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Abstract During cell division, the spindle generates force to move chromosomes. In mammals, 
microtubule bundles called kinetochore-fibers (k-fibers) attach to and segregate chromosomes. 
To do so, k-fibers must be robustly anchored to the dynamic spindle. We previously developed 
microneedle manipulation to mechanically challenge k-fiber anchorage, and observed spatially 
distinct response features revealing the presence of heterogeneous anchorage (Suresh et al., 
2020). How anchorage is precisely spatially regulated, and what forces are necessary and sufficient 
to recapitulate the k-fiber’s response to force remain unclear. Here, we develop a coarse-grained 
k-fiber model and combine with manipulation experiments to infer underlying anchorage using 
shape analysis. By systematically testing different anchorage schemes, we find that forces solely at 
k-fiber ends are sufficient to recapitulate unmanipulated k-fiber shapes, but not manipulated ones 
for which lateral anchorage over a 3 μm length scale near chromosomes is also essential. Such 
anchorage robustly preserves k-fiber orientation near chromosomes while allowing pivoting around 
poles. Anchorage over a shorter length scale cannot robustly restrict pivoting near chromosomes, 
while anchorage throughout the spindle obstructs pivoting at poles. Together, this work reveals how 
spatially regulated anchorage gives rise to spatially distinct mechanics in the mammalian spindle, 
which we propose are key for function.

Editor's evaluation
In this elegant and technically sophisticated study, the authors study the mechanical proper-
ties of the mitotic spindle by combining various experimental biophysical approaches, including 
microneedle manipulation and quantitative imaging, with theoretical modeling. By systematically 
exploring shapes of unmanipulated and manipulated kinetochore fibers, they provide compelling 
evidence for a lateral anchor near the chromosomes. These important findings further our under-
standing of the balance of forces in the entire mitotic spindle. The work should appeal broadly to 
cell biologists and biophysicists who are interested in the cytoskeleton and cell division.

Research Advance

*For correspondence: 
phillips@pboc.caltech.edu (RP); 
sophie.dumont@ucsf.edu (SD)
†These authors contributed 
equally to this work

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 20

Preprinted: 08 April 2022
Received: 26 April 2022
Accepted: 12 October 2022
Published: 08 November 2022

Reviewing Editor: Thomas 
Surrey, Centre for Genomic 
Regulation (CRG), Spain

‍ ‍ Copyright Suresh, Galstyan 
et al. This article is distributed 
under the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.79558
mailto:phillips@pboc.caltech.edu
mailto:sophie.dumont@ucsf.edu
https://doi.org/10.1101/2022.04.08.487649
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research advance﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Suresh, Galstyan et al. eLife 2022;11:e79558. DOI: https://doi.org/10.7554/eLife.79558 � 2 of 35

Introduction
Cell division is essential to all life. The accurate segregation of chromosomes during cell division is 
achieved by the spindle, a macromolecular machine that distributes chromosomes equally to each 
new daughter cell. To perform this mechanical task, the spindle must be dynamic yet structurally 
robust: it must remodel itself and be flexible, yet robustly generate and respond to force to move 
chromosomes and maintain its mechanical integrity. How this is achieved remains an open question. 
Indeed, while much is known about the architecture (McDonald et al., 1992; Mastronarde et al., 
1993) and dynamics (Mitchison, 1989) of the mammalian spindle, and the molecules essential to its 
function (Hutchins et al., 2010; Neumann et al., 2010), our understanding of how they collectively 
give rise to robust mechanics and function lags behind.

In the mammalian spindle, kinetochore-fibers (k-fibers) are bundles of microtubules (McDonald 
et  al., 1992; O’Toole et  al., 2020, Kiewisz et  al., 2021) that connect chromosomes to spindles 
poles, ultimately moving chromosomes to poles and future daughter cells. To do so, k-fibers must 
maintain their connection to the dynamic spindle. The k-fiber’s connection (anchorage) to the spindle 
is mediated by a dense mesh-like network of non-kinetochore microtubules (non-kMTs) which connect 
to k-fibers along their length (Mastronarde et al., 1993; O’Toole et al., 2020) via both motor and 
non-motor proteins. Although this network cannot be easily visualized with light microscopy, phys-
ical perturbations such as laser ablation (Kajtez et al., 2016; Milas and Tolić, 2016; Elting et al., 
2017) and cell compression (Trupinić et al., 2022; Neahring et al., 2021) have been instrumental in 
uncovering how this network anchors k-fibers. The non-kMT network bears mechanical load locally 
(Milas and Tolić, 2016; Elting et al., 2017), links sister k-fibers together (Kajtez et al., 2016), and 
contributes to k-fiber and spindle chirality (Trupinić et  al., 2022; Neahring et  al., 2021). Recent 
advances in microneedle manipulation enabled us to mechanically challenge k-fiber anchorage with 
unprecedented spatiotemporal control (Long et al., 2020; Suresh et al., 2020). Exerting forces at 
different locations along the k-fiber’s length revealed that anchorage is heterogeneous along the 
k-fiber: k-fibers were restricted from pivoting near kinetochores, mediated by the microtubule cross-
linker PRC1, but not near poles (Suresh et al., 2020). Such reinforcement helps robustly preserve the 
k-fiber’s orientation in the spindle center, which we speculate forces sister k-fibers to be parallel and 
promotes correct attachment. However, how this reinforcement is enacted over space, namely how 
local or global it is, remains unclear. Furthermore, we do not yet understand which connections along 
the k-fiber’s length are necessary and sufficient to give rise to such spatially distinct mechanics.

The precise spatiotemporal control achieved by microneedle manipulation offers rich quantitative 
information on the k-fiber’s anchorage in the spindle (Suresh et al., 2020) and demands a quantita-
tive model-building approach for its full interpretation. Knowledge of the spindle connections from 
electron microscopy (McDonald et al., 1992; Mastronarde et al., 1993; O’Toole et al., 2020) is not 
sufficient to understand how they collectively reinforce the k-fiber, and perturbing different regions 
of the network to experimentally test their contribution is challenging. Furthermore, while we can 
deplete spindle crosslinkers, quantitatively controlling their combined mechanical function over space 
is not currently within reach. In turn, a coarse-grained modeling approach (accounting for the effective 
influence of collective molecular actions) can allow us to systematically dissect the spatial regulation 
of k-fiber anchorage in the spindle. Since the bending mechanics of microtubules is well characterized 
(Gittes et al., 1993), many modeling studies have used shape to infer forces exerted on microtubules. 
This approach has been applied to single microtubules (Gittes et  al., 1996; Brangwynne et  al., 
2006), microtubule bundles (Gadêlha et al., 2013; Portran et al., 2013), as well as k-fibers in the 
spindle (Rubinstein et al., 2009; Kajtez et al., 2016). To date, k-fiber models used native shapes (in 
unperturbed spindles) to infer underlying spindle forces, without focusing on k-fiber anchorage. This 
is mainly because the presence of anchorage is not easily revealed in unperturbed spindles. Using 
k-fiber manipulation in mammalian spindles, we are uniquely positioned to probe k-fiber anchorage 
forces previously hard to detect, and to test models for their underlying basis.

Here, we use coarse-grained modeling and microneedle manipulation experiments to define the 
spindle anchorage forces necessary and sufficient for the k-fiber to robustly restrict pivoting near 
kinetochores while allowing pivoting at poles (Figure  1, top). We model the k-fiber using Euler-
Bernoulli beam theory. We systematically increase model complexity and use shape analysis to infer 
the minimal set of forces needed to recapitulate experimental k-fiber shapes. We find that while forces 
and moments at k-fiber ends (end-point anchorage) alone are sufficient to recapitulate unmanipulated 
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shapes, lateral anchorage is needed to preserve k-fiber orientation in the spindle center in manip-
ulated spindles. We then systematically test different length scales of lateral anchorage. Global 
anchorage leads to a loss of mechanical distinction in the pole and kinetochore regions – a predic-
tion confirmed by manipulating spindles with globally increased anchorage. In turn, local anchorage 
preserves the mechanical distinction observed in control manipulations, and a length scale of 3 μm 
near kinetochores is necessary and sufficient to recapitulate observed manipulated shapes. This 
localized anchorage can preserve k-fiber orientation near kinetochores without significant k-fiber-to-
network detachment for a broad range of microneedle forces. Thus, strong local anchorage enacted 
locally within 3 μm of kinetochores can ensure that sister k-fibers remain aligned and bioriented in the 
spindle center robustly, while allowing their pivoting and clustering into poles. Together, we demon-
strate how spatially regulated anchorage gives rise to spatially distinct mechanics, which we propose 
support different functions across the spindle.
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Figure 1. Overview of the experiment-theory interplay used for studying the mechanics of k-fiber anchorage in the mammalian spindle. Top: Schematic 
of the experimental perturbation performed in Suresh et al., 2020. Microneedle (blue circle) manipulation of outer k-fibers revealed that k-fibers do 
not freely pivot near kinetochores, ensuring the maintenance of k-fiber orientation in the spindle center, and pivot more freely around poles. Bottom: 
Coarse-grained modeling approach of the k-fiber in the spindle context based on Euler-Bernoulli beam theory. Model complexity is progressively 
increased to identify the minimal set of forces necessary and sufficient to recapitulate (dashed blue lines) k-fiber shapes in the data. From left to 
right: we test models with different forces and moments at k-fiber ends (pole and kinetochore) to recapitulate native k-fibers, and, then test models 
of increasing complexity (first with x- and y- force components and just a moment at the pole, then a moment at the kinetochore and finally lateral 
anchorage over different length scales along the k-fiber (purple arrows)) to recapitulate manipulated k-fibers. Here, forces (represented as straight 
arrows) and moments (represented as curved arrows) together define the bending moment M(x) along the k-fiber, while k-fiber shape is determined via 
curvature κ(x).

https://doi.org/10.7554/eLife.79558


 Research advance﻿﻿﻿﻿﻿﻿ Cell Biology | Physics of Living Systems

Suresh, Galstyan et al. eLife 2022;11:e79558. DOI: https://doi.org/10.7554/eLife.79558 � 4 of 35

Results
Forces and moments acting on k-fiber ends alone can capture native 
mammalian k-fiber shapes
To determine the spindle forces necessary and sufficient to recapitulate k-fiber shapes, we use the 
Euler-Bernoulli formalism of beam deformation (Landau and Lifshitz, 1984). Through the equation 
κ(x)=M(x)/EI (Figure 1, bottom), this formalism relates the curvature κ(x) of the beam at a given posi-
tion (x) to the local bending moment M(x) (the moment of internal stresses that arise from forces 
exerted) and the flexural rigidity EI (a measure of resistance to bending that depends on the elastic 
modulus E and the areal moment of inertia I of the beam). We treat the k-fiber as a single homoge-
neous beam (Rubinstein et al., 2009; Kajtez et al., 2016) that bends elastically in response to force 
(see Materials and methods).

In the mammalian metaphase spindle, native k-fibers appear in a variety of curved shapes which 
arise from the molecular force generators that maintain the spindle (Elting et al., 2018; Nazockdast 
and Redemann, 2020; Tolić and Pavin, 2021). To obtain a minimal description of native k-fiber shape 
generation, we considered point forces and moments acting only on the pole and kinetochore ends 
of the k-fiber (Rubinstein et al., 2009). These could arise from motor and non-motor microtubule-
associated proteins that exert force on and anchor k-fiber ends, for example from dynein and NuMA 
at poles (Heald et al., 1996; Merdes et al., 1996), and NDC80 at the kinetochore (DeLuca et al., 
2006). In our minimal description, we coarse-grained the kinetochore-proximal forces (a tensile force 
at the kinetochore (McNeill and Berns, 1981; Waters et al., 1996) and a compressive force near the 
kinetochore (Rubinstein et al., 2009; Kajtez et al., 2016) to an effective point force (see Materials 
and methods)). Using a fine-grained junction model with explicit tensile and compressive forces did 
not significantly change the model outcomes (Figure 2—figure supplement 1), thereby justifying 
our coarse-grained approach. We considered a coordinate system where the pole is at the origin (x=y 
= 0) and the kinetochore lies along the x-axis at position x=L (Figure 2a). In this system, a force at the 
pole (F with components Fx and Fy), an equal and opposite force at the kinetochore (at equilibrium), 
and a moment at the pole (Mp) and at the kinetochore (Mk) together define the shape of the k-fiber 
at every position r(x) via the moment balance condition (M(x)=Mp + r(x)×F, with Mk=M(x=L)). The 
relatively small deflection of native k-fibers allowed us to solve for their shape profiles analytically and 
gain insight into how these forces and moments uniquely contribute to shape (see Appendix 1). We 
found that a purely axial force Fx generates a symmetric shape profile with the peak (position where 
the deflection y(x) is the largest) located in the middle of the pole-kinetochore axis (Figure 2b, top). 
In the absence of an axial force Fx, the moment at the pole Mp and corresponding force Fy generate 
an asymmetric shape profile with the peak shifted towards the pole (Figure 2b, middle); conversely, 
the moment at the kinetochore Mk and corresponding force Fy generate an asymmetric shape profile 
with the peak shifted towards the kinetochore (Figure 2b, bottom). This finding is consistent with 
the idea that each force and moment component acting on the ends uniquely contributes to k-fiber 
shape.

To determine which subset of force components (Figure 2b) is necessary and sufficient to capture 
native k-fiber shapes, we imaged native k-fibers in PtK2 GFP-tubulin cells at metaphase (m=26 cells, 
n=83 k-fibers) and extracted the distribution of peak locations along their length (Figure 2c). Most 
peaks are located closer to the pole or in the middle of the k-fiber (Figure 2d), suggesting that the 
moment Mk is not essential for their shape generation. We then fit different combinations of force 
components in our model to the shape profiles extracted from the data (see Materials and methods). 
We evaluated the quality of model fits based on two metrics: fitting error (measured by calculating 
the root mean square error, Figure 2e) and comparison of peak locations between the model fit and 
data shape profiles (Figure 2f). The combination of Fx, Fy and Mp together produced the lowest fitting 
error (Figure 2e), and accurately predicted the peak locations (Figure 2f, example fits in Figure 2g), 
while the other subsets of force components performed significantly worse on both metrics. The inclu-
sion of Mk along with Fx, Fy and Mp did not significantly improve the quality of fits (Figure 2—figure 
supplement 2), revealing that Mk is indeed not necessary to recapitulate native k-fiber shapes. Taken 
together, while native k-fiber shapes are diverse, the consistent shift in peaks toward the pole reveals 
a key mechanical role for the moment at the pole. This indicates that forces at the k-fiber ends and a 
moment at the pole (F, Mp), but not at the kinetochore (Mk = 0), are alone necessary and sufficient to 
recapitulate native k-fiber shapes.

https://doi.org/10.7554/eLife.79558
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Figure 2. Forces and moments acting on k-fiber ends alone can capture native mammalian k-fiber shapes. See also Figure 2—figure supplements 
1–3. (a) Schematic of the minimal model for native/unmanipulated k-fibers. Pole and kinetochore ends are oriented along the x-axis (x from 0 to L). 
Only forces (Fx, Fy; red linear arrows) and moments (Mp, Mk; red curved arrows) acting on k-fiber ends are considered. The moment balance condition 
M(x) shown below defines the k-fiber shape at every position via the Euler-Bernoulli equation. (b) The unique mechanical contribution of each model 
component to a signature shape feature of native k-fibers. The white circle denotes the k-fiber’s peak position (location where the deflection y(x) is 
the largest). Each component uniquely shifts the peak position relative to the middle axis (dashed line at x=L/2). (c) Representative image of a PtK2 
GFP-tubulin metaphase spindle (GFP-tubulin, white) with tracked k-fiber profiles overlaid (orange). (d) Distribution of peak positions of native k-fibers 
tracked from PtK2 GFP-tubulin cells at metaphase (m=26 cells, n=83 k-fibers), normalized by the k-fiber’s end-to-end distance, with the middle axis 
(black dashed line) at x=0.5. (e) Root-mean-squared error (RMSE) between the experimental data (m=26 cells, n=83 k-fibers) and the model-fitted 
shape profiles. Plot shows mean ± SEM. (f) Comparison of normalized peak positions between the experimental data (m=26 cells, n=83 k-fibers) and 
model-fitted shape profiles for each model scenario. The model with Fx, Fy and Mp (blue points) best captures the peak positions in the data (Pearson R2 
coefficient = 0.85, p=7e-22). Black dashed line corresponds to an exact match of peak positions between the model prediction and measurement data. 
(g) Tracked k-fiber profiles from the spindle image (c) and their corresponding model fits performed with the minimal model with Fx, Fy and Mp, but not 
Mk. Black arrows represent the model-inferred forces at end-points.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Coarse-graining of kinetochore-proximal tensile and compressive forces to an effective point force at the kinetochore does not 
alter model outcomes.

Figure supplement 2. The minimal model does not require a moment at the kinetochore to capture native k-fiber shapes.

Figure supplement 3. No detectable trend between inner and outer k-fibers is observed in the parameters inferred by the minimal model.

https://doi.org/10.7554/eLife.79558
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Having established our minimal native k-fiber model, we used it to examine how shape and force 
generation (F, Mp) vary across k-fiber angles with respect to the spindle’s pole-pole axis (Figure 2—
figure supplement 3a). We hypothesized that outer k-fibers, with larger angles from the pole-pole 
axis and which visually appear more bent, would be exposed to larger forces and moments. While 
k-fibers with larger angles indeed have larger deflections on average (Figure 2—figure supplement 
3b-c), we observed no detectable trend in inferred force parameters (Figure 2—figure supplement 
3d-e), suggesting a lack of distinction in the force generation across different k-fiber angles in the 
spindle. Instead, our model suggests that the greater average length of outer k-fibers (Figure 2—
figure supplement 3f) is sufficient to capture their larger deflections (Figure 2—figure supplement 
3g, Appendix 1.4). Thus, k-fiber length can serve as another contributor to the observed shape 
diversity. Together, by connecting shape to forces, we determine that point forces on k-fiber ends 
and a moment at the pole are sufficient to recapitulate the diverse array of native k-fibers, and 
postulate that force generation is not differentially regulated across k-fiber angles in the mammalian 
spindle.

Manipulated k-fiber response cannot be captured solely by end-point 
anchoring forces and moments
Having defined a minimal model for native k-fiber shape generation, we turned to manipulated 
k-fibers, under the premise that mechanical perturbations can more discriminately expose under-
lying mechanics. We sought to determine the spindle forces necessary and sufficient to restrict the 
k-fiber’s free pivoting near the kinetochore (reflected by a negative curvature in that region) but not 
near the pole when under external force (Figure 3a, Suresh et al., 2020). We included in our model 
an external microneedle force (Fext) treated as a point force (Appendix 2) whose contribution to 
the bending moment at r(x) is (r(x) - rext)×Fext. To build up model complexity systematically, we first 
tested whether the minimal spindle forces acting solely on k-fiber ends (F, Mp with Mk = 0) together 
with Fext (Figure 3b) can capture manipulated k-fibers. We extracted the k-fiber shape profiles from 
GFP-tubulin PtK2 metaphase spindles under manipulation (m=18  cells, n=19 k-fibers, deformed 
by 2.5±0.2 μm over 60.5±8.8  s, Figure 3—video 1, Suresh et  al., 2020) and fit the model (see 
Appendix 3 and 4 for fitting details). The model failed to capture the negative curvature region near 
kinetochores (Figure 3c), giving rise to fitting errors that are 10-fold larger than the native k-fiber 
model (Figure 3f).

We then hypothesized that introducing a negative moment Mk at the kinetochore to restrict free 
pivoting there could be sufficient to recapitulate manipulated k-fiber shapes (Figure 3d). Performing 
fits to the data revealed that the model with Mk produced a negative curvature near the kinetochore 
(Figure 3e), leading to a substantial decrease in the fitting errors compared to the model where Mk = 
0. However, the fitting errors are still not comparable to those of the native k-fiber model (Figure 3f). 
To better evaluate the model’s performance, we compared several signature shape features between 
the data and model. While the model with Mk accurately captures the positions of positive curva-
ture maxima (Figure 3g), it consistently fails to capture the positions of negative curvature minima 
(Figure 3h, example in Figure 3e). The positions of curvature minima in the experimental data span 
a range of 0.5–3 μm from the kinetochore; however, they are much more localized (within 0.5 μm) in 
model-generated profiles (Figure 3h). Similarly, the model fails to capture the region over which the 
k-fiber’s orientation angle near the kinetochore is preserved, which spans 3 μm in the data (Figure 3i, 
Figure 3—figure supplement 1).

Motivated by electron microscopy studies demonstrating that k-fibers have 20–30% more micro-
tubules near kinetochores compared to poles (McDonald et  al., 1992; O’Toole et  al., 2020), we 
also tested the impact of having a non-uniform k-fiber flexural rigidity on the position of the negative 
curvature minimum. We found that a local increase in flexural rigidity can shift the position of negative 
curvature away from the kinetochore (Figure 3—figure supplement 2a-b). However, for the curvature 
minimum be up to 3 μm away from the kinetochore, the kinetochore-proximal region would need to 
have twice as many microtubules than the rest of the k-fiber (Figure 3—figure supplement 2c-d), 
which is inconsistent with structural studies (McDonald et al., 1992; O’Toole et al., 2020). Taken 
together, these findings exclude the possibility of end-localized anchoring forces and moments being 
the sole contributors to the response features observed in manipulated k-fibers.

https://doi.org/10.7554/eLife.79558
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Figure 3. Manipulated k-fiber response cannot be captured solely by end-point anchoring forces and moments. See also Figure 3—figure 
supplements 1–2 and Figure 3—video 1. (a) Top: Representative images of a PtK2 spindle (GFP-tubulin, white) before and at the end of microneedle 
manipulation. Tracked k-fiber profiles (orange) and the microneedle (white circle) are overlaid (shifted for k-fiber) on the images. Bottom: Curvature 
profiles along the native/unmanipulated and manipulated k-fibers. Time in min:sec. Scale bar = 5 μm. (b) Schematic of the model for the manipulated 
k-fiber that includes F (Fx, Fy), Mp and Mk is set to zero (minimal native k-fiber model), along with an external force Fext from the microneedle (blue circle). 
The moment balance condition is shown below, where the indicator function (I) specifies the region over which the corresponding term in the equation 
contributes to M(x). (c) Top: Manipulated shape profile extracted from the image in (a) (orange line), together with the best fit profile generated by the 
model (blue line) where Mk = 0. Stars denote the minimum of the negative curvature. The model does not capture the negative curvature observed 
in the data (orange star). Bottom: Curvature profiles along the k-fiber in the data (left) and the model (right). (d) Schematic of the model for the 
manipulated k-fiber defined by the parameters in (b) and a negative moment at the kinetochore, Mk (orange arrow). (e) Top: Manipulated shape profile 
extracted from the image in (a) (orange line), together with the best fit profile generated by the model (blue line) with Mk≠0. Stars denote the minimum 
of the negative curvature. The model generates a negative curvature (blue star) but cannot accurately capture its position from the data (orange 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.79558
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Mapping the relationship between anchorage length scales and 
manipulated k-fiber shapes constrains the spatial distribution of lateral 
anchorage
To determine the forces needed to preserve k-fiber orientation at a relevant length scale in the spindle 
center (Figure 3h–i) and to also capture the observed mechanical distinction between the kineto-
chore and pole regions, we investigated how lateral anchorage along the k-fiber’s length influences 
the k-fiber’s mechanical behavior. We sought to systematically vary the spatial distributions of lateral 
anchorage and map the k-fiber’s response to force. Our previous work revealed that the crosslinking 
protein PRC1, which preferentially binds antiparallel microtubules and helps organize bridging-fibers 
(Jagrić et al., 2021), plays a key role in mediating the lateral anchorage responsible for negative 
curvature near kinetochores (Suresh et al., 2020). However, how the absolute levels of PRC1 along 
k-fibers (Polak et al., 2017; Suresh et al., 2020) map to mechanical anchorage is unknown, thus moti-
vating the need to directly vary lateral anchorage in space.

We enhanced our model, treating the anchoring network to which the k-fiber is coupled as a 
uniformly distributed series of elastic springs which exert restoring forces f(x) along the region of 
anchorage (Figure 4a). In our treatment, the anchoring network does not detach from the k-fiber 
(see Materials and methods). In a simulation study, we systematically tuned the length scale of lateral 
anchorage near the kinetochore (σ=1–10 μm), and initially considered a step function distribution of 
anchorage present only within the region L-σ<x < L. Mimicking our previous experimental procedure 
(Figure 4b, Suresh et al., 2020), we also tuned the position of the microneedle.

K-fiber shape profiles simulated with different anchorage length scales σ revealed a broad array of 
negative curvature responses, where the positions of curvature minima were strongly affected by the 
choice of σ (Figure 4c). To probe the relationship between the anchorage length scale and the k-fi-
ber’s response to force, we compared these simulated k-fiber shape profiles to manipulation experi-
ments in control spindles (Suresh et al., 2020) and spindles where crosslinking was globally increased 
experimentally. Consistent with wildtype spindle manipulations (2.5±0.2 μm over 60.5±8.7 s, Suresh 
et al., 2020), simulated shapes with local anchorage (example of σ=2 μm for 10 μm long k-fiber in 
Figure  4d) had a negative curvature response only near the kinetochore (and not near the pole) 
that remained localized for a range of microneedle positions, thereby generating spatially distinct 
mechanical responses between the pole and kinetochore regions. Local anchorage with σ=1–3 μm 
near the kinetochore best captures the range of experimentally observed curvature minima positions 
(Figure 4c). This conclusion holds true for a wide range of chosen anchorage strengths (Figure 4—
figure supplement 1). On the other hand, simulated shapes with global anchorage (example of 
σ=10 μm along the entire k-fiber length in Figure 4e) had negative curvature on both the kinetochore 
and pole sides of the microneedle, leading to a loss of mechanical distinction between these two 
regions. Additionally, with global anchorage the curvature minima positions do not remain localized 
near the kinetochore but rather move with the microneedle position. To test this experimentally, we 
globally increased crosslinking with FCPT treatment – a drug that rigor-binds kinesin-5 to microtu-
bules (Groen et al., 2008). Consistent with the global anchorage model predictions, manipulations 

star). Bottom: Curvature along the k-fiber in the data (left) and the model (right). (f) Root-mean-squared error (RMSE) between the experimental data 
(m=18 cells, n=19 k-fibers) and the best fitted profiles from the models without (Mk = 0) and with (Mk≠0) a moment at the kinetochore. A comparison is 
made also with the RMSE of the minimal native k-fiber model (control, Figure 2a). Plots show mean ± SEM. (g–i) Comparison of manipulated k-fiber 
profiles (m=18 cells, n=19 k-fibers) between the data and model (Mk≠0) for (g) positions curvature maxima (Pearson R2 coefficient = 0.95, p=4e-13), 
(h) positions of curvature minima (Pearson R2 coefficient = 0.27, p=1e-1), and (i) the distance over which the orientation angle is preserved within 1o 
(Pearson R2 coefficient = 0.43, p=9e-4).

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure supplement 1. K-fiber orientation in model profiles with Mk≠0 is preserved over much shorter distances than in experimental data, irrespective 
of the chosen threshold angle.

Figure supplement 2. Impact of nonuniform flexural rigidity on the k-fiber response to force.

Figure 3—video 1. Microneedle manipulation of PtK2 metaphase spindles reveals the restriction of k-fiber pivoting around the kinetochore but not the 
pole.

https://elifesciences.org/articles/79558/figures#fig3video1

Figure 3 continued

https://doi.org/10.7554/eLife.79558
https://elifesciences.org/articles/79558/figures#fig3video1
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Figure 4. Mapping the relationship between anchorage length scales and manipulated k-fiber shapes constrains the spatial distribution of lateral 
anchorage. See also Figure 4—figure supplements 1–3 and Figure 4—video 1. (a) Schematic of the model for the manipulated k-fiber with 
crosslinking forces f(x′) distributed over a length scale σ near the kinetochore. The model also includes endpoint forces F, and an external force from 
the microneedle Fext. The crosslinking force density is f(x′) = -k y(x′) ŷ, where k is the effective spring constant and ŷ is the unit vector in the y direction. 
Since we do not expect Mp to influence the crosslinking behavior near the kinetochore, for simplicity we set Mp = 0 in simulation studies of this section. 
Indicator function (I) in the moment balance condition specifies the region over which the corresponding term contributes to M(x). (b) Distance of 
curvature minima as a function of distance of the microneedle from the kinetochore (m=18 cells, n=19 k-fibers), in wildtype spindle manipulations 
(Suresh et al., 2020). Plot shows mean ± SEM (black). (c) Distance of curvature minima as a function of distance of external force application from the 
kinetochore calculated for model-simulated profiles where the length scale of anchorage (σ, inset) is tuned in the range 1–10 μm (denoted by shades 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.79558
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in FCPT-treated spindles (2.7±0.1 μm over 59.6±2.7 s in GFP-tubulin PtK2 cells, m=10 cells, n=13 
k-fibers) (Figure 4f, Figure 4—figure supplement 2) resulted in negative curvature on both sides 
of the microneedle (Figure 4g), and its position moved as the microneedle was moved (Figure 4h, 
Figure 4—video 1). Thus, local anchorage is required to capture both the spatially distinct mechanics 
and localized nature of the negative curvature response observed in wildtype manipulated k-fibers.

Given this finding, and PRC1’s known role in localized anchorage (Suresh et al., 2020), we asked if 
an anchorage distribution reflecting PRC1’s abundance in the spindle is sufficient to capture the local-
ized negative curvature response. Mimicking PRC1 levels from immunofluorescence imaging (Suresh 
et al., 2020), we set the length scale of enrichment to be σ=3 μm from the kinetochore, and the 
basal anchorage elsewhere to be 60% of this enriched region. Assuming PRC1 molecules are equally 
engaged everywhere, our model predicted that the curvature minimum moves with the microneedle 
(Figure 4—figure supplement 3), contrary to our experimental observation (Figure 4b). Together 
with the finding that PRC1 is required for the manipulation to result in a negative curvature response 
(Suresh et al., 2020), this suggests that PRC1’s crosslinking engagement varies over space, and that 
its abundance is not a good proxy for its mechanical engagement.

To probe how local or global the mechanical engagement of PRC1 is in the spindle and gain intu-
ition on how this gives rise to the observed localized negative curvature response, we proceeded to 
more precisely define the region over which PRC1 actively crosslinks microtubules. While the precise 
spatial distribution of PRC1 engagement cannot be directly measured in vivo, we sought to extract 
this information from immunofluorescence data (Suresh et al., 2020) using an equilibrium binding 
model. Specifically, we distinguished between the doubly bound (c2(r), actively crosslinking two micro-
tubules), singly bound (c1(r), on one microtubule but not crosslinking), and freely diffusing (cf) states 
from the measured total (ctot(r)) PRC1 abundance (Appendix 5). Based on the facts that PRC1 binds 
much more weakly to parallel microtubules (30-fold lower affinity than to antiparallel microtubules 
Bieling et al., 2010), and that microtubules near poles are predominantly parallel (Euteneuer and 
McIntosh, 1981), we considered PRC1 engagement in this region to be negligible. Under these 
conditions, the model infers the actively engaged PRC1 (c2(r)) to be predominantly in the spindle 
center and substantially lower away from the center (Figure 4i). This is akin to the local anchorage 

of green). Variation of the position of external force application mimics the wildtype manipulation experiments in (b). Dashed lines denote the spread 
of curvature minima positions in (b). (d,e) Profiles generated by the model in (a) with (d) σ=2 μm and (e) σ=10 μm for varying positions of external force 
application (yellow arrow), and the resulting positions of curvature minima (red star). Dashed lines represent the distances from the kinetochore to the 
external force position (yellow dashed line) and curvature minimum position (red dashed line). (f) Top: Representative images of a PtK2 spindle (GFP-
tubulin, white) treated with FCPT to rigor-bind the motor Eg5, in its unmanipulated (00:00) and manipulated (00:55) states. The microneedle (white circle) 
and tracked k-fibers (orange) are displayed on images. Bottom: Curvature along the tracked k-fibers. Time in min:sec. (g) Percentage of microneedle 
manipulations that gave rise to a negative curvature near the kinetochore and the pole in wildtype (grey; m=18 cells, n=19 k-fibers, Suresh et al., 2020) 
and FCPT-treated (light blue; m=11 cells, n=13 k-fibers) spindles. (h) Distance of curvature minima as a function of distance of the microneedle from 
the kinetochore in FCPT-treated spindle manipulations (m=9 cells, n=13 k-fibers). Plot shows mean ± SEM (black). (i) Left: Normalized distribution of 
PRC1’s total abundance levels (ctot, cyan lines) measured from immunofluorescence images (fluorescence intensity, n=5 cells) (Suresh et al., 2020) and 
actively engaged (doubly bound, c2, grey lines) PRC1 calculated from the ctot using the equilibrium binding model along the spindle’s pole-pole axis 
(x=0 represents the spindle midplane). The region along k-fibers where negative curvature is observed in the wildtype dataset is highlighted in orange 
and the inter-kinetochore region (double-sided black arrow) denotes the chromosome region between the sister k-fibers (inset). Plot shows mean ± SEM 
for both PRC1 populations. Right: Three distinct binding states of PRC1 considered in our analysis. The concentration of actively engaged PRC1 (c2) is 
calculated by subtracting the free and singly bound contributions from the total PRC1 concentration (ctot). In the expression for the singly-bound PRC1 
population, ρMT(r) stands for the local tubulin concentration, while Kd represents the dissociation constant of PRC1– single microtubule binding.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Tuning anchorage strength within an order of magnitude only introduced sub-micron variations in the negative curvature 
response.

Figure supplement 2. Microneedle displacement over time in FCPT-treated spindle manipulations.

Figure supplement 3. Negative curvature does not remain localized near chromosomes when anchorage levels in the model mimic PRC1 intensity in 
the spindle.

Figure 4—video 1. Microneedle manipulation of FCPT-treated PtK2 spindles reveals negative curvature on both sides of the microneedle and not 
localized near kinetochores.

https://elifesciences.org/articles/79558/figures#fig4video1

Figure 4 continued

https://doi.org/10.7554/eLife.79558
https://elifesciences.org/articles/79558/figures#fig4video1
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scenarios without basal levels (tested in Figure 4c and d) and suggests that while PRC1’s enrichment 
on top of a basal level cannot give rise to a localized negative curvature response (Figure 4—figure 
supplement 3), its locally distributed mechanical engagement can do so.

Taken together, systematically exploring the k-fiber responses that arise from different anchorage 
length scales revealed the need for lateral anchorage to be local, and defining PRC1’s abundance-to-
anchorage relationship helped demonstrate how it could provide such local anchorage.

Minimal k-fiber model infers strong lateral anchorage within 3 μm of 
kinetochores to be necessary and sufficient to recapitulate manipulated 
shape profiles
Having demonstrated the essential role of local anchorage in producing a negative curvature k-fiber 
response near the kinetochore, we investigated if its inclusion in our minimal k-fiber model is sufficient 
to recapitulate all response features of manipulated k-fibers; and if so, over what length scale does 
this anchorage need to be? Because of the challenges in extracting an accurate strain map of the 
anchoring network and knowledge of the baseline state before and after manipulation, using a model 
with distributed springs (Figure 4a) that would require these as input information, was not feasible. 
Further, a simple one-to-one mapping between the undeformed and deformed k-fibers could not 
be done due to the k-fiber length changing over the 60  s manipulation. We therefore captured 
the collective influence of localized anchorage forces using an effective point crosslinking force Fc 
(Figure  5a). This approach allows us to learn about both the mechanics and spatial regulation of 
anchorage, while being agnostic of the network’s constitutive law and also simplifying the parameter 
search. We validated this coarse-grained approach by simulating k-fiber shapes with different local 
anchorage distributions near the kinetochore, and performing fits to these shapes using the minimal 
model (Figure 3b) with now Fc in place (Figure 5—figure supplement 1a). Indeed, the fits revealed 
the inferred magnitude of Fc to be close to the integrated anchorage force (Figure 5—figure supple-
ment 1b), and its position xc (a distance λc from the kinetochore) to be consistently proximal to the 
edge of the localized anchorage region σ where anchorage forces are the largest (Figure 5—figure 
supplement 1c-d). Thus, an effective point crosslinking force Fc can successfully coarse-grain locally 
distributed anchorage forces.

We then fit the model with an effective point force Fc to all observed manipulated k-fiber shape 
profiles. In all but four cases with significantly large positive curvature values (Figure 5—figure supple-
ment 2), which could be suggestive of local fracturing due to the microneedle force (Schaedel et al., 
2015), the model accurately recapitulated the data (Figure 5b). This is reflected in the significantly 
lower fitting errors compared to the previous manipulated k-fiber models (Figure 5c). To better eval-
uate the model’s performance, we compared several signature shape features between the data and 
model. The curvature maxima and minima positions (Figure 5d–e, example in Figure 5b right), and 
length scale over which k-fiber orientation is preserved were all captured accurately (Figure 5f). Thus, 
an effective point crosslinking force (Fc) that coarse-grains the local anchorage near the kinetochore, 
together with F, Mp and Fext, define the minimal model sufficient to recapitulate the shapes of manip-
ulated k-fibers.

Next, we investigated the length scale of lateral anchorage inferred by the minimal model to 
recapitulate manipulated k-fiber shapes. Across all manipulated k-fibers in the dataset, the model 
infers λc (which directly informs on the anchorage length scale Figure 5—figure supplement 1d) 
to be consistently within 3 μm of kinetochores (Figure 5g), indicating that this length scale of lateral 
anchorage is necessary and sufficient to robustly restrict k-fiber pivoting across the spindle center 
without obstructing pivoting at poles. This result is in close agreement with the anchorage length 
scales predicted from the simulated shapes (Figure 4c) and the region where actively engaged PRC1 
is predicted to be predominantly present (Figure 4i). We also identified a strong correlation between 
the inferred anchorage length scale (λc) and curvature minimum position (Figure 5h). While previ-
ously we associated the occurrence of negative curvature with the presence of anchorage (Suresh 
et al., 2020), this finding now offers an interpretation for the position of curvature minimum as a 
quantitative predictor of the length scale of local anchorage.

Finally, having arrived at a minimal model sufficient to recapitulate the k-fiber’s response to manip-
ulation, we investigated how the anchoring network responds to microneedle forces using the results 
of model inference. Our model inference revealed that in response to microneedle forces ranging 

https://doi.org/10.7554/eLife.79558
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Figure 5. Minimal k-fiber model infers strong lateral anchorage within 3 μm of kinetochores to be necessary and sufficient to recapitulate manipulated 
shape profiles. See also Figure 5—figure supplements 1–2. (a) Schematic of the model for the manipulated k-fiber with an effective point crosslinking 
force (Fc, dark green arrow) a distance λc away from the kinetochore-end introduced to capture the effect of the distributed crosslinking forces (light 
green arrows) localized near the kinetochore. The model also includes the parameters F, Mp and Fext. Indicator function (I) in the moment balance 
condition specifies the region over which the corresponding term contributes to M(x). (b) Left: Manipulated shape profile extracted from the image in 
Figure 3a (orange line), overlaid with the best fitted profile inferred by the model with Fc (blue line). Black arrows represent the model-inferred forces 
that correspond to (a). Stars denote the minimum of the negative curvature, which matches well between the data (orange star) and model (blue star). 
Right: Curvature along the k-fiber in the data (top) and the model (bottom). (c) Root-mean-square error (RMSE) between the experimental data and all 
k-fiber models tested: Mk = 0 (Figure 3b), Mk≠0 (Figure 3d) and Fc (Figure 5a). A comparison is made with the minimal native k-fiber model (control, 
Figure 2a). Plot shows mean ± SEM. (d-f) Comparison of manipulated k-fiber profiles (m=14 cells, n=15 k-fibers) between the data and model (Fc) for 
(d) positions curvature maxima (Pearson R2 coefficient = 0.97, p=8e-12), (e) positions of curvature minima (Pearson R2 coefficient = 0.9, p=1e-7), and 
(f) the distance over which the orientation angle is preserved within 1o (Pearson R2 coefficient = 0.85, p=2e-4). Grey lines link the corresponding profiles. 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.79558
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from 400 pN to 1500 pN (that cause k-fiber deformations (ymax) up to ≈ 5 times native deformations), 
the anchoring network generated forces ranging from 100 pN to 700 pN to resist pivoting in the 
spindle center (see Materials and methods). Interestingly, we found a linear relationship between the 
inferred crosslinking force (Fc) and microneedle force (Fext). This linear dependence does not plateau 
beyond a certain microneedle force, which would have been indicative of detachment from the k-fiber 
(Figure 5i, consistent with model A but not model B). This indicates that under the assumptions of 
our model, the anchoring network is strong enough to withstand large microneedle forces (producing 

‍y
manip
max /ynative

max ≫ 1‍) without significant detachment from the k-fiber. Parameter inference from our 
minimal model therefore provides physical intuition for how the anchoring network can restrict k-fiber 
pivoting near kinetochores.

Altogether, by systematically building up complexity to determine the minimal model that can 
recapitulate k-fiber shapes under manipulation, our work sheds light on the spatial regulation and 
mechanics of anchorage necessary and sufficient for robust k-fiber reinforcement in the spindle center.

Discussion
The k-fiber’s ability to be dynamic and generate and respond to forces while robustly maintaining its 
connections and orientation within the spindle is critical for accurate chromosome segregation. Here, 
we asked (Figure 1): where along the k-fiber are its connections necessary and sufficient to robustly 
preserve its orientation in the spindle center while allowing pivoting at poles? We determined that 
while end-forces and moments can recapitulate unmanipulated k-fibers (Figure 2), they are insuffi-
cient to capture the manipulated k-fiber’s response. Specifically, without lateral anchorage, the model 
fails to robustly restrict the k-fiber’s pivoting throughout the spindle center region (Figure 3). In turn, 
having anchorage all along the k-fiber’s length restricts pivoting at poles (Figure 4). Thus, in both 
cases, the signature mechanical distinction between the pole and kinetochore regions is lost. Our 
minimal model revealed that local anchorage within 3 μm of kinetochores is necessary and sufficient 
to accurately recapitulate the spatially distinct response of manipulated k-fibers, and that this length 
scale can be quantitatively inferred from the location of negative curvature, a signature shape feature 
of anchorage (Figure 5). Such reinforcement near kinetochores is well suited to ensure that sister k-fi-
bers remain aligned with each other and bi-oriented in the spindle center, and can at the same time 
pivot and cluster into poles. Thus, by combining theory based on shape analysis and perturbations 
that expose underlying mechanics, our work provides a framework to dissect how spindle architecture 
gives rise to its robust and spatially distinct mechanics (Figure 6), and ultimately function.

The minimal model for native k-fibers enabled us to explore the physical mechanisms underlying 
force generation and k-fiber shapes within the spindle (Figure 2). It provides a framework to connect 
molecular-scale and cellular-scale spindle mechanics and better understand the origins of F and Mp 
and of shape diversity across k-fibers and spindles. For example, it has been long known that NuMA 
and dynein focus microtubules at poles (Heald et al., 1996; Merdes et al., 1996); indeed, perturbing 
these proteins leads to straighter k-fibers (Wittmann and Hyman, 1998; Howell et al., 2001; Elting 
et al., 2017; Guild et al., 2017) and altered spindle shapes (Oriola et al., 2020). How these molecules 
individually and together dictate native k-fiber shapes in mammalian spindles, and what their role is 
in the moment generation inferred at the pole Mp, are exciting questions for future work. In addition 
to molecular forces playing a role in k-fiber shape generation and diversity, our study proposes that 
diverse k-fiber lengths from their arrangement within the spindle (inner vs. outer) can lead to diverse 

(g) Distribution of the length scales of anchorage (λc) inferred by the minimal model with Fc for all k-fibers in the data. (h) Positions of curvature minima 
extracted from data profiles vs. the location of the effective crosslinking force near kinetochores inferred by the model (Pearson R2 coefficient = 0.85, 
p=1e-6), with the black dashed line representing perfect correspondence between them. (i) Left: Possible scenarios for models of how anchorage 
force Fc might correlate with the microneedle force Fext – linearly as is characteristic to an elastic response (model A), or linearly up to a force threshold, 
beyond which detachment of anchorage occurs (model B). Right: Microneedle force Fext vs. anchorage force Fc inferred from the model shows a 
monotonic relationship. Grey dashed line represents the best-fit line (Spearman R coefficient = 0.85, p=4e-4).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Validating the use of a point crosslinking force to capture distributed anchorage.

Figure supplement 2. Minimal model with point crosslinking force fails to recapitulate the data only in cases with large positive curvature values.

Figure 5 continued

https://doi.org/10.7554/eLife.79558
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k-fiber shapes. This motivates better understanding the role of other architectural features that vary 
across species (e.g. presence or absence of poles, spindle size, chromosome number) in contributing 
to k-fiber shape (Helmke et al., 2013; Crowder et al., 2015). Addressing these questions will shed 
light on the mechanisms ensuring robust spindle structure and function across evolution.

Our work focused on lateral anchorage in space, and revealed that local anchorage within 3 μm of 
kinetochores ensures that sister k-fibers remain straight in the spindle center (Figure 5). This could, 
for example, promote biorientation of chromosomes, and ultimately their accurate segregation. 
Further, the presence of lateral anchorage across the center of the spindle can constrain chromo-
some oscillations, while still allowing movement on a longer timescale and ensuring sister k-fiber 
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Figure 6. Coarse-grained modeling of k-fiber shapes reveals how spatially regulated k-fiber anchorage gives rise to spatially distinct mechanics across 
the mammalian spindle. Top: A summary of outcomes for the native k-fiber model and the various iterations of the manipulated k-fiber model, where we 
systematically built up model complexity (left to right) to capture the observed shapes. The minimal model (rightmost panel), which produced the best 
fits, includes forces at k-fiber ends, a moment at the pole, and localized crosslinking forces (captured through an effective point crosslinking force). The 
minimal model (rightmost panel) also revealed a quantitative and predictive link between the position of the negative curvature (red star) and the length 
scale of k-fiber anchorage (position of purple arrow from the kinetochore-end). Bottom: Functional implications of models with different length scales 
of anchorage (0, 3, 10 μm from left to right) tested in our study. Unlike the scenarios with no anchorage and anchorage along the entire length (left and 
right panel), anchorage up to 3 μm from the kinetochore (middle panel) is best suited to ensure that k-fibers remain straight in the spindle center and 
aligned with their sister (purple line), while also allowing them to pivot and focus at the pole (green pivot point).
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alignment. This together offers a potential explanation for why anchorage of this precise length scale 
can provide a robust connection to the dynamic spindle, and raises the question of how this length 
scale varies across spindles with different metaphase chromosome movement amplitudes. Addi-
tionally, as the dynamic k-fiber plus-end is constantly growing and shrinking (Saxton et al., 1984), 
connections between the k-fiber and anchoring microtubule network naturally break. At least some of 
these connections also turnover rapidly, on a seconds timescale (Subramanian et al., 2010; Pamula 
et al., 2019), compared to the minutes timescale of chromosome movement. Thus, having an array of 
connections spanning 3 μm (rather than a very localized length scale or having no lateral anchorage 
(Figure 3)) can ensure that at least some of them are still present and engaged to robustly reinforce 
the spindle center. In turn, not having similarly strong lateral anchorage in the pole region (Figure 4) 
can allow k-fibers and other microtubules to flexibly pivot and cluster effectively at the poles, which 
is thought to be important for spindle structural maintenance, and bring chromosomes to daughter 
cells. Taken together, spatially regulated lateral anchorage is well suited to enable different functions 
across different regions in the spindle (Figure 6).

In addition to the spatial regulation of anchorage, mechanical properties of the anchoring 
network are also critical for our understanding of how k-fibers respond to force. Our model revealed 
a linear relationship between inferred microneedle forces and anchorage force from the network 
in the regime probed, characteristic of an elastic response (Figure 5i). While individual crosslinker 
detachment (Forth et al., 2014; Pyrpassopoulos et al., 2020) in the network must occur, such 
behavior does not dominate the collective response to microneedle force. How the architecture of 
the non-kMT network and biophysical properties (ability to withstand and respond to force Yusko 
and Asbury, 2014) of the many motor and non-motor proteins within it dictate the network’s 
heterogeneous mechanics (Shimamoto et  al., 2011; Takagi et  al., 2019) is an open question. 
Answering these questions for the mammalian spindle will require probing the physical (Belmonte 
et al., 2017; Oriola et al., 2018) and molecular (Kajtez et al., 2016; Elting et al., 2017; Suresh 
et al., 2020; Risteski et al., 2021) basis of the anchoring network’s emergent properties, to which 
controlled mechanical (such as microneedle manipulation) and molecular perturbations (Jagrić 
et al., 2021) as well as modeling approaches (Nedelec and Foethke, 2007) will be key. Looking 
forward, experiments and modeling will also be useful in shedding light on the temporal dynamics 
of anchorage mechanics – for example, how the timescale of network relaxation relates to the 
kinetics of molecular turnover (Saxton et al., 1984; Pamula et al., 2019) and the manipulation 
protocol.

Finally, we developed our model under a set of assumptions, and relaxing some of them will 
provide new opportunities to test the role of additional features in determining k-fiber shape. First, 
we assumed that the k-fiber is mechanically homogeneous along its length. Electron microscopy of 
spindles revealed that k-fiber microtubules decrease in number closer to the pole (McDonald et al., 
1992), and that their length and organization can vary depending on the system (O’Toole et  al., 
2020, Kiewisz et al., 2021). These factors can affect the k-fiber’s flexural rigidity along its length 
(Ward et al., 2014). Second, we assumed that the k-fiber bends elastically in response to microneedle 
force. Forces from the microneedle could create local fractures in the microtubule lattice that leads 
to softening at the site of force application (Schaedel et al., 2015), and indeed, performing manip-
ulations with larger deformations over longer timescales result in complete breakage of the k-fiber 
(Long et al., 2020). Exploring the contributions of a spatially variable flexural rigidity due to changes 
in microtubule number or local softening will help our understanding of how k-fiber mechanics and 
remodeling affect its response to force. Third, we only consider forces and moments that influence 
k-fiber shape in two dimensions. Looking forward, it will be useful to expand our model to include the 
potential effects of torsional forces on k-fiber shape generation (Novak et al., 2018). More broadly, 
the ability to measure forces with force-calibrated microneedles (Nicklas, 1983; Shimamoto et al., 
2011) in mammalian spindles will not only help test some of these assumptions but also further refine 
our modeling framework.

Based on our work, we propose spatial regulation of anchorage as a simple principle for how the 
spindle can provide differential reinforcement across its regions to support spatially distinct core func-
tions needed to maintain its mechanical integrity. More broadly, our work demonstrates the combi-
nation of mechanical perturbation experiments and coarse-grained modeling as a useful strategy for 
uncovering the mechanical design principles underlying complex cellular systems.

https://doi.org/10.7554/eLife.79558
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Materials and methods
Data collection and acquisition
Most of the experimental observations that motivate this work are from Suresh et al., 2020. The new 
experiments performed in this work (Figure 4f–h) were performed consistently with these experiments.

Cell culture
Experiments were performed using PtK2 GFP-α-tubulin cells (stable line expressing human α-tubulin 
in pEGFP-C1, Clontech Laboratories, Inc; a gift from A Khodjakov, Wadsworth Center, Albany, NY 
Khodjakov et al., 2003), which were cultured as previously reported (Suresh et al., 2020). The cell 
line tested negative for mycoplasma.

Drug/dye treatment
For the study in Figure 4f–h where we investigated the k-fiber’s response to force under increased 
global crosslinking, we treated cells with FCPT (2-(1-(4-fluorophenyl)cyclopropyl)−4-(pyridin-4-yl)
thiazole) (gift of T Mitchison, Harvard Medical School, Boston, MA), which rigor binds Eg5 (Groen 
et al., 2008). Cells were incubated with 20 µM of FCPT for 15–30 min before imaging.

Imaging
PtK2 GFP-α-tubulin cells were plated on 35 mm #1.5 coverslip glass-bottom dishes coated with poly-
D-lysine (MatTek, Ashland, MA) and imaged in CO2-independent MEM (Thermo Fisher). Cells were 
maintained at 27–32°C in a stage top incubator (Tokai Hit, Fujinomiyashi, Japan), without a lid. Live 
imaging was performed on a CSU-X1 spinning-disk confocal (Yokogawa, Tokyo, Japan) Eclipse Ti-E 
inverted microscopes (Nikon) with a perfect focus system (Nikon, Tokyo, Japan), and included the 
following components: head dichroic Semrock Di01-T405/488/561, 488 nm (150 mW) and 561 (100 
mW) diode lasers (for tubulin and microneedle respectively), emission filters ETGFP/mCherry dual 
bandpass 59022 M (Chroma Technology, Bellows Falls, VT), and Zyla 4.2 sCMOS camera (Andor Tech-
nology, Belfast, United Kingdom). Cells were imaged via Metamorph (7.10.3, MDS Analytical Technol-
ogies) by fluorescence (50–70ms exposures) with a 100×1.45 Ph3 oil objective through a 1.5 X lens, 
which yields 65.7 nm/pixel at bin = 1.

Microneedle manipulation
The instruments, setup and protocol used for microneedle manipulation experiments were closely 
reproduced from previous work (Suresh et al., 2020). Computer control (Multi-Link, Sutter Instru-
ments) was used to ensure smooth and reproducible microneedle movements. Manipulations in FCPT-
treated spindles generated microneedle movements of 2.7±0.3 μm/min, consistent with previously 
performed wildtype spindle manipulations (2.5±0.1 μm/min) (Suresh et al., 2020). Cells for manipu-
lations in FCPT-treated spindles were subjected to the same selection criteria as used in the previous 
study (Suresh et al., 2020): spindles in metaphase, flat, bipolar shape with both poles in the same 
focal plane.

Data extraction, processing, and quantifications
To fit models to the data, we extracted k-fiber profiles acquired from imaging. Profile extraction was 
performed manually with FIJI. These profiles were rotated and aligned such that the pole and kineto-
chore ends are along the x-axis before model fitting. Local curvature was calculated by fitting a circle 
to consecutive sets of three points (spaced apart by 1 μm) along profiles and taking the inverse of the 
radius of the fitted circle (units=μm–1). K-fibers were included in the data set only if their entire length 
stayed within the same z-plane over time, to enable accurate profile extraction. Further details on 
profile extraction and curvature calculation were as described in previous work (Suresh et al., 2020).

To distinguish between the different binding states using the equilibrium binding model (Figure 4i), 
we quantified the intensity of PRC1 and tubulin in 3 different regions: (1) across the entire spindle 
between the two spindle poles (not including the poles), (2) outside the spindle but inside the cell 
(PRC1’s free population), where the cell’s boundary was determined using high intensity contrast and 
(3) close to spindle poles (where microtubules are thought to be predominantly parallel). We averaged 
across multiple ROIs for (2) and (3), where the size of the ROI was kept constant (~8 pixel wide). The 

https://doi.org/10.7554/eLife.79558
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measured intensity was normalized by the area of the ROIs. The chosen regions of interest for these 
measurements are shown in an example spindle in Appendix 5.

Euler-Bernoulli framework for modeling k-fiber deformations
Source code for the model developed and used in this work can be found on Github (https://github.​
com/RPGroup-PBoC/kfiber_modeling_manipulation, Suresh, 2022 copy archived at swh:1:rev:dee-
771a47e82df5fb88c25cfc777ba377f8bb234). We adopt the Euler-Bernoulli formalism as a framework 
to model how k-fibers bend elastically in response to force (Gittes et al., 1993; Brangwynne et al., 
2006; Jiang and Zhang, 2008). In this framework, curvature κ(x) at a given position x is specified 
through the Euler-Bernoulli equation, namely, κ(x)=- M(x)/EI. Here, M(x) is the bending moment at 
position x, and EI is the flexural rigidity of the k-fiber. Details on M(x) are further discussed in the 
Appendix 1, and the flexural rigidity EI is further discussed below.

Flexural rigidity
Flexural rigidity (EI) is defined as the product of the elastic bending modulus (E, an intrinsic property 
and therefore a constant) and the areal moment of inertia (I, the second moment of inertia of the 
k-fiber cross section). We assume flexural rigidity of the k-fiber (EI) is constant all along its length. This 
is motivated by electron microscopy studies, which reveal that PtK2 cells have a large percentage 
of kinetochore microtubules in the k-fiber that extend all the way from the kinetochore to the pole 
(McDonald et al., 1992). This assumption allows us to report forces and moments in a ratio with EI, 
making our analysis independent of the precise numerical value of EI. In Figure 2—figure supple-
ments 1 and 3, we report values of Mp and Fx as described here.

In Figure 5h, we report absolute forces inferred by the model. Since flexural rigidity for k-fibers has 
not yet been measured, we make a numerical estimate based on (1) the known number of microtu-
bules in the k-fiber, which ranges from 15 to 25 (McEwen et al., 1998), (2) the known flexural rigidity 
of a single microtubule, 2.2x10–23 Nm2 (Gittes et al., 1993), and (3) an assumption on the strength of 
coupling between the microtubules in the k-fiber. The flexural rigidity of the bundle will either scale 
linearly with the number of microtubules (N), if the microtubules are weakly coupled and can slide 
with respect to each other during bending (EIk-fiber=N.EIMT), or scale quadratically with that number 
if the they are strongly coupled and cannot slide during bending (EIk-fiber = N2.EIMT) (Claessens et al., 
2006). In this work, we assume that microtubules within the k-fiber can slide (EIk-fiber=N.EIMT) and take 
the number of microtubules N=20. This results in a value of 400 pN.μm2 for the flexural rigidity for 
the k-fiber, which we apply to Figure 5h in order to obtain absolute force estimates inferred by the 
minimal model.

Modeling of native k-fiber shapes
When studying the native k-fiber shapes, we invoke the small-angle approximation (|y′(x)|<<1 and 
κ(x) ≈ y′′(x)) which yields a second-order ordinary differential equation for the k-fiber profile y(x). This 
allows us to find an analytical solution for y(x) and gain insights about the role of different force contri-
butions in dictating k-fiber shapes features (Figure 2b). Analytical calculations of y(x) under different 
scenarios and a detailed discussion of the resulting shape features can be found in Appendix 1. There, 
we also demonstrate the validity of the approximation by showing the agreement between its results 
and those obtained by a numerical solution of the exact nonlinear equation for y(x). When reporting 
inferred parameter values and fitting errors in Figure 2e–f, results of fitting the exact numerical solu-
tion of y(x) were used.

Coarse-graining the kinetochore-proximal forces in native k-fibers
In the development of our minimal model for native k-fiber shape generation, we considered effective 
point forces acting at the pole and kinetochore ends of the k-fiber that were generally compressive 
in nature. However, it is known from prior studies (McNeill and Berns, 1981; Waters et al., 1996) 
that the kinetochore is under tension. An explanation of the compression present in the bulk of the 
k-fiber and tension in the kinetochore-proximal region was offered through the ‘bridging-fiber’ model 
(Kajtez et al., 2016). There, the bridging-fiber (bundle of non-kMTs in the antiparallel overlap zone) 
exerts a compressive force on the k-fiber at a kinetochore-proximal junction, allowing the kinetochore 
itself to remain under tension.

https://doi.org/10.7554/eLife.79558
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From the perspective of the bridging-fiber model, our coarse-grained treatment combined the 
compressive bridging-fiber force and the tensile kinetochore force into an effective compressive point 
force. Our simplified treatment was motivated by our goal to obtain a minimal native k-fiber model 
that would explain the observed shapes and serve as a foundation for incorporating anchorage forces 
in the microneedle manipulation studies.

To justify our coarse-graining approach, we selected a set of 32 k-fibers in their native state which 
had visually identifiable junctions. We then fit a more general model with a compressive bridging-fiber 
force at the junction and a tensile kinetochore force, inferring the forces and moments acting on the 
k-fiber (Figure 2—figure supplement 1a-c). We observed a general agreement between the inferred 
forces and moments between the two models (Figure  2—figure supplement 1d) as well as very 
similar RMSE values (9e-3±1e-3 μm for the junction model vs. 1e-2±1e-3 μm for our minimal model; 
error represents the SEM), thereby justifying the use of our minimal model.

Modeling external force from the microneedle
The force exerted by the microneedle on the k-fiber was treated as a point force in our model. The 
microneedle, however, has a finite diameter, and the force it exerts is transmitted along its finite 
length of contact with the k-fiber. To validate the point force assumption, we simulated k-fiber profiles 
by considering spatially distributed microneedle forces acting along lengths ranging from 0.5 μm to 
1.5 μm (Suresh et al., 2020). K-fiber profiles in these different settings matched each other with high 
accuracy when the integrated force was kept the same. In addition, when fitting a point force model to 
these profiles, the inferred location of the exerted point force was within ≈0.02 μm of the center of the 
distributed force region, and the fitting errors were very low (RMSE ≈0.03 μm). Together, these studies 
justify the point force assumption for the external force. A more detailed discussion of this validation 
study and supporting figures are included in Appendix 2.

In addition, since the manipulations are performed very slowly (average speed ≈ 0.04 μm/s, Suresh 
et al., 2020), we considered the resulting frictional/viscous force to be negligible compared to the 
force acting perpendicular to the k-fiber, and thus defined Fext to be perpendicular to the tangent of 
the k-fiber profile.

Distributed anchorage:
To study the effect of crosslinker localization on the k-fiber’s response, we mimicked the microneedle 

manipulation experiment synthetically for different distributions of k-fiber anchorage (Figure 4a and 
c–e). We assumed that the non-kMT network, to which the k-fiber is anchored, deforms elastically and 
exerts opposing forces proportional to the local deflection y(x). We model this anchorage as a series 
of elastic springs exerting vertical pulling forces on the k-fiber. We ignore potential contributions in 
the horizontal direction which could have a non-negligible effect in the case of large network defor-
mations. Our treatment is similar to the modeling of the cellular cytoskeleton as an elastic material in 
earlier work (Brangwynne et al., 2006).

In addition, we assumed that the crosslinkers that anchor the k-fiber to the non-kMT network 
do not detach as a result of microneedle manipulation. If crosslinker detachment were widespread, 
microneedle manipulation in FCPT-treated spindles would have led to negative curvature positions 
occurring far away from the microneedle. We instead observed the position of negative curvature 
follow the microneedle, consistent with the response behavior predicted by a global anchorage 
scenario (Figure 4f–h). Based on this, we make the simplifying assumption that crosslinker detach-
ment does not dominate the k-fiber’s resistance to pivoting under manipulation.

Modeling of k-fibers under microneedle manipulation
Since manipulated k-fiber profiles have large deflections relative to the undeformed state (|y′(x)|<<1 is 
not satisfied everywhere), analytical approaches for obtaining an intuitive expression for y(x) become 
infeasible. We therefore calculate y(x) using a numerical integration method (details in Appendix 3). 
Specifically, we first parameterize the k-fiber profile via an arc length parameter s and prescribe a 
tangential angle θ(s) to each position (Kajtez et al., 2016). Writing the Euler-Bernoulli equation as 
κ(s) = -dθ/ds = M(s)/EI and using our estimate of the local bending moment M(s) defined uniquely for 
each modeling scenario (Figures 2b–4a), we use a finite difference method to update the tangential 
angle at the next position s+Δs. Steps in the x- and y-directions are then performed using the updated 
tangential angle.

https://doi.org/10.7554/eLife.79558
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Assumption of a uniform flexural rigidity
To test whether the naturally occurring nonuniformity of k-fibers (McDonald et al., 1992; O’Toole 
et al., 2020) may be sufficient to explain the presence of negative curvature minima within 3 µm 
from the kinetochore (Figure 3h), we performed a set of simulation studies involving k-fibers with 
nonuniform thickness. Specifically, we considered k-fibers that had γ times larger flexural rigidity (EI) in 
their kinetochore-proximal region of length s*. Applying a vertical external force and a point negative 
bending moment Mk at the kinetochore, we studied the k-fiber response. We first tested the impact 
of having non-uniform k-fiber thickness on the negative curvature response for an extreme scenario 
with γ=3. Together with a point negative moment at the kinetochore, this was sufficient to elicit a shift 
in the negative curvature minimum away from the kinetochore (Figure 3—figure supplement 2a,b).

To find out whether such behavior could be observed for realistic choices of γ, we performed a 
parameter study where we systematically tuned the γ parameter along with the negative bending 
moment at the kinetochore. For each pair of parameters, we calculated the ratio of negative curvature 
values at the thickness transition point (κ*) and at the kinetochore (κK). Values of this ratio (κ*/κK) that 
were greater than 1 indicated the presence of the curvature minimum at the transition point (away 
from the kinetochore), while values less than 1 meant the curvature minimum was at the kinetochore 
(Figure 3—figure supplement 2c).

Our study revealed that a nonuniform EI model with a realistic γ value (1.3) can, in fact, result in 
negative curvature minima within 0.5 µm from the kinetochore (Figure 3—figure supplement 2c, 
left). However, the k-fiber would need to be at least twice as thick near the kinetochore to have the 
negative curvature minimum be 1.5 µm away from the kinetochore. This requirement is increased 
to 3.5 times if the curvature minimum is to be 2.5 µm away from the kinetochore (Figure 3—figure 
supplement 2c, right). The minimum required γ parameter values for other choices of s* are shown in 
Figure 3—figure supplement 2d.

Overall, this study suggests that while 20–30% higher thickness of the k-fiber in the kinetochore-
proximal region (McDonald et al., 1992; O’Toole et al., 2020) may contribute to k-fiber’s resistance 
to bending, it cannot be the dominating factor eliciting the negative curvature response.

Model fitting and error estimation
In our model fitting procedure, we minimize the sum of squared errors. For a given data point (xi, yi) 
on the tracked k-fiber, we define the error as the minimal distance between that point and the k-fiber 
profile predicted by the model. If the point lies exactly on the predicted profile, the corresponding 
error will be zero.

We obtain the optimal set of model parameters through a combination of deterministic least-
squares minimization and stochastic search algorithms initialized at multiple different locations in 
parameter space. This is done to prevent the method from converging to a local optimum. During 
parameter search, we impose constraints on the parameter values to prevent the realization of 
unphysical configurations. These constraints are that the k-fiber profile cannot form loops, the inferred 
external force necessarily points outward, and forces of k-fiber end-points are lower than the crit-
ical buckling force. In addition, due to the uncertainties associated with precisely determining the 
positions of the microneedle contact, we let our search method consider positions within 0.5 μm of 
prescribed values. Details on estimating the fitting error and finding optimal model parameters are 
included in Appendix 4.

Modeling the binding states of PRC1
We calculate the free, singly bound and doubly bound populations of PRC1 using equilibrium thermo-
dynamic modeling combined with the measured immunofluorescence of PRC1 and tubulin within the 
spindle. The free PRC1 population was estimated using measured intensities in intracellular regions 
with very low tubulin presence. Then, the free (cf) and singly bound (c1(r)) populations were related via 
c1(r) = ρMT(r)cf /Kd, where ρMT(r) is the local tubulin concentration. The dissociation constant Kd was 
inferred from the PRC1 and tubulin concentrations (measured in arbitrary units) in the pole-proximal 
regions of the spindle, where microtubules are known to be predominantly parallel (Euteneuer and 
McIntosh, 1981). The doubly bound PRC1 population (c2(r)) that contributes to k-fiber crosslinking 
was then obtained by subtracting the free and singly bound contribution from the measured total 
population. In Figure 4i, the concentration of actively engaged crosslinkers per tubulin, i.e., c2(r)/

https://doi.org/10.7554/eLife.79558
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ρMT(r), was reported along the pole-pole axis. More details on the methodology of separating the 
binding states of PRC1 are provided in Appendix 5.

Quality of fit assessments and statistical analyses
When comparing the quality of fits between different modeling scenarios, we report the average root-
mean-squared error (RMSE) values, along with the standard error of the mean (SEM) calculated for 
each scenario (Figures 2e, 3f and 5c).

We report other metrics for assessing the quality of fits in which we compare different signature 
shape features between the tracked profile and the model predicted profile. For the native k-fiber 
model scenarios, this includes the location of the peak deflection (Figure 2d and f). For manipulated 
k-fiber model scenarios, these include the location of curvature maximum (Figures 3g and 5d), the 
location of curvature minimum (Figures 3h and 5e), and the length over which k-fiber orientation is 
strictly preserved within 1o (Figures 3i and 5f).

We used the non-parametric two-sided Mann-Whitney U test when comparing two independent 
datasets and display the p-values on the figures (Figures 2e, 3f and 5c). In the text, each time we 
state a significant change or difference, the p-value for those comparisons were less than 0.05. To 
evaluate the correlations between the data and model (such as the comparison of signature shape 
features), we used the Pearson correlation function to test for linearity (Figures 3g–i, 5d–f and h). We 
report the coefficient of determination, R2, which assesses how well the model captures the variance 
in the features of interest observed in the data. To test for monotonic relationships between two vari-
ables (Figure 5i), we used the Spearman correlation function. In the legends we state what test was 
conducted. Quoted m’s refer to the number of individual cells and n’s refer to the number of individual 
k-fibers.
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(metaphase spindles)

https://​github.​com/​
RPGroup-​PBoC/​
kfiber_​modeling_​
manipulation/​tree/​
main/​dat/​FCPT_​
manipulated_​k-​fiber_​
shapes

github, FCPT_
manipulated_k-fiber_
shapes

Suresh P, Galstyan V, 
Phillips R, Dumont S

2022 Unmanipulated metaphase 
spindles in Ptk2 cells

https://​github.​com/​
RPGroup-​PBoC/​
kfiber_​modeling_​
manipulation/​tree/​
main/​dat/​WT_​
unmanipulated_​k-​
fiber_​shapes

github, WT_
unmanipulated_k-fiber_
shapes

https://doi.org/10.7554/eLife.79558
http://orcid.org/0000-0002-7793-4827
http://orcid.org/0000-0001-7073-9175
http://orcid.org/0000-0003-3082-2809
http://orcid.org/0000-0002-8283-1523
https://doi.org/10.7554/eLife.79558.sa1
https://doi.org/10.7554/eLife.79558.sa2
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation
https://archive.softwareheritage.org/swh:1:dir:1ec6486f46199c059bba481c247f48055905b5d7;origin=https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation;visit=swh:1:snp:8c1544f35629b1ea380788f606186d74db501e68;anchor=swh:1:rev:dee771a47e82df5fb88c25cfc777ba377f8bb234
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/FCPT_manipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/FCPT_manipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/FCPT_manipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/FCPT_manipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/FCPT_manipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/FCPT_manipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/FCPT_manipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/WT_unmanipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/WT_unmanipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/WT_unmanipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/WT_unmanipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/WT_unmanipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/WT_unmanipulated_k-fiber_shapes
https://github.com/RPGroup-PBoC/kfiber_modeling_manipulation/tree/main/dat/WT_unmanipulated_k-fiber_shapes
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Suresh P, Galstyan V, 
Phillips R, Dumont S

2020 Immunofluorescence 
images for PRC1 
localization in metaphase 
spindles of Ptk2 cells

https://​github.​com/​
RPGroup-​PBoC/​
kfiber_​modeling_​
manipulation/​tree/​
main/​dat/​PRC1_​
localization

github, PRC1_localization

Suresh P, Galstyan V, 
Phillips R, Dumont S

2020 Microneedle manipulation 
in control Ptk2 cells 
(metaphase spindles)

https://​github.​com/​
RPGroup-​PBoC/​
kfiber_​modeling_​
manipulation/​tree/​
main/​dat/​WT_​
manipulated_​k-​fiber_​
shapes

Github, WT_
manipulated_k-fiber_
shapes
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Appendix 1
Euler-Bernoulli formalism and generation of native k-fiber shapes
In this section, we use the Euler-Bernoulli formalism to calculate the shapes of native k-fiber profiles 
(see Figure 2c of the main text for example profiles). In our analysis, we consider k-fibers at mechanical 
equilibrium and assume that their shapes are generated by forces and moments acting at their end-
points. All calculations are performed in the reference frame where the pole and the kinetochore lie 
along the ‍x‍-axis. The calculations and results of this section are related to Figure 2 of the main text.

1.Euler-Bernoulli equation and the small angle approximation
The Euler-Bernoulli beam theory relates the local curvature ‍κ(x)‍ to the bending moment ‍M(x)‍ via

	﻿‍
κ(x) = −M(x)

EI
,
‍�

(1)

where ‍EI ‍ is the flexural rigidity of the beam, with ‍E‍ being the Young’s modulus, and ‍I ‍ being the 
areal moment of inertia. The general expression for the curvature written in terms of Cartesian 
coordinates is given by

	﻿‍
κ(x) = y′′(x)(

1 + y′(x)2
)3/2 .

‍�
(2)

When substituted into Equation 1, this expression for ‍κ(x)‍ results in a nonlinear equation for the 
k-fiber profile ‍y(x)‍, making it challenging to obtain an analytical solution and extract intuition from 
it. We therefore begin our calculations by making the so-called ‘small angle approximation’ in 
order to write ‍κ(x) ≈ y′′(x)‍. This approximation applies to the native k-fibers shapes, which, upon 
aligning them along the ‍x‍-axis, appear flat and have a small tangential angle at every position of the 
profile (i.e., ‍|y′(x)| ≪ 1‍). This leads to a simpler and analytically tractable form for the Euler-Bernoulli 
equation, namely

	﻿‍
y′′(x) = −M(x)

EI
.
‍�

(3)

Solving this simpler equation will let us gain insights into how the different model components that 
define ‍M(x)‍ uniquely contribute to k-fiber shape. Later in Appendix section 1.3, we will demonstrate 
the validity of applying the ‘small angle approximation’ for native k-fiber shapes.

2.Analytical solutions for native k-fiber profiles
In our minimal model, the shape of native k-fibers is generated due to forces and moments acting at 
the pole and kinetochore ends of the k-fiber (Figure 2b of the main text). The ‍x‍- and ‍y‍-components 
of the force at the pole are denoted by ‍Fx‍ and ‍Fy‍, respectively. The bending moment at the pole is 
denoted by ‍Mp‍, with the counterclockwise direction chosen to be positive. The bending moment at 
the kinetochore (‍Mk‍) is generally different from ‍Mp‍.

Equation 3 is a second-order ordinary differential equation for the k-fiber shape ‍y(x)‍. To obtain 

‍y(x)‍, we need to specify two boundary conditions. These condition are

	﻿‍ y(0) = 0,‍� (4)

	﻿‍ y(L) = 0,‍� (5)

where ‍L‍ is the distance between the pole and kinetochore ends of the k-fiber. These conditions 
require that the k-fiber ends are positioned on the ‍x‍-axis.

The local bending moment ‍M(x)‍ is obtained by writing the moment balance condition for the 

‍[0, x]‍ segment of the k-fiber (see Figure 2b of the main text). Specifically, ‍M(x)‍ needs to balance the 
torque generated by the force ‍⃗F = (Fx, Fy)‍ at the pole and the bending moment ‍Mp‍, i.e.,

	﻿‍

M(x) = Mp + Fx y(x) − Fy x︸ ︷︷ ︸(
r⃗×F⃗

)
z

.

‍� (6)

https://doi.org/10.7554/eLife.79558
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Using the above expression, we can relate the bending moment at the kinetochore (‍Mk ≡ M(x = L)‍) 
to the moment at the pole (‍Mp‍). Noting that ‍y(L) = 0‍, we obtain

	﻿‍ Mk = Mp − FyL.‍� (7)

This indicates that a non-zero end-point force perpendicular to the pole-kinetochore axis will 
necessarily result in different bending moments (hence, curvatures) at k-fiber ends.

Knowing how the bending moment varies in space (Equation 6), we now substitute it into the 
Euler-Bernoulli equation in its ‘small angle approximation’ form (Equation 3) and obtain a linear 
second order ODE for the profile function ‍y(x)‍, namely

	﻿‍
y′′(x) +

(
Fx
EI

)
y(x) = −Mp

EI
+
(

Fy
EI

)
x.

‍�
(8)

We note that the forces and the moment at the pole always appear in a ratio with the flexural rigidity 
‍EI ‍. We therefore introduce rescaled effective parameters ‍̃Fx = Fx/EI ‍, ‍̃Fy = Fy/EI ‍, and ‍̃Mp = Mp/EI ‍, 
and rewrite the second order ODE for ‍y(x)‍ as

	﻿‍ y′′(x) + F̃xy(x) = −M̃p + F̃yx.‍� (9)

The functional form of the solution for ‍y(x)‍ depends on the signs and values of the different 
parameters. Therefore, in the following, we consider separate scenarios and discuss the insights that 
each analytical solution provides.

‍Fx = 0‍. We begin with the special case where the point force along the pole-kinetochore axis is 
zero. This simplifies the differential equation into

	﻿‍ y′′(x) = −M̃p + F̃yx.‍� (10)

Integrating twice over ‍x‍, we obtain

	﻿‍
y(x) = C1 + C2x − M̃px2

2
+

F̃yx3

6
,
‍�

(11)

where C1 and C2 are integration constants. Imposing the boundary conditions (Equation 4 and 
Equation 5), we find these constants to be ‍C1 = 0‍ and ‍C2 = M̃pL/2 − F̃yL2/6‍. Substituting C1 and 
C2, and writing the perpendicular force as ‍̃Fy = (Mp − Mk)/L‍ (from Equation 7), we obtain the final 
expression for ‍y(x)‍:

	﻿‍

y(x) = M̃p
x(L − x)

2︸ ︷︷ ︸
symmetric

−(M̃p − M̃k) x(L2 − x2)
6L︸ ︷︷ ︸

asymmetric

.

‍�

(12)

The first term contributing to the profile is symmetric about the middle position ‍x = L/2‍ and does not 
change under the transformation ‍x → L − x‍. The second term, however, is asymmetric and leads to 
a shift of the profile peak toward the end which has the higher bending moment.

In the limit where there is bending moment at the pole but not at the kinetochore (‍̃Mp > 0‍, 

‍̃Mk = 0‍), we can find the peak position of the asymmetric profile by solving for ‍x‍ in the equation 

‍y′(x) = 0‍. We obtain 
‍
xpeak =

(
1 −

√
3/3

)
L ≈ 0.42 L

‍
, which means that the peak of the profile is shifted 

toward the pole side by ‍≈ 8%‍ of the end-to-end distance ‍L‍. Similarly, when bending is present only 
at the kinetochore (‍̃Mp = 0‍, ‍̃Mk > 0‍), the profile peaks at ‍x ≈ 0.58 L‍, which is shifted now toward the 
kinetochore side by the same amount (see Figure 2c of the main text for demonstrations of these 
two asymmetric cases).

‍Fx > 0‍ and ‍Mp = Mk = 0‍. Next, we consider another special case where the k-fiber profile is formed 
by a purely axial force ‍Fx‍ in the absence of bending moments at either end-point (‍̃Mp = M̃k = 0‍ and 
hence, ‍̃Fy = 0‍). The ODE for ‍y(x)‍ in this case simplifies into

	﻿‍ y′′(x) + F̃x y(x) = 0.‍� (13)

The general solution is a linear combination of ‍sin(kx)‍ and ‍cos(kx)‍ functions, with the wave number 
defined as ‍k =

√
F̃x ‍. The boundary condition ‍y(0) = 0‍ eliminates the cosine solution. Imposing the 

https://doi.org/10.7554/eLife.79558
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second boundary condition, we obtain ‍sin(kL) = 0 ⇒ k = π/L‍ (first buckling mode). This suggests that 
the axial force needs to exactly equal the critical buckling force given by ‍Fc = π2EI/L2‍. The sinusoidal 
buckling profile, as shown in Figure 2c, is symmetric with respect to ‍x = L/2‍.

‍Fx > 0‍, ‍Mp > 0‍, and ‍Mk = 0‍. We end our analytical treatment of native k-fiber shapes by considering 
the more general case where a moment at the pole and axial forces are both present, but there is no 
moment generation at the kinetochore (‍̃Mk = 0‍). This corresponds to the minimal model sufficient 
to capture the diverse shapes of k-fibers in their native state (see Figure 2f and g of the main text).

Substituting ‍̃Fy = M̃p/L‍ into Equation 9, the ODE for the k-fiber profile ‍y(x)‍ for this case becomes

	﻿‍
y′′(x) + F̃xy(x) = − M̃p

L
(L − x).

‍�
(14)

The general solution to the ODE can be written as

	﻿‍
y(x) = D1 sin

(
k(L − x)

)
+ D2 cos

(
k(L − x)

)
− M̃p

F̃xL
(L − x),

‍�
(15)

where D1 and D2 are integration constants. The argument of sine and cosine functions is written as 
‍(L − x)‍ for convenience. Now, the boundary condition at the kinetochore is ‍y(x = L) = 0‍ which indicates 
that ‍D2 = 0‍. From a similar boundary condition at the pole (‍y(0) = 0‍), we obtain ‍D1 = (M̃p/F̃x)/ sin(kL)‍. 
After substitution, the final expression for the profile becomes

	﻿‍
y(x) =

M̃p

F̃x

(
sin(k(L − x))

sin(kL)
− L − x

L

)
,
‍�

(16)

where, as a reminder, ‍k =
√

F̃x ‍. One can show that in the limit where the axial force goes to zero 
(‍k → 0‍), the polynomial solution in Equation 12 is recovered. Conversely, when the axial force is 
close to the critical buckling force (achieved when ‍kL ≈ π‍ or ‍̃Fx ≈ π2/L2‍), the sine term becomes 
dominant in the solution and the symmetric sinusoidal profile is recovered (solution of Equation 13).

To probe the behavior in the intermediate regimes, we tuned the axial force in the ‍(0, Fc)‍ range 
and numerically found the corresponding moment at the pole (‍Mp‍) that would yield an identical peak 
deflection, which we set equal to ‍ymax = 0.1L‍ (our conclusions hold true for any other ymax value that 
does not violate the small-angle approximation). As shown in Appendix 1—figure 1a, the larger the 
axial force becomes, the smaller the corresponding moment at the pole needs to be in order to yield 
the same amount of k-fiber deformation (measured by ymax). Furthermore, as anticipated, increasing 
the axial force (with a corresponding decrease in the moment at the pole) shifts the position of the 
peak closer to the center (Appendix 1—figure 1b), and when the force reaches the critical buckling 
force, the ‍x‍-position of the peak becomes equal to ‍L/2‍.

(a) (b)

Appendix 1—figure 1. Generation of native k-fiber shapes with a fixed peak deflection ymax for different choices of 
the axial force ‍Fx‍. (a) Moment at the pole ‍Mp‍ that yields the specified peak deflection ymax as a function of ‍Fx‍. M0 
is the pole moment in the absence of an axial force. (b) ‍x‍-position of the profile peak as a function of.‍Fx‍

Overall, this study shows that the simultaneous tuning of ‍Mp‍ and ‍Fx‍ (equivalently, ‍Fy‍ and ‍Fx‍) 
according to the rule revealed in Appendix 1—figure 1a shifts the ‍x‍-position of the k-fiber peak 
without changing the magnitude of the peak k-fiber deflection (ymax).

https://doi.org/10.7554/eLife.79558
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3.Justification of the small angle approximation
Here, we demonstrate the validity of the small angle approximation for modeling native k-fiber 
shapes by comparing the results of inference under this approximation with the results of the more 
exact numerical approach detailed in Appendix section 3.

In our minimal model of native k-fiber shape generation, the two independent parameters are the 
axial force ‍Fx‍ and the moment at the pole ‍Mp‍. For each parameter, we take the ratio of its inferred 
value under the approximate and exact methods, and plot the value of this ratio for all native k-fibers 
considered in our study (Appendix 1—figure 2a). When plotting, we give transparency to each 
data point based on how much they contribute to k-fiber shape. If the data point is transparent, 
then the corresponding parameter (‍Fx‍ or ‍Mp‍) contributes little to k-fiber shape. We set the weights 
of shape contribution for axial force and moment at the pole as ‍wFx = |Fx|ymax/(|Fx|ymax + Mp)‍ and 

‍wMp = Mp/(|Fx|ymax + Mp)‍, respectively, where ‍|Fx|ymax‍ is the largest mechanical moment exerted by 
the axial force about the origin ‍(0, 0)‍. As can be seen from Appendix 1—figure 2a, parameters 
inferred by the two methods are almost always very close to each other when the corresponding 
parameter has a significant shape contribution, and may differ significantly when the corresponding 
parameter does not contribute significantly to shape (transparent points). Furthermore, the fitting 
errors predicted by the two methods are very similar to each other (Appendix  1—figure 2b). 
Together, these studies demonstrate the validity of invoking the small angle approximation for 
studying native k-fiber shapes.
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Appendix 1—figure 2. Comparison of inference results from the small angle approximation and exact numerical 
approach. (a) Ratios of parameters inferred by the two methods. (b) Fitting error comparison between the two 
methods.

4. Dependence of the largest normalized deflection on native k-fiber length
Here, we use the analytical solutions of native k-fiber profiles obtained under the small angle 
approximation (Appendix section 1.2) to study the dependence of the largest normalized ‍y‍-deflection 
on the length of the k-fiber when the force parameters are kept fixed.

We begin with the special case where the k-fiber profile is generated by a point moment ‍̃Mp‍ 
acting at the pole. In this case, the profile ‍y(x)‍ is given via

	﻿‍
y(x) = M̃p

x(L − x)(2L − x)
6L

,
‍�

(17)

which follows from Equation 12 by setting ‍̃Mk = 0‍. Earlier in Appendix section 1.2, we found that the 
profile peak was achieved at 

‍
xpeak =

(
1 −

√
3/3

)
L

‍
. Substituting this ‍x‍-value into Equation 17 and 

simplifying the resulting expression, we obtain the largest ‍y‍-deflection, namely

	﻿‍
ymax =

√
3

27
M̃pL2.

‍�
(18)

https://doi.org/10.7554/eLife.79558
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We are interested in the largest ‍y‍-deflection normalized by the end-to-end distance ‍L‍. Dividing both 
sides of Equation 18 by ‍L‍, we find

	﻿‍
ymax

L
=

√
3

27
M̃pL.

‍�
(19)

As we can see, the normalized deflection of the bent k-fiber profile scales linearly with the end-to-
end distance ‍L‍, with the slope of the dependence given by ‍(

√
3/27)M̃p‍.

When the k-fiber profile is generated by the combined action of a moment at the pole (‍̃Mp‍) and 
an axial force (‍̃Fx‍), the normalized k-fiber profile follows from our earlier derived result for ‍y(x)‍ in 
Equation 16, namely

	﻿‍

y(x)
L

=
M̃p

F̃xL

(
sin(k(L − x))

sin(kL)
− L − x

L

)
,
‍�

(20)

where ‍k =
√

F̃x ‍. An exact analytical solution for ‍ymax/L‍ is available but is not informative due to its 
complexity. We therefore use a numerical approach to study the more general case.

We first calculated deflection profiles for k-fibers of different lengths by fixing the moment at the 
pole ‍(M̃p)‍ and the axial force ‍(F̃x)‍ at their average values inferred for native k-fibers (Appendix 1—
figure 3a). As expected, longer k-fibers are deformed more when exposed to the same end-forces. 
The increasing trend also holds true when we normalize the axes by the end-to-end distance ‍L‍ 
(Appendix 1—figure 3b). This corresponds to the trend we observed in the normalized deflections 
measured for inner vs. outer native k-fibers (Figure 2—figure supplement 2b).

(a)

(c)

(b)

(d)

Appendix 1—figure 3. Impact of the k-fiber length on the amount of k-fiber deflection. (a) Set of k-fiber 
profiles of varying contour length generated by a moment at the pole ‍(Mp = 0.114 EIµm−1)‍ and an axial 
force ‍(Fx = 0.084 EIµm−2)‍. Circles indicate the locations of the highest deflection. (b) K-fiber profiles in panel 
(a), normalized by the end-to-end distance ‍L‍. (c) Dependence of the normalized maximum deflection on the 
end-to-end distance ‍L‍ for varying choices of the axial force ‍Fx‍ (reported in units of ‍EIµm−2

‍) and a fixed value of 
the moment at the pole, ‍Mp = 0.114 EIµm−1

‍. (d) Study in panel (c) with the ‍x‍-axis corresponding to the k-fiber 
contour length ‍Lcontour‍ instead of the end-to-end distance ‍L‍.

To better understand the effect that the inclusion of axial forces has on the maximum deflection, 
we plotted the dependence of ‍ymax/L‍ on the end-to-end distance ‍L‍ for different choices of the axial 
force ‍̃Fx‍ (Appendix 1—figure 3c). In the limiting case where ‍̃Fx = 0‍, the linear scaling derived in 

https://doi.org/10.7554/eLife.79558
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Equation 19 is recovered. With increasing values of ‍̃Fx‍, the dependence on ‍L‍ becomes stronger and 
the curves shift upward. This indicates that in the presence of axial forces, a wide range of deflection 
amounts can be achieved by tuning the k-fiber end-to-end distance in its physiological range.

We end this section by noting that the effects captured in Appendix 1—figure 3c are closely 
observed if instead of tuning the end-to-end distance, we tuned the k-fiber contour length instead 
(Appendix  1—figure 3d). This is because for small deflections, those two length measures are 
almost identical.

https://doi.org/10.7554/eLife.79558
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Appendix 2
Justification of treating the microneedle force as a point force
In this section, we present the results of the studies that justify our treatment of the microneedle 
force as a point force in models of k-fiber shape generation (related to Figures 3–5 in the main text). 
This is in contrast to using a distributed force acting along a finite region of the k-fiber, the size of 
which is set by the diameter of the microneedle (≈0.5–1.5 µm).

To demonstrate that k-fiber response is not significantly dependent on the distributed force 
assumption, we first generated k-fiber shapes by applying distributed forces over regions of varying 
size (0.5–1.5 µm) and overlaid the resulting profiles. As shown in Appendix 2—figure 1, there is a 
very close match between the k-fiber profiles generated by the same integrated force distributed 
along different length scales.

Appendix 2—figure 1. K-fiber profile generation with a distributed microneedle force. (a) Example profiles where 
the same integrated microneedle force was applied over three different regions of the k-fiber. The black arrows 
indicate the applied external forces with lower magnitudes for larger regions of distributed force application. 
Parameters used in profile generation: ‍̃Fext = 0.2µm−2

‍ (integrated force), ‍Lcontour = 10‍ µm. (b) Profiles from 10 
different distributed force settings overlaid on top of each other. Only minor differences can be observed near the 
rightmost end.

To further validate our point-force treatment, we inferred a point-force model for the synthetically 
generated profiles with distributed forces (see Appendix sections 3 and 4 for details on the inference 
procedure). In all cases, the effective point force was inferred to be within ‍≈ 0.02‍ µm of the center 
of the distributed force application region (Appendix  2—figure 2), with the error between the 
generated data and inferred model being very low (RMSE ‍≈ 0.03‍ µm). Together, these results justify 
our treatment of the microneedle force as a point force in our models of k-fiber manipulation.

Appendix 2—figure 2. Fits of the point microneedle force model (dashed lines) to synthetic profiles (solid blue 
lines) which were generated with distributed forces applied over different regions. The red arrow indicates the 
inferred point microneedle force ‍Fext‍.

https://doi.org/10.7554/eLife.79558
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Appendix 3
Numerical approach for solving the Euler-Bernoulli equation
In this section, we present in detail the approach we took to numerically solve the Euler-Bernoulli 
equation in the general scenario of arbitrary deformation magnitudes where the small angle 
approximation applied in the previous section may no longer be valid. The approach detailed in this 
section as well as the following one is relevant to Figures 2–5 in the main text.

Since in general k-fiber profiles may have more than one ‍y‍-intercept at a given ‍x‍ position, we 
consider a parameterization of the k-fiber shape via an arc length parameter ‍s‍ and solve for ‍(x(s)‍, ‍y(s))‍ 
instead. Assigning a tangential angle ‍θ(s)‍ to each point on the k-fiber, we write the Euler-Bernoulli 
equation as

	﻿‍
κ(s) = −dθ

ds
= M(s)

EI
.
‍�

(21)

As we can see, knowing the bending moment ‍M(s)‍ at a given arc length position ‍s‍ gives us the rate 
of change in the tangential angle ‍θ(s)‍.

To numerically solve for the k-fiber profile, we need initial conditions and update rules. For 
convenience, we always initialize the first k-fiber point at the origin and therefore set ‍x(0) = y(0) = 0‍. 
Euler-Bernoulli equation provides us with the derivative of the tangential angle ‍θ(s)‍. The initial angle 

‍θ(0)‍ therefore needs to be initialized also. When fitting the model to experimental data, we make 
an educated guess for ‍θ(0)‍ based on the initial tangential angle of the data profile. Over the course 
of model optimization, this initial angle is treated as a parameter and is optimized over for better 
model fitting.

The k-fiber shape profile is solved iteratively using a finite difference method. Specifically, the 
bending moment ‍M(s)‍ is first used to estimate the tangential angle at position ‍s + ∆s/2‍ via

	﻿‍
θ(s + ∆s/2) = θ(s) − M(s)

EI
∆s
2

.
‍�

(22)

Then, the new coordinate on the k-fiber profile is calculated using this angle via

	﻿‍ x(s + ∆s) = x(s) + ∆s cos(θ(s + ∆s/2)),‍� (23)

	﻿‍ y(s + ∆s) = y(s) + ∆s sin(θ(s + ∆s/2)).‍� (24)

Finally, the tangential angle is updated for the next step using the bending moment at ‍s + ∆s/2‍, 
namely

	﻿‍
θ(s + ∆s) = θ(s) − M(s + ∆s/2)

EI
∆s.

‍�
(25)

Our approach of dividing each step into two half-steps reduces the error in shape calculation, making 
it quadratic in the step size, i.e., ‍O(∆s2)‍.

For each separate model considered in our work (Figure  2a, Figure  3b and d, Figure  4b, 
and Figure 5a), the corresponding expression for the bending moment is used when evaluating 

‍M(s) = M(⃗r(s))‍. Moment contribution from the microneedle force ‍⃗Fext‍ is considered only when the 
current position ‍x(s)‍ exceeds the position of the external force xext. A similar treatment is used also 
for the point crosslinking force ‍⃗Fc‍ applied at position xc. Lastly, in the case of distributed crosslinking 
shown in Figure 4b, we account for the integrated moment contribution if the current position ‍x(s)‍ 
falls in the crosslinking region ‍(L − σ, L)‍. Mechanical moments of distributed crosslinking forces up 
to position ‍x(s)‍ are calculated by treating them as a series of linear Hookean springs exerting a 
restoring force ‍−ky(s′)∆x′‍ on k-fiber segments ‍(s′, s′ + ∆s)‍ with an ‍x‍-projection size ‍∆x′‍. Here, ‍k‍ is 
the effective ‘spring constant’ chosen in our studies to be sufficiently large to result in a negative 
curvature response near the kinetochore.

https://doi.org/10.7554/eLife.79558
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Appendix 4
Model fitting procedure
We obtain the best model fits to the extracted k-fiber profiles by minimizing the sum of squared 
errors. Error is defined for each data point of the tracked k-fiber as the minimal distance between that 
point and the model k-fiber profile, with the model profile represented as a piecewise linear curve 
(Appendix 4—figure 1). This error metric can be successfully applied to profiles with sophisticated 
shapes, as opposed to the more traditional metrics based on errors in ‍y(x)‍ prediction which become 
ill-defined for curved profiles with more than one ‍y‍-value at a given ‍x‍-position.

Model

errors

di di+1
di-1

Data
i+2i+1i

i-1

i-2

Appendix 4—figure 1. Schematic of the error definition. For the ‍ith‍ data point, the error di is the smallest distance 
to the model profile which is represented as a piecewise linear curve. Sum of squared errors, namely, ‍

∑
i d2

i ‍, is 
minimized in the model fitting procedure.

During parameter search, we impose constraints on the parameter values and possible k-fiber 
shape profiles based on our understanding of the experimental setup. This helps us avoid physically 
unrealistic scenarios. Below we list the main constraints that we imposed:

•	 The inferred microneedle force has to point outward, with its ‍y‍-component having the same 
sign as k-fiber deflection, i.e., it has to be positive.

•	 The inferred microneedle force is perpendicular to the local tangent of the k-fiber shape 
profile. This is based on our assumption of very low frictional forces in the tangent direction 
discussed in the Materials and Methods.

•	 The inferred position of microneedle force application is within 0.5 µm of the position of profile 
peak. We give this finite range in our search for the effective point of force application because 
the precise point of contact between the k-fiber and the microneedle is hard to identify from 
fluorescence microscopy images, and because the contact likely takes place over a small but 
finite contour length.

•	 If the microneedle force has a positive ‍x‍-component (points to the right), then the point force 
at the left k-fiber endpoint (‍Fx‍) has to have a negative ‍x‍-component (point to the left) in order 
to balance the external force. This condition is imposed to avoid considering spontaneous 
inward-pointing buckling forces during parameter search. An analogous constraint is applied 
if the microneedle force has a negative ‍x‍-component (points to the left).

•	 Parameter sets that predict k-fiber shape profiles with loops (i.e., the model curve passes 
through the same point twice) are not considered during search.

Because of this set of hard constraints, standard gradient descent-based methods for minimizing 
the sum of squared errors are not effective for finding the optimal parameters. We therefore use a 
time consuming but more reliable stochastic search method. There, we initialize multiple “walkers” 
at different positions in the parameter space, and run a stochastic search with up to 150,000 steps 
where each step is more likely to be taken in the direction that decreases the overall error. The best 
model fit is then generated by the set of sampled parameters that yields the lowest sum of squared 
errors.

https://doi.org/10.7554/eLife.79558
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Appendix 5
Modeling of PRC1 binding states
In this section, we provide the details of our approach to distinguish the PRC1 populations by their 
binding state using equilibrium thermodynamic modeling and immunofluorescence imaging data 
(Suresh et al., 2020). The results presented here are relevant to Figure 4i of the main text.

We distinguish three binding states for PRC1 - freely diffusing, singly bound, and doubly bound. 
The freely diffusing population represents the unbound PRC1 molecules that occupy the entire 
volume of the cell and do not contribute to crosslinking activity. We denote the concentration of this 
PRC1 population by cf and assign no spatial dependence to it, since intracellular diffusion occurs at 
much faster time scales than metaphase and would therefore manage to equilibrate the free PRC1 
population in the cell.

The singly bound population includes PRC1 molecules that are bound to a single microtubule 
only and, similar to the free population, do not contribute to crosslinking activity. We denote this 
population by ‍c1(⃗r)‍ and relate it to the local tubulin concentration ‍ρMT(⃗r)‍ via

	﻿‍
c1(⃗r) = ρMT(⃗r)

Kd
cf,

‍�
(26)

where ‍Kd‍ is the dissociation constant of PRC1–single microtubule binding. To write the above relation 
between the free and singly bound populations, we again considered an equilibrated scenario, 
which we assume holds true given the fast dynamics of molecular turnover (Pamula et al., 2019) and 
diffusion compared to the duration of metaphase.

If ‍ctot(⃗r)‍ is the local concentration of all PRC1 populations together, then the doubly bound PRC1 
population (‍c2(⃗r)‍) can be isolated by subtracting the free and singly bound populations from the total 
one, namely

	﻿‍

c2(⃗r) = ctot(⃗r) − c1(⃗r) − cf

= ctot(⃗r) − ρMT(⃗r)
Kd

cf − cf.
‍�

(27)

We are interested in estimating ‍c2(⃗r)‍ along the pole-pole axis of the spindle in order to infer the 
length scale of the active crosslinking region.

To that end, for each spindle, we first estimate cf by averaging over the measured 
immunofluorescence in several different regions of interest (ROIs) where there is little to no detectable 
presence of microtubules. Examples of such ROIs are shown in Appendix 5—figure 1a. Next we 
need to estimate the dissociation constant ‍Kd‍. Based on the in vitro measured ≈ 30-fold higher 
binding affinity of PRC1 to antiparallel microtubules compared to parallel ones (Bieling et al., 2010), 
and the result of an electron microscopy study suggesting that microtubules near the spindle poles 
are predominantly parallel (Euteneuer and McIntosh, 1981), we assume that the PRC1 population 
in the immediate vicinity of spindles poles is made out of free and singly bound states only. Denoting 
the pole-proximal positions by ‍⃗rp‍, we set ‍c2(⃗rp) ≈ 0‍ and use Equation 27 to estimate ‍Kd‍ as

https://doi.org/10.7554/eLife.79558
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Appendix 5—figure 1. ROIs selected for different calculations shown on immunofluorescence images of 
PRC1 (top row) and tubulin (bottom row). (a) Regions with little to no tubulin presence where PRC1 can be 
considered unbound. The dashed lines represent the cell boundaries estimated by manual tracing based on high 
intensity contrast. (b) Pole-proximal regions where microtubules are present primarily in a parallel configuration. 
(c) Rectangular pole-to-pole region where the estimation of the actively engaged PRC1 population is made.

	﻿‍
Kd ≈

⟨
ρMT(⃗rp) cf

ctot(⃗rp) − cf

⟩

r⃗p

,
‍� (28)

where ‍⟨·⟩‍ represents averaging over pole-proximal positions ‍⃗rp‍. Manually selecting several ROIs near 
the poles (Appendix 5—figure 1b) and using the immunofluorescence measurements for ‍ctot(⃗rp)‍ 
and ‍ρMT(⃗rp)‍ in these regions, we perform the averaging and obtain the estimate for ‍Kd‍.

With cf and ‍Kd‍ calculated, we obtain the spatial profiles of actively engaged PRC1 molecules 
along the pole-pole axis of the spindle by selecting a rectangular region spanning the area between 
the poles (Appendix  5—figure 1c) and using the measured PRC1 (‍ctot(⃗r)‍) and tubulin (‍ρMT(⃗r)‍) 
profiles to calculate ‍c2(⃗r)‍ via Equation 27. Lastly, approximating k-fibers as homogeneous bundles 
of microtubules, we divide the calculated concentration of actively engaged PRC1 molecules by 
the local tubulin concentration, and report that ratio (engaged PRC1 per tubulin – a proxy for the 
strength of local crosslinking) as a function of position in the main text (Figure 4i).

https://doi.org/10.7554/eLife.79558
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