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Abstract

Motivation: Metagenomes offer a glimpse into the total genomic diversity contained within a sample. Currently,
however, there is no straightforward way to obtain a non-redundant list of all putative homologs of a set of reference
sequences present in a metagenome.

Results: To address this problem, we developed a novel clustering approach called ‘metagenomic clustering by ref-
erence library’ (MCRL), where a reference library containing a set of reference genes is clustered with respect to an
assembled metagenome. According to our proposed approach, reference genes homologous to similar sets of meta-
genomic sequences, termed ‘signatures’, are iteratively clustered in a greedy fashion, retaining at each step the ref-
erence genes yielding the lowest E values, and terminating when signatures of remaining reference genes have a
minimal overlap. The outcome of this computation is a non-redundant list of reference genes homologous to minim-
ally overlapping sets of contigs, representing potential candidates for gene families present in the metagenome.
Unlike metagenomic clustering methods, there is no need for contigs to overlap to be associated with a cluster, ena-
bling MCRL to draw on more information encoded in the metagenome when computing tentative gene families. We
demonstrate how MCRL can be used to extract candidate viral gene families from an oral metagenome and an oral
virome that otherwise could not be determined using standard approaches. We evaluate the sensitivity, accuracy
and robustness of our proposed method for the viral case study and compare it with existing analysis approaches.
Availability and implementation: https://github.com/a-tadmor/MCRL.

Contact: arbel.tadmor@tron-mainz.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, the field of metagenomics has revolutionized our
understanding of uncultured bacteria and viruses in Earth’s bio-
sphere. Deciphering the vast amounts of genomic data encoded in
metagenomes is challenging and requires novel data mining
approaches. Interpretation of metagenomes typically involves an an-
notation phase performed, e.g. by alignment of reads against public
sequence databases, such as the RefSeq database (Pruitt et al., 2007)
or the National Center for Biotechnology Information (NCBI) nr
database (Sayers et al., 2020), or by homology-based searches of
query sequences against databases containing known functional or
taxonomic information (Huntemann et al., 2016; Meyer et al.,

2008; Oulas et al., 2015). For example, in PATRIC (Brettin et al.,
2015) annotation is based on alignment of k-mers (Edwards ez al.,
2012) against protein families in SEED (Meyer et al., 2009), and in
the case of the DOE-JGI Microbial Genome Annotation Pipeline
(Mavromatis et al., 2009), protein coding genes are compared to
protein families using databases, such as Pfam (Bateman et al.,
2004) and TIGRFAM (Haft et al., 2003), functional annotation
databases, such as KEGG (Kanehisa and Goto, 2000) and COG/
KOG (Tatusov et al., 2000), and composite protein domain data-
bases, such as Interpro (Hunter et al., 2008). Conventional annota-
tion approaches, however, do not address the question of whether a
metagenome contains homologs of a pre-defined group of genes of
interest, or provide a non-redundant list of all sequences present in a
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metagenome that are homologous to such a pre-defined group of
genes.

For well-studied environments, reference catalogs can be estab-
lished and reads can be screened directly against those catalogs. For
example, for studies focusing on the human gut, a human gut micro-
bial integrated gene catalog was established as part of the MetaHIT
project (Li et al., 2014) and studies of the human gut microbiome
can use this database to screen reads. Indeed, for certain applications
dedicated bioinformatic pipelines have been established. For ex-
ample, to infer community function of human-associated microbial
communities directly from reads, HUMAnN (Abubucker et al.,
2012) was developed as part of the Human Microbiome Project
(Methé et al., 2012). For analysis of viral communities, many dedi-
cated tools for detection of viral sequences and/or assembly of viral
genomes using reference databases have been developed, including,
e.g. VIP (Li et al., 2016), SURPI (Naccache et al., 2014), VirFinder
(Ho and Tzanetakis, 2014) and VirusFinder (Wang ef al., 2013).
However, such methods (further discussed in Section 5) do not pro-
vide information regarding gene redundancy, nor are they designed
to remove such redundancy. For example, closely related genes or
non-overlapping sequences stemming from a common genomic
source would be annotated and reported separately. Furthermore,
methods, such as those described above are not expected to work
well when metagenomic sequences considerably diverge from refer-
ence sequences or when applied to novel poorly studied communities
that do not have conventional gene catalogs. An alternative ap-
proach is to map reads to specific gene collections or gene families
using targeted assembly approaches, such as implemented in
MEGAN (Huson et al., 2017), or methods, such as Xander (Wang
et al., 2015), and SAT-assembler (Zhang et al., 2014). However,
such approaches are expected to have limited sensitivity for highly
divergent sequences or when searching for novel diversity.
Furthermore, targeted sequencing approaches may result in frag-
mented assembly of sequences and do not provide information about
gene redundancy or remove such redundancy (further discussed in
Section 5). Thus, a more generalized approach is needed that is not
specific to certain environments or gene sets, and which is capable of
providing a non-redundant list of all sequences present in a given
metagenome that are homologous to a pre-defined set of genes.

Mining metagenomes for homologs of a pre-defined set of refer-
ence sequences is particularly challenging for viruses. Viral genes
present in a given sample will often be highly divergent from refer-
ence sequences, making reference-based assembly challenging if not
impractical for many viral sequences. Furthermore, viral genes can
exist as ensembles of closely related sequences due to the high muta-
tion rate of viruses. Such ensembles can therefore contain many
closely related variants, resulting in a high degree of sequence redun-
dancy. In addition, local populations of viral genomes often contain
a high degree of mosaic diversity due to horizontal gene transfer
(Hendrix 2003), potentially adding another layer of redundancy.
Assembly-based methods for viral identification are not designed to
account for these forms of redundancy and will report each genomic
variant as a novel gene or genome even if the entire ensemble of
genes or genomes reflects a single cohesive group of closely related
genes or viral genomes.

A reverse annotation approach for data mining metagenomes

To circumvent such challenges, we propose a ‘reverse annota-
tion’ approach called Metagenomic Clustering by Reference Library
(MCRL) for extracting non-redundant diversity from a metagenome
based on diversity defined in a reference library. MCRL screens an
assembled metagenome for the presence of known (i.e. annotated)
reference genes and removes redundant reference genes by applying
an iterative clustering algorithm to the reference sequences with re-
spect to the given metagenome. Each reference gene is characterized
by its signature in the metagenome, defined as the list of contigs that
are putative homologs of that reference gene. MCRL takes advan-
tage of the fact that reference genes with similar sequences will have
similar signatures in the metagenome in order to group these refer-
ence genes together, retaining the reference gene yielding the lowest
E value to represent that cluster. This process is repeated iteratively

in a greedy fashion, terminating when all reported reference genes
have distinct signatures with only residual overlap. The list of refer-
ence genes reported by MCRL provides insight into the existence of
different putative gene families present in the metagenome that can-
not be easily extracted based on standard metagenomic annotation,
targeted assembly or by conventional metagenomic clustering
approaches (Kopylova et al., 2016; Li et al., 2012).

MCRL analysis focuses on contigs obtained from preassembled
metagenomes as opposed to reads because homology can be deter-
mined with greater sensitivity and precision when using larger
assembled fragments. Thus, by considering de novo assembled con-
tigs from unfiltered reads and using a homology metric to score
alignments as opposed to aligning reads against reference sequences,
MCRL is capable of detecting more divergent sequences from the
reference library. Furthermore, by considering contigs, MCRL can
effectively remove spurious alignments that otherwise would add
noise to signatures and potentially bias clustering. Finally, from a
practical perspective, analysis of reads could drastically increase the
computation time required by MCRL (in particular the clustering
phase), potentially rendering implementation impractical.

Contrasting MCRL with metagenomic clustering approaches

Since MCRL performs clustering with the goal of data reduction,
it is useful to contrast MCRL with conventional methods for metage-
nomic clustering to understand in what way these approaches differ.
Conventional metagenomic clustering programs ‘compress’ a metage-
nome by grouping similar metagenomic sequences into groups or clus-
ters, and then replace each cluster with a representative metagenomic
sequence. Metagenomic clustering can be performed by one of three
methods (Kopylova et al., 2016; Navas-Molina et al., 2013): (i) de
novo clustering, where input sequences are grouped based on pairwise
similarity. De novo clustering programs include, e.g. mothur (Schloss
et al., 2009), CD-HIT (Fu et al., 2012), DNAclust (Ghodsi et al.,
2011), Swarm (Mahé et al., 2015), OTUCLUST (Albanese et al.,
2015), SUMACLUST (Mercier ef al., 2013), UCLUST and USEARCH
(Edgar, 2010), (ii) closed-reference clustering, supported e.g. by
UCLUST and USEARCH (Kopylova et al., 2016), where sequences
that match a reference sequence [e.g. based on BLAST alignments
(17)] are clustered and remaining sequences are discarded and (iii)
open-reference clustering methods, supported by programs, such as
UCLUST (Kopylova et al., 2016), which combine both categories:
sequences that match a reference sequence are clustered, and remain-
ing sequences are clustered de novo (Kopylova et al., 2016; Navas-
Molina et al., 2013). Most metagenomic clustering methods, such as
CD-HIT, UCLUST, DNAclust, OTUCLUST and SUMACLUST use a
greedy strategy for clustering. Although both MCRL and metage-
nomic clustering methods have a similar goal, which is to remove re-
dundancy from a metagenome, these approaches are fundamentally
different. Whereas the tools described above cluster metagenomic
sequences, MCRL clusters metagenomic signatures. We therefore
found it insightful to compare results obtained using both methods in
order to highlight the unique features of MCRL.

In the present report, we describe the MCRL algorithm and char-
acterize it terms of its sensitivity, accuracy and robustness, contrast-
ing it where possible with metagenomic clustering. Our primary
focus in this report is on analysis of viral genes; however, we also
discuss additional applications for which MCRL could be useful.

2 Materials and methods

2.1 Definitions

MCRL requires as input a ‘reference library’, which is FASTA file con-
taining a list of annotated amino acid sequences, termed ‘reference
genes’. Any group of genes or sequences can be used as a reference li-
brary. A reference gene is said to have a signature in the metagenome,
defined as the list of contigs in the metagenome yielding E values below
a given threshold, Ey (0.001 by default), when aligning the reference
gene against the metagenome. Two signatures S; and S; are then said to
overlap if the following condition is satisfied:
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where [s| is the number of elements in the set s, T is a pre-specified
threshold (0.5 by default) and M represents either the maximum
function for an ‘inclusive’ overlap condition, or the minimum
function for a ‘stringent’ overlap condition. If the signatures of two
reference genes overlap based on Equation (1), the reference genes
are said to be related. Note that according to this definition, related
reference genes can also be distant homologs.

2.2 The MCRL algorithm

2.2.1 Clustering

Initially, MCRL retains only reference genes yielding a minimal E
value below a pre-specified E value threshold (E,,) when BLASTed
against the metagenome (10~ by default). This filtering step is per-
formed in order to retain only reference genes that yield reasonable
alignments to contigs. Next, of the remaining reference genes,
MCRL proceeds to find for each reference gene all reference genes to
which it is related, and elects from this group the reference gene
yielding the minimal E value as the delegate to represent the given
reference gene in the current iteration. Thus, if a given reference
gene is not elected to be a delegate by any reference gene including it-
self it will be left out of the next iteration. At the end of a given iter-
ation, some retained reference genes can still be related. Therefore,
this filtering step is repeated iteratively until no two reference genes
reported by MCRL are related (see Supplementary Fig. S1a for a dia-
gram summarizing the MCRL algorithm). The final set of reference
genes reported by MCRL is non-redundant in the sense that none of
the reported reference genes are related. Each reference gene
reported by MCRL is paired with a ‘representative contig’, which is
the contig yielding the lowest E value in the signature of the reported
reference gene. Figure 1a and b demonstrates the MCRL algorithm
on a simple example.

Reference gene clusters and networks

Each reported reference gene represents a ‘reference gene cluster’,
which comprises all related reference genes yielding higher E values
that elected the reported reference gene. Reference genes, which are
not part of the reference gene cluster, but elect delegates that eventu-
ally lead to the reported reference gene are part of a larger ‘reference
gene network’ associated with the reported reference gene (illus-
trated in Fig. 1c). The reported reference gene lies at the epicenter of
this reference gene network, with all branches leading to it.
Supplementary Figure S1b shows examples of reference gene clusters
and networks.

2.2.2 Symmetric versus asymmetric clustering

MCRL supports two definitions for the overlap of signatures: a sym-
metric overlap condition, termed stringent overlap, where both ref-
erence genes must meet the overlap threshold T in Equation (1) in
order to be related (and are therefore treated symmetrically by the
algorithm), and an asymmetric overlap condition termed inclusive
overlap, where it is sufficient for only one of the two reference genes
to meet the overlap threshold T in order for the two reference genes
to be related (i.e. overlap is determined asymmetrically by the
algorithm). Symmetric clustering will result in more reference genes
being reported compared to asymmetric clustering because a
stringent overlap condition is more restrictive in determining overlap
between signatures compared to an inclusive overlap condition.
Consequently, symmetric clustering will result in greater sensitivity
to detect gene families residing in the metagenome and hence result
in greater granularity but may be less effective in removing redun-
dant reference genes. Asymmetric clustering, in contrast, which is
based on a more permissive overlap condition, leads to more ag-
glomerative clustering and hence to fewer reference genes being
reported, but with a smaller inter-signature overlap. Asymmetric
clustering will therefore lead to a less redundant list of reported ref-
erence genes. The choice for the overlap condition depends on the
desired application. To maximize sensitivity a stringent overlap con-
dition should be selected, and to minimize redundancy of reported

reference genes an inclusive overlap condition should be selected.
Both clustering approaches will be demonstrated below on real-
world examples.

2.2.3 Sensitivity of clustering to input parameters

Clustering by MCRL is controlled by three input parameters: (i) the
overlap criterion, M, (ii) the E value threshold defining signatures,
Ey (the minimal E value that all contigs in a signature must pass)
and (iii) the threshold for signature overlap, T. The E value thresh-
old for detection, Ej,, is a filtering parameter and not a clustering
parameter: all reference genes are initially screened and only refer-
ence genes yielding a minimal E value below E,, are retained for
analysis. Ey, therefore sets the desired sensitivity for homology for
the initial selection phase of reference genes and does not affect the
clustering process itself. It is therefore also possible to apply this fil-
ter post-clustering. The default value for E,, is relatively low (1077)
to ensure accuracy of reference gene assignment while recovering the
majority of reported reference genes with a signature size of 10 or
higher (Supplementary Fig. S2). Once the overlap criterion is
selected and the desired filtering threshold E,, is set, the list of
reported reference genes is relatively robust to the choice of Ey and
T. Supplementary Table S1 summarizes the impact of changing
MCRL input parameters on predictions for case examples. This
topic as well as the choice for default parameters is discussed in
greater detail in Supplementary Discussion S1.1.

2.2.4 Implementation

The metagenome provided to MCRL should be assembled into con-
tigs and can be provided in either amino acid format or nucleotide
format as a FASTA file. Metagenomes do not need to be annotated,
but if annotation is provided the annotation of the representative
contig will be presented in the final output along with the annotation
of the reported reference genes. The reference library itself is simply
a FASTA file of annotated amino acid sequences. However, MCRL
is designed to accept as input also reference libraries based on the
RefSeq database, which include in addition to a FASTA file a
GenPept file containing additional annotation. MCRL will then pre-
sent the annotation from both files for each reported reference gene.
This is a useful feature because RefSeq FASTA file annotation is
often insufficient to define the gene. All alignments in MCRL are
performed on amino acid sequences using either the gapped BLAST
algorithm (Altschul et al., 1997; Camacho et al., 2009), or
DIAMOND (Buchfink ez al., 2015), which is faster when using large
reference libraries.

Since MCRL is computationally intensive due to the large num-
ber of alignments and pairings that need to be performed, both the
alignment phase and the clustering phase can be run using multiple
threads. A runtime benchmark of MCRL is provided in
Supplementary Table S2, and a more detailed discussion regarding
the complexity of MCRL and software operation is provided in
Supplementary Discussion S1.2.

2.3 Evaluation of MCRL

2.3.1 Insilico spike-in experiments

As a case study, we focused on the problem of mapping viral genes
in metagenomes. To accomplish this, we provided MCRL with the
viral RefSeq database as a reference library. When MCRL is applied
to a metagenome with the viral RefSeq database as an input refer-
ence library, MCRL will return a list of non-redundant viral gene
families present in the analyzed metagenome with homologous
counterparts in the viral RefSeq database. To determine the sensitiv-
ity and accuracy of MCRL, we performed in Section 3 a series of in
silico experiments where we spiked a baseline metagenome with
controlled viral reference genes at tuned mutation rates. For the
spike-in experiments, we selected the large terminase subunit (TerL)
gene, a component of the DNA packaging and cleaving mechanism
of double-stranded DNA phages (Rao and Feiss, 2008). The TerL
gene is considered to be one of the most universally conserved phage
genes in nature (Casjens, 2003) due to the presence of certain univer-
sally conserved motifs in this gene (Rao and Feiss, 2008). TerL genes
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Fig. 1. Schematic illustration of the MCRL algorithm. (a) Each reference gene 7; is aligned against the given metagenome yielding a metagenomic signature. Metagenomic signa-
tures are depicted as a set of vertical black dots inside rectangles (e.g. the dotted vertical green rectangle is the signature of reference gene r3), color-coded according to the E
value yielded by each contig. Each horizontal line in this diagram represents a single contig, showing to which signatures the given contig belongs (e.g. the dotted horizontal
blue rectangle represents a contig that is part of the signatures of 1, r, and r3). In this example, the signatures of 7; and 7, have a 60% overlap based on Equation (1) using the
stringent definition of overlap and a 100% overlap using the inclusive definition of overlap (overlap is indicated by the dashed black rectangle). The color bar shows the range
of E values, indicating the threshold for detection of a reference gene (E,;), and the minimal threshold for defining homology (Ey). (b) Illustration of the MCRL clustering algo-
rithm using a stringent overlap condition. In this example, there are four reference genes. The diagram indicates which reference genes are related, and which reference genes
were elected at each iteration. For example, 71 is related to itself and to 7> (denoted as 71 — {1, r2}). Since the E value of r, was lower than rq, ry elected r; as the delegate
(denoted 71==r;). In this manner, in the first iteration, 7, and r; were elected, and in the second iteration, r; elected r,. Therefore r, was the reported reference gene for this
cluster. Also shown are the reference gene cluster and the reference gene network that result from this set of reference genes. (c) An alternative representation of the diagram
shown in panel (b). Each reference gene reported by MCRL lies at the epicenter (red star) of a network of reference genes (black dots). Each node in the network represents a
reference gene, and each edge is directed and connects a reference gene to its delegate, forming tracks leading to the epicenter. A reference gene cluster is defined as the collection
of nodes one edge away from the epicenter, and therefore by definition related to the reported reference gene (illustrated by overlapping signatures in the metagenome). The rep-
resentative contig is denoted in this illustration as a red star in the metagenomic signature of the reported reference gene

in nature fall into at least eight distinct families based on their end-
generation function, forming eight robust phylogenetic groups
(Casjens et al., 2005). We therefore selected for each of these eight
Terl. gene families a representative gene (summarized in
Supplementary Table S3), extracted a random fragment from this
representative gene spanning the mean contig length of the baseline
metagenome (N) and spiked the baseline metagenome with a single
fragment per gene family as illustrated in Supplementary Figure S3.
This process was repeated 10 times to generate 10 spike-in metage-
nomes. To simulate TerL sequence diversity, we inserted mutations
in each fragment at a specified mutation rate by substituting a fixed
percent of amino acids, P, with mutations, as illustrated in
Supplementary Figure S3, such that P = 100(1 — #/N) with N=124
amino acids, and #=0, 12, 25, 37, 50, 62, 74 and 87 amino acids.
To simulate a realistic substitution model for our spike-in experi-
ments, random sites were substituted based on transition probabil-
ities calculated from an alignment of TerL alleles comprising 130
unambiguous amino acid spanning 53 TerL genes that reproduce the
TerL gene phylogeny determined by Casjens et al. (2005) for 7 of the
TerL gene families. Transition probabilities were determined in a
similar way to those calculated for protein blocks by the BLAST al-
gorithm (Henikoff and Henikoff, 1992). Since the local alignment
performed by MCRL is not position sensitive, mutations were intro-
duced at random positions in the gene. As a baseline metagenome,
we used a whole community oral metagenome obtained from a
periodontally healthy human subject (Xie ez al., 2010) with a mean
contig length of 372 = 127 (SD) nucleotides, and a median contig
length of 411 nt comprising in total ~80 000 contigs (MG-RAST
(Glass et al., 2010) identifier mgm4446622.3), using the translated
assembled metagenome provided by the authors. In Supplementary
Analysis S2, we extend our benchmark using the same spike-in meth-
odology to capsid and nucleocapsid protein families organized based

on their architectural classes (Krupovic and Koonin, 2017). For
TerL sequences MCRL was used with the BLAST aligner. For capsid
and nucleocapsid sequences MCRL was used with both BLAST and
DIAMOND and results are compared in Supplementary Analysis
S2.

2.3.2  Evaluation of MCRL on experimental datasets

To demonstrate MCRL predictions for real experimental datasets, in
Section 4, we applied MCRL to two oral datasets: (i) a whole com-
munity oral metagenome obtained from a periodontally healthy
human subject (Belda-Ferre et al., 2012) with a mean contig length
of 354 + 114 (SD) nucleotides and a median contig length of 390 nt
comprising in total ~180 000 contigs (mgm4447192.3), and (ii) an
oral virome of a periodontally healthy human subject (Pride er al.,
2012) with a mean contig length of 357 = 135 (SD) nucleotides and
a median contig length of 393 nt comprising in total ~140 000 con-
tigs (mgm4446120.3). The oral virome is a translated metagenome
of viral particles obtained by filtering a saliva sample through a
0.2 um filter followed by cesium chloride gradient purification
(Pride et al., 2012). In both cases, we used the translated assembled
metagenome provided by the authors. For all analyses, we used the
viral RefSeq database (Pruitt et al., 2007) release 95 as an input ref-
erence library for MCRL.

2.4 Benchmarking MCRL against a metagenomic

clustering program

MCRL was benchmarked against the metagenomic clustering pro-
gram CD-HIT (Fu et al., 2012; Li and Godzik, 2006). All CD-HIT
parameters except for the sequence identity threshold were set to
their default values as used by the webserver application. For a se-
quence identity threshold of 30% the benchmark was performed
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against PSI-CD-HIT, which is the algorithm selected by the web-
server for this sequence identity threshold.

3 Performance evaluation of MCRL

The sensitivity of MCRL to detect and resolve different gene families
depends on several factors, including the diversity present in the
metagenome, the ability of the reference library to resolve this diver-
sity, and the coverage of the metagenome. In a series of in silico
spike-in experiments, we determined the sensitivity and accuracy of
MCRL to detect and resolve TerL gene fragments, averaging results
across the eight primary families of the TerL gene (see Section 2).

3.1 Estimation of MCRL sensitivity using in silico
spike-in experiments

Detection sensitivity for a given mutation rate (given by 100 — P)
was calculated as the average fraction of spiked TerL fragments cap-
tured by signatures of reported reference genes, averaged across 10
spike-in metagenomes (in total 10 trials x 8 mutation rates = 80
metagenomes). This analysis was repeated twice, once using a strin-
gent overlap condition and once using an inclusive overlap condi-
tion, resulting in 160 spike-in metagenomic analyses in total. We
found that for mutation rates corresponding to >~70% identity at
the amino acid level, sensitivity exceeded 80-95% for the inclusive
and stringent overlap conditions, respectively, and below ~70%
identity sensitivity rapidly decreased (solid lines in Fig. 2). Sensitivity
per reference gene cluster, in comparison, decreased more gradually
with mutation rate (dot-dashed lines in Fig. 2), reflecting the larger
signature span of reference gene clusters. For both overlap condi-
tions, signatures were nearly always unique to a single TerL gene
family regardless of the mutation rate (Supplementary Table S4,
dashed lines in Fig. 2). Hence, the capacity of MCRL to discriminate
TerL gene families was high and independent of mutation rate or
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Fig. 2. MCRL and CD-HIT sensitivity determined by in silico spike-in experiments.
Solid black and green lines show MCRL sensitivity to detect spiked TerL fragments
in the signature of reported reference genes as a function of the simulated mutation
rate. Shaded areas correspond to 1 SD. Dashed lines show sensitivity when addition-
ally requiring uniqueness: i.e. requiring that signatures positive for a given spiked
TerL fragment do not contain spiked fragments from other TerL gene families.
Dotted lines further require that the spiked TerL fragments were the representative
contigs. Dash-dotted lines show the sensitivity to detect spiked TerL fragments in
the signature of reference gene clusters. The solid red line shows CD-HIT sensitivity
to detect spiked TerL fragments when clustering the spiked metagenome together
with the viral reference library using a sequence identity threshold of 30%. inc, in-
clusive overlaps; str, stringent overlap

overlap condition. Figure 2 further shows that a stringent overlap
condition resulted in higher sensitivity compared to an inclusive
overlap condition, as expected. Moreover, for >~70% identity,
~75% of spiked TerL fragments were reported as representative
contigs when using a stringent overlap condition, rapidly decreasing
below ~70% identity. On the other hand, with a stringent overlap
condition, often two or more reported reference genes corresponded
to the same spiked TerL fragment, whereas with an inclusive overlap
condition this did not occur: each spiked TerL fragment always cor-
responded to a single reported reference gene (Supplementary Table
S4), consistent with the inclusive overlap condition being less
redundant.

Inspecting the individual contribution of each TerL gene family
to sensitivity, we found that certain TerL gene families were more
dependent on the applied overlap condition than others (Table 1).
For example, sensitivity for detection of HK97 fragments was sig-
nificantly lower compared to other TerL gene families when apply-
ing the inclusive overlap condition. This drop in sensitivity occurs
because with asymmetric clustering, a reference gene with a short
signature can be elected to replace a reference gene with a long sig-
nature leading to potential loss of information encoded in the long
signature. This form of information loss does not occur with sym-
metric clustering, and indeed detection sensitivity for HK97 frag-
ments was restored when using the stringent overlap condition
(Table 1).

Interestingly, both the Mu-like and RhodoGTA representatives,
despite having only remote homologs in the reference library per-
formed on par with other TerL representatives that had exact
matches in the reference library, such as Lambda and P2
(Supplementary Table S3). This result suggests that MCRL can at-
tain high sensitivity also when the reference library contains only
distant homologs of the genomic source, possibly indicating that
homology is better preserved by natural evolution than it was pre-
served in our simulation, in which case our simulation may reflect a
WOrst-case scenario.

3.2 Accuracy of reference gene assignment

To evaluate the accuracy of assigning contigs to candidate gene fam-
ilies, we checked whether reference genes reported by MCRL that
corresponded to spiked TerL fragments (listed in Supplementary
Table S5) had the correct phylogenic placement, i.e. matched the
TerL family to which the spiked TerL fragment belonged. A max-
imum likelihood phylogenetic analysis showed that for the stringent
overlap condition 41 of 44 reported reference genes grouped with
the correct TerL gene family, and for the inclusive overlap condition
37 of 38 reported reference genes grouped with the correct TerL
gene family (Supplementary Fig. S4a), demonstrating that MCRL
associated the spiked TerL fragments with reference genes belonging
to the correct TerL gene family with high accuracy. This conclusion
was further corroborated by the classification of the phage genomes
harboring the reference genes (Supplementary Table S5).

3.3 Clustering spiked metagenomes with CD-HIT

To compare MCRL with metagenomic clustering, we selected a rep-
resentative program for this computational approach and performed
an in-depth comparison between both methods. For our comparison,
we selected CD-HIT, a popular method for metagenomic clustering
that has been used in large-scale sequencing projects, such as
UniProt (Suzek et al., 2007), SWISS-MODEL (Arnold et al., 2006)
and CAMERA (Sun et al., 2010), and based on citations continues
to be frequently used. When clustering spiked metagenomes with
CD-HIT (Fu et al., 2012; Li and Godzik, 2006) using default input
parameters, we found that regardless of the mutation rate, each
spiked TerL fragment always mapped to a cluster of one element
comprising only that given TerL fragment, indicating that these
spike-in fragments were indeed foreign to the baseline oral metage-
nome and therefore did not cluster with any other contig. We next
clustered the spiked baseline metagenome together with the viral ref-
erence library using different values for the sequence identity thresh-
old, which is a global clustering threshold parameter used by CD-
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Table 1. MCRL and CD-HIT sensitivity to detect spiked TerL fragments for different TerL gene families: the table is calculated for MCRL with
an inclusive overlap condition, MCRL with a stringent overlap condition and CD-HIT with a sequence identity threshold of 30%

TerL spike in (=10 metagenomes)

T4 T7 Mu-like P22

P2 Lambda RhodoGTA HK97

100%
90%
80%
70%
60%
50%
40%
30%

(a) Inclusive overlap

100%
90%
80%
70%
60%
50%
40%
30%

Percent identity

(b) Stringent overlap

100%
90%
80%
70%
60%
50%
40%
30% 0

0 0

60

30

30 10
0 0
0 0

50
40
0
0

(c) CD-HIT

Note: The table shows for each simulated mutation rate the percent of metagenomes (out of 10) for which a spiked TerL fragment was included in a signature

of a reported reference gene (MCRL) or clustered with a reference gene (CD-HIT). The graded shading corresponds to the values in the table such that the lower

the percent value in the table the lighter the shade.

HIT (defined as the threshold for the number of identical amino
acids in an alignment divided by the length of the shorter sequence).
We then determined for each sequence identity threshold the sensi-
tivity of CD-HIT to detect spiked TerL fragments. Sensitivity was
determined per given mutation rate by calculating the fraction of
spiked TerL fragments that clustered together with at least one refer-
ence gene, averaged across 10 trials. This calculation was repeated
for eight different mutation rates and four CD-HIT sequence identity
thresholds (30%, 50%, 70% and 90%), resulting in a total of 320
clustered metagenomes. We found that CD-HIT sensitivity was high-
est when using a sequence identify threshold of 30% (Supplementary
Fig. SS5), where CD-HIT applies the PSI-CD-HIT algorithm using
BLAST alignments (see Section 2.4). Although the individual contri-
bution of each TerL gene family to CD-HIT sensitivity displayed a
comparable distribution to MCRL using a stringent overlap condi-
tion (Table 1), MCRL sensitivity using the stringent overlap condi-
tion was on average higher (Fig. 2). For example, for mutation rates
corresponding to 40-80% identity, MCRL sensitivity was higher on
average by 21%. When considering capsid and nucleocapsid sequen-
ces, we found that the gap in sensitivity increased by ~14%, and, in
addition, CD-HIT sensitivity was less uniform across different cap-
sid families compared to MCRL (Supplementary Analysis S2). These
results reflect the fact that despite including the reference library in
the CD-HIT clustering process, contigs do not necessarily cluster
with reference genes. MCRL, in contrast, is designed to align a refer-
ence library against a metagenome.

We next evaluated the accuracy of assigning contigs to CD-HIT
clusters in a similar manner to our analysis in Section 3.2. Since the
spiked TerL gene fragments were foreign to the baseline metage-
nome, when CD-HIT cluster representatives were not the spiked

TerL fragments themselves, they were the reference library genes.
Furthermore, since the CD-HIT algorithm is constructed such that
query sequences are compared to longer representatives (Holm and
Sander, 1998; Li er al., 2001), when a spiked fragment clustered
with a reference gene, the representative sequence was the longer ref-
erence gene. We therefore checked whether each representative (ref-
erence) sequence of a CD-HIT cluster containing a spiked TerL
fragment had the same phylogenetic placement as the TerL family to
which the spiked TerL fragment belonged (see Supplementary Table
S5 for a list of all representative reference sequences). A phylogenetic
analysis of these representative sequences showed that CD-HIT clus-
ter assignment was accurate for all 25 representative sequences
(Supplementary Fig. S4b). When considering capsid and nucleocap-
sid sequences, however, we found that although CD-HIT was accur-
ate, it was less effective compared to MCRL in detecting reference
genes that were closely related to the representatives of the capsid
and nucleocapsid protein families used as the templates for the
spike-in experiments. This limitation reflects the fact that representa-
tives in CD-HIT are prioritized for length and not homology
(Supplementary Analysis S2).

3.4 Detecting contigs originating from a common

genomic source

In our simulation in Section 3.1, we spiked each metagenome with a
single contig for each TerL gene family. However, a more realistic
scenario would be one where for each TerL gene family the metage-
nome contains multiple contigs mapping to random regions of the
source TerL gene. Such a situation can arise when coverage is suffi-
ciently high, and the length of the source gene is long compared to
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the length distribution of contigs in the metagenome, resulting in
contigs with no overlap. In our baseline metagenome, e.g. the mean
contig length corresponded to 124 = 42 (SD) amino acids, which is
significantly shorter than the typical length of TerL genes (on aver-
age ~550 amino acids). Furthermore, when sequence diversity is
present, as is often the case with viral sequences, different alleles
encoding different variants of the gene family can co-exist in the
sample, resulting in a collection of contigs encoding different var-
iants that can be partially overlapping.

We therefore performed a second series of in silico spike-in
experiments where we simulated a distribution of contigs originating
from a single common genomic source belonging to a specific TerL
gene family, with each fragment encoding a slightly different variant.
The baseline metagenome was then spiked with ten contigs per TerL
gene family per baseline mutation rate (Supplementary Fig. S6). Our
simulation showed that nearly all spiked TerL fragments were asso-
ciated with a single reported reference gene (Supplementary Table
S6). For example, for the inclusive overlap condition, even at 40%
identity, for six out of eight TerL gene families at least 90% of frag-
ments were associated with a single reported reference gene.

3.5 Detecting a common genomic source with CD-HIT
When clustering spiked metagenomes with CD-HIT using a sequence
identity threshold of 70% at the amino acid level, which should cap-
ture the low level of sequence diversity that we introduced into TerL
fragments, CD-HIT was capable of grouping only about 25% of gene
fragments across all mutation rates (Supplementary Table S6). This re-
sult is expected for metagenomic clustering methods because contigs
originating from different regions of a gene may end up in different
clusters if the gene is long enough compared to the mean contig length.
MCRL, however, leverages the reference gene to act as a pseudo scaf-
fold to collect as many homologous contigs as possible emanating
from a common genomic source, given the limits of homology. For the
same reason, when adding the reference library to the CD-HIT cluster-
ing process, CD-HIT performance improved (Supplementary Table S6
and Supplementary Fig. S7). For example, when applying a 30% se-
quence identity threshold CD-HIT was capable of grouping on average
65% of gene fragments (range: 46.3-90%) across all mutation rates
compared to an average success rate of 47% * 1.6% when the refer-
ence library was not included in the clustering process. However, since
there is no mechanism in CD-HIT to ensure that contigs cluster with
reference genes, MCRL with a stringent overlap condition outper-
formed CD-HIT for percent identities >40%, and was able to cluster
on average 88% =* 11.2% of fragments compared to 67.5% = 15.6%
for CD-HIT, a gain of ~20% (Supplementary Fig. S7). In
Supplementary Analysis S2, we further show that for capsid gene fami-
lies MCRL was able to cluster on average 98.1% of fragments down
to 40% identity, whereas CD-HIT was able to cluster on average only
69.8% of fragments in the same range (with the reference library
included in the clustering process), and with less uniformity across dif-
ferent capsid families. In Section 5, we provide a more detailed com-
parison between MCRL and CD-HIT.

3.6 Sensitivity of MCRL to stochastic perturbations

The final set of contigs comprising a metagenome can be impacted
by various factors, such as coverage, the specific program used for
assembly and assembly parameters. We therefore explored the de-
gree to which stochastic perturbations applied to a metagenome
impacted MCRL results. To determine this impact, we first eval-
uated the effect of stochastic perturbations on the overlap of signa-
tures as defined by Equation (1). To this end, we performed a
simulation where for each combination of signature lengths L, and
L,, we introduced a perturbation such that each contig in each sig-
nature has a probability of p to be either discarded (50% chance) or
duplicated (50% chance), setting p such that for L;=3 the length of
perturbed signatures has a standard deviation of 1. We then calcu-
lated the degree of concordance between the overlap decision before
and after the perturbation, averaging over all possible overlap scores
between 0 and 1. We found that overlap decisions were reproducible
for both overlap conditions over all signature length ranges

(Supplementary Fig. S8a). For example, the average concordance for
the stringent and inclusive overlap conditions was 97%=*2.9% and
94%+2.7%, respectively, when calculated up to a signature length
of 50. When comparing short versus long signatures, we found that
concordance was ~97% when both signatures were 40 or longer,
and ~91% when both signatures were 10 or shorter, irrespective of
the overlap condition. Thus, for both overlap conditions the overlap
metric was quite robust to perturbations, also when signatures were
short.

To check the impact of stochastic perturbations on MCRL per-
formance, we performed a simulation where we perturbed a baseline
oral metagenome by randomly selecting P percent of all contigs in
the metagenome, and then each selected contig was either discarded
or duplicated with 50% chance. This experiment was repeated 10
times for each selected value of P, testing values of P between 5%
and 40% in 5% jumps (80 metagenomes in total). We then deter-
mined the average concordance C between MCRL predictions for
the baseline (unperturbed) metagenome and the perturbed metage-
nomes. We found that MCRL predictions for both the stringent and
inclusive overlap prediction were indeed robust to the stochastic per-
turbations that were introduced (Supplementary Fig. S8b). For ex-
ample, when 20% of contigs were randomly perturbed (on average
10% duplicated and 10% discarded), MCRL was still capable of
detecting ~90% of the original reported reference genes, with long
signatures (L > 40) exhibiting a concordance of ~95% for both
overlap conditions, and short signatures (L < 10) exhibiting a con-
cordance between ~88% (stringent overlap) and ~92% (inclusive
overlap). Overall, the degree of discordance (100 — C) was propor-
tional to the degree of perturbation (P), with the inclusive overlap
condition exhibiting slightly more robustness to perturbations
(Supplementary Fig. S8c), suggesting that MCRL behaved in a pre-
dictable manner when perturbed.

Finally, we explored the impact of perturbations as a function of
signature length (L) by calculating the average percent of reported
reference genes with signature length L in the baseline (unperturbed)
metagenome whose signatures were perturbed and were still
reported by MCRL in the perturbed metagenome (Supplementary
Fig. S8d). Our simulation shows that reference genes with short sig-
natures were generally robust to perturbations, with the inclusive
overlap condition performing slightly better. For example, for signa-
ture lengths between 2 and 3, the concordance with the unperturbed
metagenome was on average 86.5% for the inclusive overlap condi-
tion, and 80.7% for the stringent overlap condition, and for signa-
ture lengths between 6 and 10 concordance increased to 95.1% for
the inclusive overlap condition, and 92.2% for the stringent overlap
condition (for L=1 concordance drops to 50% because there is a
50% chance that the single contig comprising the signature is

discarded).

3.7 Impact of chimeras

Chimeric DNA sequences occur when DNA polymerases incom-
pletely extend a segment of DNA resulting in a partially amplified
sequence, which can then hybridize to an alternative form of the
template strand (Bradley and Hillis, 1997). As a result, PCR prod-
ucts that are a fusion of two original template sequences are gener-
ated (Bradley and Hillis, 1997). Since chimeric contigs can confound
analysis by being incorrectly interpreted as novel sequences, we
explored how MCRL classifies chimeric sequences. To check the im-
pact of chimeras on cluster assignment, we spiked TerL fragments
corresponding to the eight TerL gene families into a baseline oral
metagenome once as controls (no chimeras), and once as chimeric
fragments. Chimeric fragments were generated by fusing a random
fragment originating from the i-th TerL gene family at a proportion
of P > 0.5 (major parent) with a random fragment originating from
the j-th TerL gene family at a proportion of 1 — P (minor parent). In
total, each metagenome was spiked with 56 chimeras and 8 template
controls, repeating this experiment 10 times for various values of P,
as illustrated in Supplementary Figure S9a. To assess the impact of
chimeras on MCRL clustering, we calculated the percent of chimeras
with a given major parent that were assigned to the same reference
gene as the control corresponding to this major parent. Likewise, we
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calculated the percent of chimeras with a given minor parent that
were assigned to the same reference gene as the control correspond-
ing to this minor parent. We found that for both overlap conditions,
chimeric contigs were always assigned to the reference gene corre-
sponding to the major parent control (solid lines in Supplementary
Fig. S9b). However, because contigs in MCRL have a ‘soft’ assign-
ment, where a given contig can belong to more than one signature
(see example in Section 5.3), our simulation showed that for P <
0.85 chimeric contigs were also assigned to the reference gene corre-
sponding to the minor parent with a probability that scaled linearly
with 1 — P (dashed lines in Supplementary Fig. S9b), otherwise the
minor parent was not detected (Supplementary Fig. S9c). When con-
tigs contained equal contribution from both parents (P=0.5), both
parents were accuracy assigned in all cases. MCRL was therefore ro-
bust to chimeras in the sense that the major parent was always ro-
bustly detected and accurately assigned, and the minor parent, when
detected, was also accurately assigned.

3.8 Runtime benchmark

The most appropriate setting to compare MCRL and CD-HIT run-
times is to use for CD-HIT a sequence identity threshold of 30%,
which is the threshold required in order for the sensitivity of CD-
HIT to approach the sensitivity of MCRL (Supplementary Fig. SS5).
Under these conditions, using MCRL with the BLAST aligner and
including the reference library in the CD-HIT clustering process,
MCRL was about twice as fast as CD-HIT (Supplementary Table
S2). When running MCRL with DIAMOND, MCRL was 8.5 times
faster than CD-HIT when using one thread per program, and ~4
times faster when using 4 or more threads per program, as shown in
Supplementary Table S2 (see Supplementary Discussion S1.2 for fur-
ther details).

4 Probing viral diversity in metagenomes

4.1 The challenge of mapping viral diversity

Mapping viral diversity is a challenging problem because viruses oc-
cupy a large sequence space, with the majority of viral sequences dis-
playing no similarity to proteins from known isolate viruses
(Edwards and Rohwer, 2005; Hurwitz et al., 2016; Paez-Espino
et al., 2016). Furthermore, local populations of viruses can contain
many variants (Hendrix, 2003; Paez-Espino et al., 2016; G.
Mahmoudabadi et al., BioRxiv, doi: btips://doi.org/10.1101/
516864, 2021, In prep.) existing as quasi-species. Such variability
needs to be clustered in order not to overestimate viral diversity
(Paez-Espino et al., 2016). In addition, ~60% of sequenced bacterial
genomes are predicted to encode at least one integrated phage genet-
ic element (Casjens, 2003; Edwards and Rohwer, 2005). Since lyso-
genic phages can be functional but not expressed, not all lysogenic
phages can be detected in viromes. Therefore, there is also a need for
tools capable of extracting viral diversity from whole community
shotgun metagenomes where viral and bacterial sequences are inter-
mixed. Existing tools for data reduction, such as metagenomic clus-
tering methods, are not ideally suited to address this problem
because only overlapping contigs are clustered, which can result in
fragmentation of sequence information (as demonstrated in Section
3.5). Furthermore, determining Operational Taxonomical Units
(OTUs) for viral sequences is non-trivial due to the high mutation
rate of viruses, which can also be system dependent. More specific
methods, such as targeted assembly and assembly-based viral detec-
tion tools, are also not ideally suited for this task because these
methods do not deal with the problem of sequence redundancy, will
have limited sensitivity to detect sequences that are highly divergent
from reference sequences and are also susceptible to fragmented
assembly.

MCRL can help mitigate some of these challenges. By providing
MCRL with a comprehensive viral reference library, MCRL will
output the set of non-redundant viral gene families present in the
given metagenome (whether whole community or a virome), target-
ing bacterial and/or eukaryotic viruses, depending on the reference
library used. Alternatively, MCRL can be used to focus on specific

classes of viral genes, such as certain structural genes, certain genes
involved in virion assembly, or focus on certain groups of viruses,
such as pathogenic viruses. The advantage of MCRL is that it pro-
vides a non-redundant list of viral gene families such that local gen-
etic variants at the individual gene level are grouped together—even
if the contigs themselves do not overlap but are homologous to the
same reference gene. Another advantage of MCRL is that gene fami-
lies naturally emerge from the algorithm without the need to pre-
specify a threshold for OTUs or determine OTUs on the fly (see
Section 7).

4.2 Mapping viral gene families in oral samples
Mapping viral gene families in an oral metagenome

We applied MCRL to a translated whole community shotgun
oral metagenome obtained from a plaque sample of a periodontally
healthy human subject (Belda-Ferre ez al., 2012). This metagenome
comprised ~180 000 contigs with a median contig length corre-
sponding to 130 amino acids when translated. Of the ~370 000 viral
reference genes included in the viral RefSeq database that we used,
~26 000 genes yielded E values below the default E value detection
threshold of E,;,=10"". Of these, MCRL reported 1152 viral refer-
ence genes when applying an inclusive overlap condition compared
to 1880 viral reference genes when applying a stringent overlap con-
dition (Table 2, raw MCRL output files for all metagenomes are
provided in Supplementary Table S7), with the former being a subset
of the latter (Supplementary Table S1). Overall, MCRL provided a
data reduction factor between 0.6% and 1.1% (Table 2). For both
overlap conditions, the combined signatures of all reference genes in
all reference gene clusters covered ~13% of all contigs in the meta-
genome (Table 2), suggesting that ~87% of contigs were not of viral
origin or reflect completely novel viral diversity. When applying an
inclusive overlap condition, the average overlap between signatures
of reported reference genes was only 3%, compared to 36% when
applying a stringent overlap condition (Table 2). Similarly, when
applying an inclusive overlap condition, 99.6% of representative
contigs were unique (i.e. non-duplicate entries), compared to 87.5%
when applying a stringent overlap condition. The differences we
observed between the two overlap conditions are consistent with our
expectation that a stringent overlap condition will be more sensitive
compared to an inclusive overlap condition, but less effective at
removing redundant reference genes.
Mapping viral gene families in an oral virome

We next applied MCRL to an oral virome obtained from a fil-
tered saliva sample of a second periodontally healthy human subject
(Pride et al., 2012) comprising ~140 000 contigs with a median con-
tig length corresponding to 131 amino acids when translated. Of the
~370 000 viral reference genes, ~27 000 genes yielded E values
below the E value detection threshold, E,. Of these, MCRL
reported 903 and 1877 viral reference genes when applying inclusive
and stringent overlap conditions, respectively, with the former being
a subset of the latter (Supplementary Table S1). Here too, MCRL
achieved similar data reduction factors as in the oral metagenome
(between 0.7% and 1.4%). For both overlap conditions, ~32% of
all contigs in the metagenome belonged to the combined signatures
of all reference genes in all reference gene clusters (Table 2), 2.5
times more than in the oral metagenome. This difference in coverage
stems from the fact that viromes are comprised of viral particles,
which are the target entities for the (viral) reference library used is
this analysis.

Increasing the E value threshold for signatures, Eg, from 0.001
to 0.01 increased the coverage by only 2.7%, and increasing the E
value threshold for detection, E,;,, from 10~ to 0.001 increased the
coverage by only 1.1%. Thus, about two-thirds of contigs in the oral
virome could not be characterized in terms of currently known viral
diversity, in accordance with the conclusions of the oral virome
study (Pride et al., 2012), as well as other studies that show that the
majority of natural genomic diversity of viruses remains uncharted
(Bench et al., 2007; Edwards and Rohwer, 2005; Paez-Espino et al.,
2016). Here too, we found similar trends in redundancy of reported
reference genes as observed in the oral metagenome case study:
when applying an inclusive overlap condition, the average overlap
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Table 2. MCRL and CD-HIT clustering results for the oral metagenome and oral virome
MCRL (viruses) CD-HIT
Stringent Inclusive Ref. library 90% 70% 50% 30%
Oral metagenome

No. of reported clusters 1880 1152 without 158 472 124 003 93596 77 567

with 158 465 123 975 95 585 77 782
Data reduction factor (%) 1.1 0.6 without 89.2 69.8 52.7 43.7

with 89.2 69.8 53.8 43.8
Percent of metagenome covered 12.8 12.5 n/a 100 100 100 100
Overlap between metagenomic clusters (%) 36 3.2 n/a 0 0 0 0

Oral virome

No. of reported clusters 1877 903 without 64 646 26 594 15 861 15358

with 64 619 26 540 16 271 15669
Data reduction factor (%) 1.4 0.7 without 47.3 19.5 11.6 11.2

with 47.3 19.4 11.9 11.5
Percent of metagenome covered 322 31.4 n/a 100 100 100 100
Overlap between metagenomic clusters (%) 49 7 n/a 0 0 0 0

Note: Data reduction factors were calculated as the ratio of the number of reported reference genes (or CD-HIT clusters) and the total number of contigs in the

metagenome. For CD-HIT, results are shown for different sequence identity thresholds with and without combining the metagenome with the reference library.

When the reference library was included in the CD-HIT clustering process, clusters containing only reference genes were excluded from the analysis. The ‘percent

of metagenome covered’ in the case of MCRL is calculated as the percent of contigs in all signatures of all reference gene clusters. The ‘overlap between

metagenomic clusters’ in the case of MCRL was calculated as >N, max; {8 N S;/Si}, where S; is the signature of the i-th reported reference gene, and N is the

total number of reported reference genes.

between signatures of reported reference genes was 7%, compared
to 49% when applying a stringent overlap condition (Table 2), and
when applying an inclusive overlap condition, 99.8% of representa-
tive contigs were unique compared to 80.5% when applying a strin-
gent overlap condition.

4.3 Viral reference gene networks in the oral cavity

Each reported reference gene is part of a network of reference genes
determined by the clustering algorithm. The reference gene cluster is
part of this network, and is comprised of all nodes one edge away
from the reported reference gene, which forms the epicenter of this
network. Figure 3a shows examples of different types of reference
gene networks computed for the oral metagenome. Taking a bird’s
eye view of all reference gene networks computed for the oral meta-
genome helps to highlight the differences between symmetric
(Fig. 3b) and asymmetric (Fig. 3¢) clustering in terms of number, size
and branch lengths of resulting networks. For example, comparing
panels b and ¢ shows that asymmetric clustering is indeed more ag-
glomerative, resulting in fewer, more compact networks, as indi-
cated by the distribution of the longest branch length
(Supplementary Fig. S10), and with reference gene clusters contain-
ing more nodes (on average about twice as many compared to sym-
metric clustering).

Overall, between ~15% and ~30% of reported reference genes
did not have any related reference genes (Supplementary Fig. S11).
Moreover, when color-coding nodes according to the minimal E
value yielded by each reference gene (Supplementary Fig. S12), we
see that although reported reference genes often yielded significantly
better alignments compared to other nodes, in many cases homology
was limited for all nodes, including the epicenter. Numerically, 36 %
and 46% of all reported reference genes resulted in alignments yield-
ing <40% identity for asymmetric and symmetric clustering, re-
spectively. These findings further indicate that the viral RefSeq
database was stretched to account for the breadth of viral diversity
observed in this sample.

5 Comparison to alternative methods

5.1 Targeted assemblers

An alternative strategy to extract information about specific gene
families from metagenomes is to use targeted assemblers. For ex-
ample, Huson et al. (2017) implemented within the metagenomic
analysis tool MEGAN (Huson et al., 2016), a method for protein-
alignment-guided assembly of orthologous gene families. According
to this method a user selects a gene family and all reads binned to
that gene family are assembled (Huson et al., 2017). Other methods
for targeted assembly include, e.g. Xander (Wang ef al., 2015) and
the SAT-assembler (Zhang e al., 2014). Xander performs gene-
targeted metagenomic assembly using a Hidden Markov Model
(Eddy, 2004) for the gene of interest to guide assembly. The SAT-
assembler aligns reads to input gene families using HMMER (Eddy,
2009), a profile-based homology search tool, and reads correspond-
ing to specific gene families are subsequently assembled.

Although targeted assemblers address the need to mine metage-
nomes for specific gene families, assembly-based solutions have cer-
tain intrinsic limitations. First, results based on targeted assembly
will be redundant when many variants of a given gene or gene set
are present in the metagenome, as is often the case with viral genes.
Second, an intrinsic limitation of assembly-based approaches is that
non-overlapping contigs will not be assembled together, resulting in
further redundancy. Such a situation can occur when the gene of
interest is significantly longer compared to the length distribution of
contigs in the metagenome. For example, in the case of the MEGAN
assembler, only contigs that span known protein domains are con-
structed leading to contig fragmentation (Huson ef al., 2017) and
hence further redundancy. Furthermore, since methods, such as the
SAT-assembler and MEGAN require reads to align to reference pro-
tein sequences, these methods will have difficulty detecting novel
genes that are highly divergent from the reference gene set. Thus,
such an approach may not be ideally suited for investigating novel
diversity or sequences that are expected to be highly divergent from
the reference genes. Finally, gene-centric assemblers, such as
MEGAN and Xander focus on gene families, however, for certain
applications it is desired to define reference libraries encompassing
larger gene collections. For example, in Section 4, our gene set
included all ~370 000 genes comprising the viral RefSeq database.
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Fig. 3. Viral reference gene networks computed for the oral metagenome. (a) Examples of viral reference gene networks computed for the oral metagenome. Each node repre-
sents a reference gene. The red node at the epicenter of each network is the reported reference gene, drawn to be proportional to the logarithm of its signature size in the metage-
nome. Edges of reference gene clusters are drawn in black, and edges leading to reference gene clusters are drawn in blue. For clarity, the directionally of selected edges is
shown. Viral reference gene networks computed for the oral metagenome are shown for (b) symmetric clustering, and (c) asymmetric clustering. The figure shows all genes in

the viral RefSeq database passing the E value threshold for detection, E,, (10~7), comprising in total ~26 000 genes

5.2 Tools for virus discovery

MCRL can also be contrasted with tools for discovery of viruses
from metagenomes, such as VIP, SURPL VirFinder and VirusFinder
to name a few. The general strategy of these tools is subtraction of
host-related reads followed by alignment to a reference database and
assembly of viral genomes. In the case of VIP, reads corresponding
to the host are first subtracted, and then remaining reads are either
aligned against viral pathogen databases [ViPR (Pickett et al., 2012)
and IRD (Zhang et al., 2017)] for detection, or in a second mode,
remaining reads are aligned against publicly available viral genomes
(e.g. the viral RefSeq database), and matching reads are de novo
assembled (Li et al., 2016). SURPI similarly first subtracts human
reads and then either aligns remaining reads to bacterial and viral

databases to identify bacterial and viral related genes, or in a second
mode, remaining reads are aligned against NCBI’s nr nucleotide
database and matching reads are assembled enabling to identify dif-
ferent classes of organisms (bacterial, fungal, parasitic and viral). In
the case of SURPI, non-matching reads are further aligned against a
protein databases to identify divergent organisms (Naccache et al.,
2014). VirFinder similarly subtracts host reads, assembles all
remaining reads and then BLASTSs the resulting contigs against viral
versus non-viral databases to identify viral sequences, further
BLASTing contigs that did not yield significant hits against NCBI’s
Conserved Domain Database (Lu et al., 2020). VirusFinder, in con-
trast, after subtraction of host reads assembles only reads mapping
to a database of viral sequences (Wang et al., 2013).
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Conventional viral detection tools, however, do not address the
problem of gene redundancy, and assembly-based viral detection
methods are also susceptible to fragmented assembly, which in turn
leads to further redundancy. In contrast, MCRL provides a non-re-
dundant list of viral gene families present in a given metagenome
that is robust to allelic diversity even when contigs do not overlap.
Furthermore, given the large sequence space that viruses occupy
(Edwards and Rohwer, 2005; Hurwitz et al., 2016; Paez-Espino
et al., 2016), viral genes will typically be highly divergent compared
to reference sequences, and therefore methods that detect viral genes
by requiring reads to align against reference sequences will likely
have limited sensitivity. MCRL, on the other hand, can identify viral
genes present in a given sample even if they are significantly diver-
gent from the reference library since MCRL detection is based on
protein homology at the contig level using contigs assembled de
novo from unfiltered reads.

5.3 Metagenomic clustering

Both MCRL and metagenomic clustering programs aim to remove
metagenomic redundancy by grouping interrelated contigs, although
qualitatively these approaches are distinct. Contigs included in a
metagenomic cluster obtained by programs such as CD-HIT are
interrelated by virtue of having similar sequences. In MCRL, contigs
included in a metagenomic signature are also interrelated, the differ-
ence being that they are not similar to each other, but are similar to
the corresponding reference gene. By quantitatively comparing
results obtained by both methods, we can highlight the features that
are unique to MCRL. We therefore applied CD-HIT to the oral
metagenome analyzed in Section 4 using different sequence identity
thresholds. Table 2 shows that CD-HIT reported about one hundred
times more clusters than MCRL, reducing the data content of the
metagenome only marginally, with data reduction factors ranging
from 89.2% when using a 90% identity threshold (the default in
CD-HIT) to 43.7% when using a 30% sequence identity threshold
compared to 1.1% for MCRL (Table 2). For the oral virome ana-
lyzed in Section 4, CD-HIT achieved at most an 11.2% reduction in
sequence data, compared to 1.4% for MCRL. Clustering the meta-
genome with the reference library did not impact these results
(Table 2).

The reason MCRL achieves significantly greater data reduction
compared to CD-HIT is twofold: first, MCRL is limited by the diver-
sity included in the reference library. The first filtering step per-
formed by MCRL retains only reference genes yielding E values
below E,, when aligned against the metagenome. This filtering step
lead to a 14.7% and 19.9% data reduction in the oral metagenome
and oral virome, respectively (calculated as the maximum number of
potential reported reference genes, i.e. reference genes retained after
E value filtering, divided by the total number of contigs). The
remaining data reduction stems from clustering reference genes. CD-
HIT clusters tend to be significantly smaller than MCRL signatures
resulting in many more clusters being reported compared to MCRL
(Supplementary Table S8). This occurs because CD-HIT clusters are
comprised of only similar overlapping contigs (based on the global
sequence identity threshold), whereas MCRL signatures encompass
all contigs that are putative homologs of the given reference gene
across the entire gene, including also non-overlapping contigs.
MCRL therefore has the potential to achieve significantly greater
data reduction because, under ideal conditions, one MCRL signature
would correspond to all CD-HIT clusters emanating from a common
genomic source.

Another difference between MCRL and CD-HIT is that CD-HIT
partitions contigs into non-overlapping clusters, whereas MCRL sig-
natures can partly overlap as defined by Equation (1) (Table 2). This
type of ‘soft’ assignment of contigs, where a contig can belong to
more than one signature, is required because different reference
genes can share certain homologous domains. For example, in the
case of the oral metagenome, MCRL reported two lysins,
YP_009639755.1 and YP_009626536.1, corresponding to two dif-
ferent strains of a Corynebacterium phage (phi674 and Poushou, re-
spectively). Both lysins share a peptidase domain in the N-terminal
region of this gene, but otherwise did not share other domains

(Supplementary Fig. S13). Consequently, the signatures of these
lysins contained a certain fraction of overlapping contigs that
mapped to the shared peptidase domain but were largely differenti-
ated by MCRL due to contigs mapping to non-homologous regions
of these two genes (Supplementary Fig. S13).

Correspondence between CD-HIT clusters and MCRL signatures

The relationship between reported reference genes and reference
gene clusters determined by MCRL and CD-HIT clusters is illus-
trated in Figure 4a. A more detailed examination of the correspond-
ence between CD-HIT clusters and MCRL signatures showed that
when using the inclusive overlap condition there was a virtually
unique mapping between representative contigs and CD-HIT clus-
ters (i.e. no other representative contig mapped to the same CD-HIT
cluster) across all sequence identity thresholds (Fig. 4b). This result
suggests that a unique mapping exists between MCRL signatures
and CD-HIT clusters. To understand more generally how MCRL
signatures correspond to CD-HIT clusters, we mapped all contigs in
the signature of each reported reference gene to CD-HIT clusters,
and then calculated for each corresponding CD-HIT cluster the per-
cent of contigs in that cluster that overlapped with the original
MCRL signature, as depicted in Figure 4a. We found that each
MCRL signature corresponded to multiple CD-HIT clusters (mean
number ranging between 5 and 20 CD-HIT clusters, Supplementary
Table S9), with the number of clusters depending on the sequence
identity threshold used by CD-HIT. As the sequence identity thresh-
old was reduced, MCRL signatures mapped to a smaller number of
larger CD-HIT clusters, encompassing a greater degree of diversity
(Supplementary Table S9). Across all sequence identity thresholds,
the majority of contigs in CD-HIT clusters mapped back to the cor-
responding signature, with a mean overlap ranging from 72% to
98% (Fig. 4c). Moreover, the vast majority of contigs in a given CD-
HIT cluster (>93%) did not map to signatures of other reference
genes (Fig. 4c) suggesting that the correspondence between MCRL
reference gene clusters and matching CD-HIT clusters was largely a
one-to-many relationship, as illustrated in Figure 4a.

Furthermore, at high sequence identity thresholds, MCRL signa-
ture sizes were nearly identical to the combined size of all corre-
sponding CD-HIT clusters (Supplementary Fig. S14), indicating very
little overhead. At low sequence identity thresholds, however, the
relative size of corresponding CD-HIT clusters was larger
(Supplementary Fig. S14). This difference occurs because at low se-
quence identity thresholds CD-HIT clusters encompass more se-
quence diversity, including contigs that are not homologous to the
reference gene (e.g. contigs mapping to a region of the source gene
that is not homologous to the reference gene), and therefore these
spurious contigs are not included in MCRL signatures.

Finally, we found that by-and-large, long reference genes (e.g.
>1000 amino acids) corresponded to more CD-HIT clusters com-
pared to short reference genes (e.g. <200 amino acids,
Supplementary Fig. S15). This result is expected given that the me-
dian contig length in these metagenomes was 130 amino acids when
translated. For example, the signature of the reference gene
YP_009626515.1 reported by MCRL for the oral virome, which
encodes a TerL gene spanning 545 amino acids, was spread across
five CD-HIT clusters mapping to different regions of this gene
(Supplementary Fig. S16).

6 Mapping viral genes families in an oral virome

To illustrate a real-world application of MCRL, we demonstrate
how MCRL can be used to obtain a non-redundant list of candidates
belonging to a specific viral gene family. As a viral gene, we chose
the highly conserved TerL gene (Casjens, 2003, 2005; Rao and Feiss,
2008), which can be used as a specific marker for phages and pro-
phages (Casjens, 2003). To obtain a non-redundant list of TerL
genes present in a given metagenome, we first used MCRL in con-
junction with the viral RefSeq library to obtain a non-redundant list
of viral genes present in the metagenome. To obtain a non-redun-
dant list of TerL genes, we screened the RefSeq-derived annotation
provided by MCRL (including both FASTA and GenPept annota-
tion) for genes annotated as TerL genes. Table 3 shows the resulting

G20z Keln 0 uo Jasn ABojouyos | Jo eynysul eILIojED AQ 16206€9/1£9/E/BE/I0IE/SONBLIOJUIOIC/WI0D dNO"OlWapeo.)/:Sdjy Wolj POPEOJUMOQ


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data

642

A.D.Tadmor and R.Phillips

(a) MCRL signature

overlap with
signature of ref.
gene cluster

reported
reference gene

signature
of reported
reference gene

reference gene
cluster

reference library

signature of
reference gene
cluster

(e)

—_
o
Lo—

w 100 [ & & 100

2 0w

£ §

3 a

o T

£ 80 P o = 2 8

c o I

2 PR - 8

D anl  aeeeseetet e

g 60 ® 3 60

9 L 4 @

2 g

[=%

g 40 -E 40

E 5

#:' ——Oral virome (inclusive) :

3 20| |- Oral virome (stringent) g 20

E ——Oral metagenome (inclusive) g

5 --* Oral metagenome (stringent) =

# 0 —
0 20 40 60 80 100 0 20 40

CD-HIT sequence identity threshold

b

.

T T~ gene r-
A

CD-HIT clusters

(%

overlap with
signatures of

. overlap with
signature of ref.

.\ other reported
o @ ref genes

signatures of all other
reference genes

./' o contig shared with MCRL
\\, /] iy
-~ signature
N . .
e contig unique to
\_':fl CD-HIT cluster

metagenome

—Reported ref. gene (virome)

—Reported ref. gene (metagenome)

——Other reported ref. genes (virome)
Other reported ref. genes (metagenome)

60 8 100

CD-HIT sequence identity threshold

Fig. 4. Correspondence between MCRL and CD-HIT clusters. (a) For each reference gene reported by MCRL (red star in reference gene cluster) a mapping can be established
between all contigs belonging to the signature of the reported reference gene and corresponding CD-HIT clusters. Black dots in CD-HIT clusters represent shared contigs, and
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identity thresholds. (c) Mean overlap between CD-HIT clusters corresponding to a given reported reference gene and the signature of that reported reference gene (blue—oral
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HIT clustering process did not impact results

22 candidate TerL gene families identified by MCRL to be present in
the oral virome out of 903 reported (viral) reference genes.

To see how closely related these candidate TerL gene families are
to reference genes in the viral RefSeq database, we plotted the refer-
ence gene networks corresponding to these reported reference genes
as heat maps, with nodes color-coded according to the minimal E
value in their signatures (Fig. 5). This analysis showed that even
when networks contained many nodes, typically there were few, if
any, nodes competing with the epicenter in terms of homology, sug-
gesting that the viral RefSeq database may be undersampling TerL
diversity. Conversely, only 9% of reported reference genes encoding
TerL genes yielded alignments with <40% identity compared to
36% when considering all reported reference genes for the viral
RefSeq reference library, reflecting the conserved nature of TerL
genes compared to other viral genes (Casjens, 2003).

Identifying these 22 candidate TerL gene families using standard
annotation or by BLASTing contigs against the NCBI-nr database
would be challenging because these 22 candidate TerL gene families
corresponded to 1550 contigs (given by the union of all signatures of
these 22 TerL reference genes), and to 2455 contigs when expanding
signatures to include all genes in all TerL reference gene clusters.
Metagenomic clustering would not solve this problem because a sin-
gle TerL gene family can be spread across multiple CD-HIT clusters

as discussed above (e.g. the TerL gene shown in Supplementary Fig.
$16). To demonstrate this point, when using a 90% sequence iden-
tity threshold the signatures of these 22 TerL reference genes were
spread across 833 CD-HIT clusters, with 92% of contigs in these
clusters mapping back to the signatures of the TerL reference gene
clusters. Even when reducing the CD-HIT sequence identity thresh-
old to 30%, these 22 TerL reference genes were still spread across
161 CD-HIT clusters, with only 73% of contigs in these clusters
mapping back to the signatures of TerL reference gene clusters, sug-
gesting presence of spurious contigs. Including the viral reference li-
brary in the CD-HIT clustering process had no significant impact on
the number of corresponding CD-HIT clusters. Moreover, even if
annotation would be applied to the ~15 000 CD-HIT clusters found
using a 30% sequence identity threshold, identifying these 161
TerL-related clusters and sorting them into 22 families would be
challenging because annotation of contigs emanating from the same
genomic source can be different.

To demonstrate the application of MCRL on another viral gene
family, we next show how MCRL can be used to obtain a non-re-
dundant list of major capsid protein genes in the oral virome.
Screening once again the RefSeq-derived annotation provided by
MCRL, we were able to identify 21 reported reference genes encod-
ing major capsid proteins, which spanned in total nine different
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Table 3. TerL-related reference genes reported by MCRL for the oral virome using an inclusive overlap condition

GenPept source Viral classification Signature size RefSeq gene Evalue % Identity (aa) TerL domain
Geobacillus virus E3 Caudovirales; Siphoviridae 540 YP_009223720.1 2.0E-43 46 n/a
Clostridium phage phiCD111 Caudovirales; Siphoviridae 169 YP_009208355.1 2.0E-75 79 Terminase_3
Streptococcus virus ALQ132 Caudovirales; Siphoviridae 165 YP_003344848.1 2.0E-75 79 Terminase_3
Streptococcus phage SM 1 Caudovirales; Siphoviridae 150 NP_862877.1 3.0E-91 98 Terminase_1
Streptococcus phage phiARI0460-1  Caudovirales; Siphoviridae 128 YP_009321976.1 5.0E-93 85 Terminase_3
Methanobacterium phage psiM2 Caudovirales; Siphoviridae 114 NP_046964.1 3.0E-34 47 Terminase_6C
Enterobacter phage Tyrion Caudovirales; Podoviridae 90 YP_009287734.1 1.0E-58 57 n/a
Streptomyces phage Scapl Caudovirales; Siphoviridae 56 YP_009615353.1 5.0E-74 73 Terminase_1
Clostridium phage phiCDHM19 Caudovirales; Myoviridae 43 YP_009216852.1 2.0E-66 72 Terminase_6C
Rhodovulum phage vB_RhkS_P1 Caudovirales; Siphoviridae 39 YP_009285918.1  3.0E-67 75 COG4373
Pelagibacter phage HTVC010P Caudovirales; Podoviridae 38 YP_007517700.1 2.0E-35 50 17 super family
Bacillus phage BtCS33 Caudovirales; Siphoviridae 28 YP_006488672.1 3.0E-50 64 COG4626
Corynebacterium phage Poushou Caudovirales; Siphoviridae 19 YP_009626515.1 7.0E-62 65 Terminase_1
Listeria phage LP-101 Caudovirales; Siphoviridae 10 YP_009044803.1 5.0E-48 55 COG4626
Delftia phage IME-DE1 Caudovirales; Podoviridae 9 YP_009191792.1 7.0E-63 70 Terminase_6
Haemophilus phage SuMu Caudovirales; Myoviridae 9 YP_007002934.1 1.0E-57 72 Terminase_6C
Bacteriophage Lily Caudovirales; Siphoviridae 5 YP_009202208.1 1.0E-30 42 Terminase_GpA
Arthrobacter phage Decurro Caudovirales; Siphoviridae 4 YP_009191297.1  3.0E-32 47 Terminase_1
Burkholderia phage Becep176 Caudovirales; Siphoviridae 3 YP_355415.1 6.0E-51 62 COG4626
Polaribacter phage P12002S Caudovirales; Siphoviridae 2 YP_009195687.1  2.0E-19 35 Terminase_3
Bacillus phage AR9 Caudovirales; Myoviridae 2 YP_009283025.1 2.0E-26 38 17 super family
Enterococcus phage phiFL4A Caudovirales; Siphoviridae 1 YP_003347385.1 1.0E-14 53 n/a
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Fig. 5. Heat map of reference gene networks corresponding to TerL genes in the oral
virome. Each node is color-coded according to the minimal E value yielded by the
given reference gene, shown in logarithmic scale. Nodes corresponding to reported
reference genes (yielding the minimal overall E value) are drawn proportional to the
logarithm of the signature size

capsid domains and four unknown domains (Supplementary Table
$10). The reference gene networks corresponding to these 21
reported major capsid proteins tended to have just one branch
reflecting the general lack of homology between capsid genes
(Supplementary Fig. S17). The fact that the number of non-redun-
dant putative gene families detected by MCRL for the TerL gene and
the major capsid protein gene were similar (21 versus 22, respective-
ly) potentially hints at the underlying degree of diversity present in
the given oral virome.

7 Discussion

We presented a novel strategy for data mining metagenomes for di-
versity represented in a pre-defined reference library with the goal of

quantizing this diversity into bins based on known diversity.
According to our proposed approach, a user provided reference li-
brary is compressed with respect to a given metagenome by deter-
mining for each reference gene all related reference genes, selecting
the reference gene yielding the minimal E value to represent that
group, and repeating this process until no two remaining reference
genes are related. This ‘compression’ procedure is lossy in the sense
that diversity that is not spanned by the reference library is lost (by
design). However, diversity that is spanned by the reference library
preserves information in the sense that each discarded reference gene
is represented by a related reference gene yielding a lower E value.
The resulting list of non-redundant reference genes reported by
MCRL should therefore capture the diversity retained after initial
filtering.
Candidate gene families

The non-redundant list of reference genes reported by MCRL
can be regarded as a potential or tentative set of gene families pre-
sent in the metagenome. We showed that the list of reference genes
representing these ‘candidate gene families’ was relatively robust to
input parameters affecting clustering (Eg and T) and was also robust
to stochastic perturbations applied to the metagenome. In terms of
uniqueness of results, the list of reference genes reported by MCRL
does not depend on the order of genes in the reference library or the
order of contigs in the metagenome. In contrast, for some metage-
nomic clustering methods such USEARCH, the order of records in
the metagenome influences the outcome (Mahé ez al., 2014, https://
driveS.com/usearch/manual/uclust_algo.html).
Signature overlap versus homology

The criterion for determining redundancy [Equation (1)] cannot
be substituted by a homology metric between reference genes be-
cause in practice, reference genes corresponding to the same set of
contigs can be distant homologs. Therefore, there is no clear cutoff
for determining redundancy within the reference library. To illus-
trate this point, Supplementary Figure S18 shows an example of a
reference gene cluster corresponding to portal protein gp29 of
Mannheimia phage vB_MhM_3927AP2 determined for the oral
virome discussed in Section 4 (E value 1077°). Despite the fact that
all reference genes in this cluster have a high signature overlap with
gp29 (median 76.5%), most portal proteins comprising this refer-
ence gene cluster yielded low percent identifies when aligned at the
amino acid level against gp29 (median 40% identity at the amino
acid level). Thus, reference genes corresponding to the same diversity
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in the metagenome can be remote homologs of each other. The deci-
sion whether reference genes that are distant homologs of each other
are redundant or not depends, in the end, on the diversity present in
the metagenome.

Furthermore, not all reference genes that are homologous are re-
dundant because homologous reference genes can display significant
homology to different swaths of diversity within the metagenome
despite being homologous to each other. This can occur, e.g. when
two reference genes have both shared and unique domains. In this
case, despite being homologous to each other, both reference genes
can display homology to different sets of contigs. Such an example
was provided in Supplementary Figure S13: the lysins of
Corynebacterium phage phi674 and Corynebacterium phage
Poushou are homologous due to a shared peptidase domain, yielding
52% identify at the amino acid level (E value = 2-107%%). Yet, these
reference genes were reported separately by MCRL because each of
these reference genes contained certain unique domains (a lysozyme-
like domain in the case of phi674 compared to a mutamidase do-
main in the case of Poushou) that were homologous to different sets
of contigs indicating that both lysin families may be present in the
metagenome. A redundancy metric based on homology of reference
genes would have led both lysins to be grouped together and hence
loss of information. Thus, the domains or motifs contributing to
homology can change based on the specific diversity present in the
metagenome, and the decision whether two homologous reference
genes are redundant or not depends on this diversity. The redun-
dancy of reference genes is therefore not an intrinsic property of ref-
erence genes that can be determined purely based on homology
considerations post-filtering, but needs to be dynamically deter-
mined with respect to the diversity present in the metagenome.
Circumventing the need to define OTUs

The list of reference genes reported by MCRL was obtained
without having to invoke an arbitrary global clustering threshold,
which metagenomic clustering methods often require in order to de-
fine OTUs (Navas-Molina et al., 2013). A global clustering thresh-
old, such as the sequence identity threshold used by CD-HIT, is
problematic because different gene families can require different
thresholds, and therefore need to be dynamically determined. In
MCRL, these challenges are circumvented because candidate gene
families naturally emerge from the metagenome by the algorithm,
being empirically defined for a given reference library and metage-
nome. In this respect, MCRL circumvents the need to define artifi-
cial units of diversity, such as OTUs, with diversity instead being
empirically quantized using the reference library as a specific prism.

More advanced metagenomic clustering methods, such as
Swarm, that dynamically breaks OTUs into sub-OTUs (Kopylova
et al., 2016; Mahé et al., 2015) have addressed the problem of a glo-
bal clustering threshold and sequence dependency. However, all
metagenomic clustering methods invariably depend on pairwise
alignment of sequences to create OTUs. In MCRL, contigs are not
required to overlap to be included in signatures, enabling MCRL to
draw on more information encoded in the metagenome when com-
puting candidate gene families. Due to this fact, MCRL can achieve
greater data reduction for metagenomes compared to metagenomic
clustering methods. Since the objective of MCRL and metagenomic
clustering methods is different, these methods should not be viewed
as competing but complementary.

Limitations of MCRL

MCRL has certain intrinsic limitations that cannot be circum-
vented. For example, MCRL is limited by the diversity included in
the reference library. MCRL is also potentially susceptible to mixed
signals originating from different genomics sources, described in
greater detail in Supplementary Discussion S1.3. Since MCRL is
applied to assembled metagenomes, signatures can depend on the
details of the metagenome assembly tools and the specific parame-
ters that were used to assemble the metagenome. MCRL predictions
can also depend on the algorithm and settings used to generate the
local alignments. However, we have shown that MCRL behaves in a
predictable and controlled manner when stochastic perturbations
are introduce to signatures and metagenomes. For example, we
showed that when 20% of contigs were randomly perturbed (either

duplicated or discarded), MCRL was still capable of detecting
~90% of the original reported reference genes, with the impact of
perturbation scaling proportionally to the degree of perturbation
(Supplementary Fig. S8c). Furthermore, when switching from
BLAST to DIAMOND, MCRL sensitivity was still high
(Supplementary Figs S18 and S19), and it retained 78% of reported
reference genes when using the inclusive overlap condition. We also
showed that MCRL is robust to chimeras, with the major parent al-
ways detected (Supplementary Fig. S9b).

In terms of performance, we showed that the sensitivity of
MCRL to detect a given genomic source can diminishes quite rapidly
when the genomic source diverges too far from diversity spanned by
the reference library, reflecting a practical limit on the extent of
novel diversity that can be detected by MCRL. However, metage-
nomic signatures can be constructed using any algorithm for deter-
mining homology, including more sensitive methods, such as PSI-
BLAST (Altschul et al., 1997) and HMMER (Eddy, 2009) that could
improve sensitivity to detect more remote homologs. Furthermore,
the sensitivity of MCRL to detect novel gene families is expected to
continuously improve as reference databases continue to expand at a
rapid pace.

8 Conclusions

We presented a novel data mining method for probing a metage-
nome for homologs of a pre-defined set of reference sequences. By
performing iterative clustering on metagenomic signatures of refer-
ence genes, MCRL provides as output a non-redundant list of refer-
ence genes that share the property that their signatures do not
overlap [as defined by Equation (1)]. Using a series of i silico spike-
in experiments, we showed that MCRL was able, across a wide
range of simulated mutation rates, to accurately discriminate differ-
ent viral gene families, identify close homologs of the templates used
for spike-in experiments and effectively group closely related var-
iants. CD-HIT, on the other hand, exhibited between 21% to 35%
less sensitivity compared to MCRL, was less effective at identifying
the templates used for spike-in experiments and was less effective at
clustering closely related variants. We further showed that MCRL
reference gene clusters and CD-HIT clusters have a one-to-many cor-
respondence, with CD-HIT clusters becoming fewer and larger as
the sequence identity threshold is reduced. Nevertheless, we showed
that CD-HIT clusters do not converge to signatures as the CD-HIT
sequence identity threshold is reduced because reducing the sequence
identity threshold generally results in inclusion of non-specific
homologs. In addition, contigs originating from long genes will gen-
erally be fragmented across multiple CD-HIT clusters.

Data reduction

In the case of the viral gene set, we showed that MCRL achieved
a data reduction factor of ~1% compared to ~10-90% for CD-HIT
(depending on the sequence identity threshold). The data reduction
factors achieved by CD-HIT and MCRL are, however, qualitatively
different in terms of their end goal, the type of redundancy being
removed and the method by which clustering is performed.
Metagenomic clustering programs aim to reduce redundancy inher-
ent to the metagenome by clustering similar metagenomic sequences.
MCRL, in contrast, clusters similar metagenomic signatures with the
goal of removing redundant sequences from the reference library.
MCRL hence does not attempt to preserve genomic diversity like
standard metagenomic clustering methods, but to capture diversity
reflected in the reference library and report this diversity with min-
imal redundancy. In this sense, MCRL is similar to closed-reference
clustering methods, but whereas closed-reference clustering methods
achieve further data reduction by discarding contigs that do not
align with reference sequences, MCRL does the reverse and discards
reference sequences that do not align with contigs.

The clustering that MCRL performs to remove redundancy from
reference genes is effective because metagenomic signatures encom-
pass all metagenomic sequences homologous to a given reference
gene. In contrast, metagenomic clustering methods require metage-
nomic sequences to have a certain degree of overlap to define a clus-
ter, e.g. by requiring overlap with the representative of the cluster

G20z Keln 0 uo Jasn ABojouyos | Jo eynysul eILIojED AQ 16206€9/1£9/E/BE/I0IE/SONBLIOJUIOIC/WI0D dNO"OlWapeo.)/:Sdjy Wolj POPEOJUMOQ


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab703#supplementary-data

MCRL

645

(Li et al., 2001). Therefore, contigs emanating from a given genomic
source can be scattered across multiple clusters. Moreover, standard
metagenomic clustering methods use an artificial sequence similarity
cutoff to artificially limit diversity included in a given cluster, further
limiting their ability to collect all redundant sequences. In this sense,
MCRL uses the full-length reference genes as pseudo scaffolds for
alignment and clustering. Depending on the extent of homology be-
tween a common genomic source in the sample and the closest
homolog in the reference library, MCRL can potentially (ideally)
group all contigs emanating from a common genomic source.

Another important difference between MCRL and metagenomic
clustering is that the data reduction achieved by programs such as
CD-HIT is simply correlated with the global sequence identity
threshold used to define OTUs. MCRL, however, does not have an
equivalent global threshold parameter and the data reduction factor
achieved by MCRL reflects an intrinsic redundancy in the reference
library with respect to the given metagenome: each reference gene
that was not reported by MCRL either did not meet the minimal
homology threshold for detection set by the user (E,;), or was repre-
sented instead by another reference gene that had an overlapping sig-
nature and yielded a lower E value. It is in this sense that MCRL’s
compression preserves information: any reference gene that was not
reported by MCRL either did not have significant homologs in the
metagenome, or the homology was better captured by another refer-
ence gene that was reported by MCRL.
Using MCRL to explore viral diversity

One problem that MCRL is particularly suited for is mapping
viral diversity in metagenomes because viral sequences tend to be
both divergent and redundant. By selecting as a reference library the
viral RefSeq database, we demonstrated how MCRL can be used to
provide a non-redundant list of putative viral gene families in a
metagenome. This list, in turn, can serve as a starting point for fur-
ther investigation. For example, we previously used an earlier ver-
sion of the MCRL algorithm to screen a metagenome from a
hindgut of a higher termite for different TerL gene families (Tadmor
et al., 2011). This analysis enabled us to identify a highly conserved
family of TerL genes that was ubiquitous across different termite
species and could therefore serve as a universal marker for phages in
this environment (Tadmor et al., 2011). More recently, following a
similar approach, we used MCRL to identify a group of highly con-
served TerL gene families ubiquitous in the human population (A.
D. Tadmor et al., Ubiquitous Phage Markers in Humans, 2021, In
prep.). In Section 6, we showed that extracting such a list of TerL
gene families using a program like CD-HIT would be impractical
owing to the large number of clusters involved.
Examples of other potential gene sets

Although we focused our attention on analysis of viral gene sets,
MCRL can be used to probe metagenomes using any reference library
provided by the user. By constructing different reference libraries
MCRL can be used to explore different hypotheses about a given envir-
onment. Reference libraries can span, e.g. a certain taxonomical group
of organisms, or be more focused, targeting a certain group of genes.
One example would be antibiotic resistance genes. Current methods for
identifying antibiotic resistance genes range from basic approaches
using BLAST alignment, such as ARGs-OAP (Yang et al., 2016), to
more sophisticated tools using, for example, targeted assembly, such as
ARIBA (Hunt et al., 2017), AmrPlusPlus (Lakin et al., 2017) and
fARGene (Berglund et al., 2019), tools using hidden Markov models or
deep learning to increase sensitivity, such as Resfams (Gibson ez al.,
2015) and DeepARG (Arango-Argoty et al., 2018), and tools using ma-
chine learning to increase specificity, such as PCM (Ruppé et al., 2018).
These tools, however, will generally output all detected/assembled
genes, including all variants of a given gene, even if these variants be-
long to the same gene family. Furthermore, since antibiotic resistance
genes tend to be long (944 * 390 nt, n = 2631, based on the CARD
database), results may be fragment if contigs in a given metagenome
tend to be short. MCRL could contribute by minimizing redundancy
and grouping detected genes into distinct gene families, enabling to de-
tect both known and novel antibiotic resistance genes in human and en-
vironmental samples, including remote homologs. For this purpose, a
reference library could be constructed to span all known antimicrobial

resistance genes based on databases, such as CARD (McArthur e al.,
2013), ResFinder (Zankari et al., 2012 and MEGARes (Lakin et al.,
2017). In the same manner, MCRL could be used to map families of
antibiotic genes with similar advantages.

Another potential application for MCRL is to identify gene families
associated with virulence and pathogenicity using databases, such as
the virulence factor database (Liu et al., 2018), Victors—a database of
virulence factors in human and animal pathogens (Sayers et al., 2019),
the Pathogenicity Island Database (Yoon ez al., 2014), the National
Microbial Pathogen Database Resource (McNeil ef al., 2006) and the
GeneDB database for pathogens (Logan-Klumpler ez al., 2011).
Alternatively, MCRL could be used to identify genes associated with
viral pathogens based on reference databases such ViPR (Pickett ez al.,
2012) and IRD (Zhang et al., 2017). Here too, the advantage of
MCRL would be, on the one hand, reduction of redundancy and or-
ganization of detected genes into putative gene families, and on the
other hand improved sensitivity to capture more distant homologs.

Reference libraries can also be constructed to target enzymes per-
forming specific functions, such as DNA replication, reverse transcrip-
tion, or proteins that are part of certain metabolic pathways. For
example, reference libraries can be constructed to span all genes
involved in carbon, nitrogen and methane cycling (Mackelprang ez al.,
2011; Zhang et al., 2014), cellulose degradation (Berlemont and
Martiny, 2013; Pereyra et al., 2010; Warnecke et al., 2007) or any
other phylogenetically diverse biological pathway of interest. Given the
large number of annotated genes available today, with over 100 million
sequences in the RefSeq database alone, high-resolution reference libra-
ries focusing on specific swaths of genetic diversity can easily be con-
structed addressing nearly every facet of biology.
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