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The tethered-particle method is a single-molecule technique that has been used to explore the
dynamics of a variety of macromolecules of biological interest. We give a theoretical analysis of
the particle motions in such experiments. Our analysis reveals that the proximity of the tethered
bead to a nearby surface (the microscope slide) gives rise to a volume-exclusion effect, resulting in
an entropic force on the molecule. This force stretches the molecule, changing its statistical prop-
erties. In particular, the proximity of bead and surface brings about intriguing scaling relations
between key observables (statistical moments of the bead) and parameters such as the bead size
and contour length of the molecule. We present both approximate analytic solutions and numerical
results for these effects in both flexible and semiflexible tethers. Finally, our results give a pre-
cise, experimentally-testable prediction for the probability distribution of the distance between the
polymer attachment point and the center of the mobile bead.

PACS numbers: 82.37.Rs 82.35.Pq 36.20.Ey 87.14.Gg

Single-molecule biophysics has rapidly become an exper-
imental centerpiece in the dissection of cellular machin-
ery. This part of the biophysics repertoire often relies, in
turn, on the use of micron-scale beads both as a reporter
of underlying molecular motions and as the “handle” for
grabbing these single-molecule systems. Thus, a key part
of the theoretical infrastructure of this field is a clear un-
derstanding of the role that these beads play in altering
the statistical properties of the macromolecules which are
the real target of interest in such experiments.

Beyond interest in the in-vitro consequences of
tethered-particle motions, many processes within the cell
themselves involve tethering. A notable example has
to do with vesicular trafficking, in which molecular mo-
tors [1] carry tethered cargoes with similar Earth-like
proportions relative to the molecular Atlases doing the
heavy lifting. Thus, the statistical-mechanical analysis
performed here may prove useful for understanding in-

vivo processes, in addition to the in-vitro consequences
that form the main motivation for the work.

Figure 1 sketches the tethered particle method (TPM).
The main idea is that a macromolecule (for example DNA
or some protein that translocates DNA or RNA) is an-
chored at one end to a surface, while the other end of the
molecular complex is attached to a bead. The observed
motion of the bead serves as a reporter of the underlying
macromolecular motion. This technique has been used in
a variety of settings e.g. the examination of nanometer-
scale motions of motors like kinesin [2] or RNA poly-
merase [3, 4], protein synthesis by ribosomes [5], exonu-
clease translocation on DNA [6, 7]; protein mediated de-
formation [8] and loop formation [9] in DNA, DNA hy-
bridization [10] and DNA motion [11, 12]. The main goal
of this paper is to show how the proximity of the reporter
bead to the surface affects the interpretation of the re-
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FIG. 1: Schematic showing the tethered particle method. (a)
The tether is attached to a specific point on the bead; z is the
height of this point. r denotes the position of the center of
the bead. (b) The vector R from the attachment point to the
bead center can rotate and is described by two angles. These
rotations are more constrained for small values of z. Note
that in the figure the width of DNA is not to scale, it is much
smaller in real experiments.

ported data and can even alter the conformation of the
macromolecule of interest. A theoretical understanding
of these effects will improve the ability to use the TPM
for quantitative [13] analysis of biomolecular properties
at the single molecule level.

In the remainder of the paper, we first describe a simple
statistical-mechanical theory of bead-induced volume-
exclusion forces. We show how these forces depend both
upon bead size and on tether length. We also derive
scaling relations between the experimental measurables
(bead position) and parameters such as bead size and
tether length. Because the simple analytic model ne-
glects some features of the full problem, we then turn to
simulation results which capture all of the key effects and
compare to the analytic results.

The aim of the calculations outlined below is to illus-
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trate how the presence of a bead alters the statistical
properties of the molecule to which it is tethered and
how the bead reports information to the experimenter.
We confine our discussion to the equilibrium character-
istics of this phenomenon, a key measurable in TPM ex-
periments even for the study of dynamical processes [3–
7, 9, 11]. We first note that in many experiments, the
bead is flexibly linked to the end of its molecular tether,
and hence is nearly free to rotate around the point of link-
age [4, 12]. However, steric constraints limit this freedom.
In particular, the closer the bead is to the surface, the
fewer angular conformations are available to it (Fig. 1).

The statistical properties of the bead in TPM are de-
termined by the coarse-grained free energy function (or
“Hamiltonian”)

H = Hm({X}) + Hb,m(R, {X}) + Hb(R, {X}). (1)

Here {X} is an abstract set of coordinates describing
the configuration of the molecule and R is the vector
pointing from the end-point of the molecule to the cen-
ter of the bead (Fig. 1). Eq. 1 contains three terms: The
first describes the self-interactions of the molecule and in-
teractions with external forces (surface forces or applied
fields) other than those with the bead itself. Those in-
teractions are captured by the second term, Hb,m. The
last term, Hb, describes the external forces on the bead,
for example those arising from applied fields or the sur-
face. This term also depends on the configuration of the
molecule, as the position of the bead depends on both its
orientation R and the molecule’s end-point.

We obtain the statistical average of an observable A of
the system as a weighted average over all the configura-
tions of the system

〈A〉 =
1

Z

∫

d{X}d2
R̂ A({X},R) e−βH .

Here
∫

d2
R̂ is an integral over bead orientations and Z

is the partition function.
Before discussing the consequences of this model, we

first discuss the significance of the terms in Eq. 1 and
make some initial simplifications. The external forces
acting on the bead that we have in mind result from
its interaction with the surface. This interaction con-
tains the repulsive double layer potential and an attrac-
tive van der Waals interaction [14], along with a hard-
wall repulsion (Eq. 2 below). Under physiological condi-
tions, the double layer potential has an interaction range
with a typical length scale of a nanometer, much shorter
than the molecule lengths of interest to us; the van der
Waals attraction, too, is weak on long scales [15]. Ac-
cordingly, we will model all bead–wall interactions using
a simple hard-wall potential. We will also temporarily ig-
nore bead–molecule interactions; later we will show that
they have little influence for tethers like the ones of in-
terest here. Given these assumptions, the last two terms

in Eq. 1 simplify to

Hb,m = 0, Hb =

{

0 if R(1 − cos(α)) < z
∞ if R(1 − cos(α)) ≥ z,

(2)

where z is the height of the end-point of the molecule
and α is the polar angle of R (Fig. 1).

We now examine the statistical averages of a molecular
property Am({X}) such as end-to-end distance. To ob-
tain the average value of Am({X}), not only do we need
to sum over all of the configurations of the molecule, but
also, we must sum over all of the configurations of the
bead. Thanks to the simplifications in Eq. 2, the inte-
gration over R can be done explicitly and results in an
effective free energy function for the molecule. That is,
the resulting statistical average of Am can be written as

〈Am〉 =
1

Z

∫

d{X}Am({X})e−βHeff , where (3)

Heff = Hm({X}) − kBT log(Ω(z)). (4)

The new second term in Heff accounts for the configura-
tions available to the bead. Ω(z) is the solid angle allowed
for R, given a molecular configuration {X}:

Ω(z) =

{

2πz/R, z < 2R
4π, z ≥ 2R.

(5)

The partition function is also consistent with the defini-
tion of the effective Hamiltonian, Z =

∫

d{X}e−βHeff .
As a result of the constraints on the excursions of the

bead there is an effective repulsive force, which prevents
the end-point of the molecule from making contact with
the surface and stretches the molecule. That is, the prob-
lem is equivalent to one without the bead, but in which
the end-point of the molecule is subjected to a force

Feff = z−1Θ(2R − z)kBT k̂, (6)

where Θ is the Heaviside step function. This entropic
force alters the statistical properties of the tethered
molecule (Eq. 3), and can affect its interactions with itself
or with other molecules.

The key measurable associated with current TPM ex-
periments is the position of the bead itself. That is, the
output of the experiment is a record of the positions of
the bead on successive video frames [5, 11, 12, 16]. Hav-
ing revealed that the confinement of the bead subjects
the molecule to an entropic force, we now determine how
this confinement influences bead motion. Note that one
of our key conclusions is that there is a subtle dependence
of the measured bead excursions on the size of the bead
itself. To see this, let r (Fig. 1) denote the vector from
the wall attachment point to the bead center. Given our
simplifications (Eq. 2), the non-zero statistical moments
of r, up to second order, are

〈rz〉 = 〈z〉 − 1

2
〈z〉Θ + R〈1〉Θ (7a)

〈rz
2〉 = 〈z2〉 − 2

3
〈z2〉Θ + R〈z〉Θ + R2( 1

3
+ 2

3
〈1〉Θ) (7b)

〈r⊥2〉 = 〈x⊥
2〉 − 1

3
〈z2〉Θ + R〈z〉Θ + 2

3
R2(1 − 〈1〉Θ) (7c)
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where r⊥ is the in-plane displacement of the bead center
and (x⊥, z) is the displacement of the end-point of the
molecule. Here all quantities averaged on the right-hand
side are independent of the coordinates of the bead and,
hence, are defined as in Eq. 3. The averages with sub-
script Θ correspond to summing over states only when
the end-point satisfies z < 2R, i.e.

〈Am〉Θ =
1

Z

∫

d{X}Am({X})e−βHeff Θ(2R − z). (8)

These Θ-weighted terms arise because of the reduction
of the configurations available to the bead due to the
proximity of the surface (Eq. 5). Below it is shown how
they give rise to experimentally testable scaling relations
relating the excursion of the bead to its radius and the
contour length of the molecule.

We further pursue an analytic description of TPM by
modeling the molecule as a Gaussian chain. The Gaus-
sian chain is a useful approximation for molecules with
short persistence lengths (such as RNA) and we demon-
strate, using numerical simulations, that it also serves as
a good guide for semi-flexible molecules (e.g. DNA) in
the regime of interest here.

Our problem involves a molecule grafted onto a surface,
i.e. confined to a half space. DiMarzio showed that the
corresponding Gaussian chain is described by [17]

Hm = (3kBT/4Lξ)(x⊥
2 + z2) − kBT log(z/`). (9)

L is the contour length of the molecule, ξ is the persis-
tence length and ` is an arbitrary constant. The mate-
rial properties of the molecule enter Hm only through the
combination Lξ.

Because there are only two relevant length scales in the
problem (R and

√
Lξ), we may write each moment of the

molecule’s excursions in terms of a function of a single
variable. Using Eq. 9 to evaluate the averages in Eqs. 7:

〈rz〉
√

Lξ/3
=

2(1 − e−N2

R)√
πerf(NR)

+ NR

2 − erf(NR)

erf(NR)
, (10a)

〈rz
2〉

Lξ/3
= 2 +

4NR√
πerf(NR)

+ N2

R, (10b)

〈r⊥2〉
Lξ/3

= 2 +
4NR√

πerf(NR)
. (10c)

The excursions depend on the dimensionless number
NR ≡ R/

√

Lξ/3, which we call the “excursion num-
ber.” NR controls the bead’s scaling behavior, defin-
ing regimes of molecule-dominated motion (NR < 1) and
bead-dominated motion (NR > 1, confined rotations).

Figure 2 shows the relationship between excursions
and NR. For small excursion number, the excursions
scale as 〈rz

2〉 ≈ 〈r⊥2〉 ≈ Lξ and 〈rz〉 ≈
√

Lξ; the
dependence on contour length obeys the expected rela-
tions for a Gaussian chain with no bead attached. The
scaling changes for large excursion number. Now, the
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FIG. 2: Scaling behavior of bead excursion, normalized by coil
size parameter, versus the excursion number NR. Curves: an-
alytical theory in the Gaussian-chain approximation (Eq. 10).
Circles: Monte Carlo calculation for a semiflexible chain with
ξ = 50nm, L = 1245 bp, and various values of R.

FIG. 3: Solid curves: Theoretical prediction of the probabil-
ity distributions for the projected distance r⊥, taking bead
radius R = 250 nm, persistence length ξ = 50nm, and con-
tour length L = 1000 bp (left curve) and 2000 (right curve).
Dashed curve: Two dimensional Gaussian distribution with
the same mean-square excursion as the left curve.

mean excursions display power-law dependences on NR:
〈r⊥2〉 ≈ R

√
Lξ, 〈rz

2〉 ≈ R2 and 〈rz〉 ≈ R; the observed
motion is dominated by the bead’s rotation. The power
law difference on bead radius R follows directly from
the general relations (Eq. 7), independent of the model
representing the molecule. Now, the in-plane excursions
show a square-root dependence on the contour length, in
contrast with the linear dependence for small excursion
number. This functional form arises because the average
height of the molecule (which depends on

√
Lξ) dictates

the degree to which the bead can rotate. These scal-
ing relations should be testable in experimental studies,
where excursion numbers have ranged over wide set of
values, 0.1 ≤ NR ≤ 90 [3–5, 8–11]. (Most are in the
regime NR > 1.)

Confinement effects can alter molecular proper-
ties, causing out-of-plane stretching of the molecule.
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Eqs. 3 and 9 yield:

〈z2〉
Lξ/3

= 6 − 4√
π

NRe−N2

R

erf(NR)
. (11)

In contrast, a Gaussian chain in free solution has
squared out-of-plane excursions of the molecule equal
to 〈z2〉/(Lξ/3) = 2. For many experiments [4–6, 8–
11] the excursion number is such that the second term
in Eq. 11 is negligible and the effects of bead exclusion
(Eq. 6) and molecule exclusion (second term in Eq. 9) re-
sult in a tripling of the out-of-plane squared displace-
ment of the molecule. (Both exclusion effects contribute
equally.) The bead-induced stretching can be viewed as
a consequence of the effective force (Eq. 6). In the Gaus-
sian chain model, this force is

〈Feff〉 =
kBT

√
π
√

Lξ/3

(

1 − e−N2

R

erf(NR)

)

. (12)

This force can significantly affect rates of loop formation
in DNA. Finzi and Gelles [9] used TPM to observe loop
formation in DNA generated by the lac-repressor protein.
Under their conditions, we predict an average effective
force 〈Feff〉 ≈ 25 fN. Using the simple approximation that
the rate of loop formation decreases by exp(−β〈Feff〉l) (l
is the operator-operator distance) we estimate that the
bead-confinement effect reduces the rate of loop forma-
tion by a factor of 2.

To check the validity of our simplified model, we per-
formed a simple Monte Carlo calculation. Our results
agree with an independent calculation by D. Brogioli
[12]. Our code generated sets of discrete chains with ran-
dom bends chosen to obtain a desired persistence length
ξ. Each chain began at a random angle relative to the
wall, and ended with the bead at a random orientation.
Configurations where the bead, wall, or chain overlapped
were discarded, (this includes bead-molecule interactions
(Hb,m 6= 0)) and the required averages were computed.
Figure 2 shows that even for a stiff polymer like DNA,
the scaling relations predicted by the approximate ana-
lytical theory are accurate in the regime of interest to us.
Actual experimental data allow the calculation of more
subtle metrics than just averages, however: Fig. 3 shows
predictions for the full probability distribution of excur-
sions. The distribution is quite different from a Gaussian,
a fact already observed experimentally [11].

The above results are interesting as fundamental poly-
mer physics. For example, single-particle tracking al-
lows the observation of the full probability distribution,
and hence the opportunity to directly observe an end-
end distribution for a semiflexible polymer and compare
to our predictions. But our main goal was to develop
a theoretical framework which can bolster the quan-
titative capabilities of the TPM—a relatively noninva-
sive, single molecule probe. We revealed that the prox-
imity of the bead to the surface provokes an effective

force on the molecule, altering its statistical properties
and influencing biomolecular interactions. In addition,
we determined how the excursions of the bead are in-
fluenced by experimental parameters such as bead size
and contour lengths; relations which are currently being
tested [16]. Finally, understanding how the competition
between bead and tether effects is controlled by the ex-
cursion number NR may help in the choice of optimal
bead size and tether length for a given experiment.
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