̃

p

)
, Q̀ =

(
Ḡ

q

)
. (D7)

Reintroducing the k subscripts, we obtain Eq. (99):

Q̀ =
K∏

k=1

P̀kQ̀k =
K∏

k=1

(
G̃k

pk

)(
Ḡk

qk

)
. (D8)

APPENDIX E: CODE AVAILABILITY

Python code implementing Algorithm 1 as well as Jupyter
Notebooks used to perform the simulations in Figs. 7 and 9
are available [43].
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