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Abstract
We calculate the probability of DNA loop formation mediated by regulatory proteins such as
Lac repressor (LacI), using a mathematical model of DNA elasticity. Our model is adapted to
calculating quantities directly observable in tethered particle motion (TPM) experiments, and
it accounts for all the entropic forces present in such experiments. Our model has no free
parameters; it characterizes DNA elasticity using information obtained in other kinds of
experiments. It assumes a harmonic elastic energy function (or wormlike chain type elasticity),
but our Monte Carlo calculation scheme is flexible enough to accommodate arbitrary elastic
energy functions. We show how to compute both the ‘looping J factor’ (or equivalently, the
looping free energy) for various DNA construct geometries and LacI concentrations, as well as
the detailed probability density function of bead excursions. We also show how to extract the
same quantities from recent experimental data on TPM, and then compare to our model’s
predictions. In particular, we present a new method to correct observed data for finite camera
shutter time and other experimental effects. Although the currently available experimental
data give large uncertainties, our first-principles predictions for the looping free energy change
are confirmed to within about 1 kBT , for loops of length around 300 basepairs. More
significantly, our model successfully reproduces the detailed distributions of bead excursion,
including their surprising three-peak structure, without any fit parameters and without
invoking any alternative conformation of the LacI tetramer. Indeed, the model qualitatively
reproduces the observed dependence of these distributions on tether length (e.g., phasing) and
on LacI concentration (titration). However, for short DNA loops (around 95 basepairs) the
experiments show more looping than is predicted by the harmonic-elasticity model, echoing
other recent experimental results. Because the experiments we study are done in vitro, this
anomalously high looping cannot be rationalized as resulting from the presence of
DNA-bending proteins or other cellular machinery. We also show that it is unlikely to be the
result of a hypothetical ‘open’ conformation of the LacI tetramer.
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1. Introduction and summary

1.1. Background

Living cells must orchestrate a multitude of biochemical
processes. Bacteria, for example, must rigorously suppress
any unnecessary activities to maximize their growth rate, while
maintaining the potential to carry out those activities should
conditions change. For example, in a glucose-rich medium
Escherichia coli turn off the deployment of the machinery
needed to metabolize lactose; when starved of glucose, but
supplied with lactose, they switch this machinery on. This
switch mechanism—the ‘lac operon’—was historically the
first genetic regulatory system to be discovered. Physically,
the mechanism involves the binding of a regulatory protein,
called LacI, to a specific sequence of DNA (the ‘operator’)
situated near the beginning of the set of genes coding for the
lactose metabolism enzymes. Some recent reviews of the lac
system include [1–4]; see also [5] for looping in the lambda
system.

Long after the discovery of genetic switching, it was
found that some regulatory proteins, including LacI, exist in
multimeric forms with two binding heads for DNA, and that
their normal operation involves binding both sites to distant
operators, forming a loop [6–11]. The looping mechanism
seems to confer advantages in terms of function [12]. From
the biophysical perspective, it is remarkable that in some cases
loop formation, and its associated gene repression, proceed
in vivo even when the distance between operators is much
less than a persistence length of DNA [13]. For this and other
reasons, a number of experimental methods have been brought
to bear on reproducing DNA looping in vitro, to minimize the
effects of unknown factors and focus on the one process of
interest. Reconstituting DNA looping behavior in this way
is an important step in clarifying the mechanism of gene
regulation.

Tethered particle motion (TPM) is an attractive technique
for this purpose [14]. In this method, a long DNA construct is
prepared with two (or more) operator sequences at a desired
spacing near the middle. One end is anchored to a wall,
and the other to an otherwise free, optically visible bead.
The bead motion is passively monitored, typically by tracking
microscopy, and used as an indirect reporter of conformational
changes in the DNA, including loop formation and breakdown
(figure 1).

1.2. Goals of this paper

The recent surge of interest in DNA looping motivated us to
ask: can we understand TPM data quantitatively, starting from
simple models of DNA elasticity? What is the simplest model
that captures the main trends? How well can we predict data
from TPM experiments, using no fitting parameters?

To answer such questions, we had to combine and improve
a number of existing calculation tools. This paper explains
how to obtain a simple elastic-rod model for DNA, and a
geometric characterization of the repressor–DNA complex,
from existing (non-TPM) experiments. From this starting
point, with no additional fitting parameters, we show how

to calculate experimentally observable quantities of TPM
experiments (such as the fraction of time spent in various
looped states and the distribution of bead excursions), as
functions of experimentally controlled parameters (operator
separation and repressor concentration) and compare to recent
experiments.

Although our main interest is TPM experiments, our
method is more generally applicable. Thus as a secondary
project, we also compute looping J factors for a DNA construct
with no bead or wall (pure looping). This situation is closer to
the one that prevails in vivo; although in that case many other
uncertainties enter, it is nevertheless interesting to compare
our results to the experimental data.

1.3. Assumptions, methods and results of this paper

Supplementary information S1 (stacks.iop.org/PhysBio/6/
025001) gives a summary of the notation used in this
paper. Some readers may wish to skip to section 1.3.3,
where we summarize our results. Section 1.3.4 gives an
outline of the main text and the supplement; in addition, the
other subsections of this introduction give forward references
showing where certain key material can be found.

1.3.1. Outline of assumptions. First, we summarize key
assumptions and simplifications made in our analysis. Some
will be justified in the main text, whereas others are taken in
the spirit of seeking the model that is ‘as simple as possible,
but not more so’.

All our results are obtained using equilibrium statistical
mechanics; we make no attempt to obtain rate constants,
although these are experimentally available from TPM data
[14, 16–18]. Our model treats DNA as a homogeneous,
helical, elastic body, described by a 3 × 3 elastic compliance
matrix (discussed in section 3). Thus we neglect, for now,
the effect of DNA sequence information [19], so our results
may be compared only to experiments done with random-
sequence DNA constructs. Despite this reduction, our model
is more realistic than ones that have previously been used
for TPM theory; for example, we include the substantial
bend anisotropy, and twist–bend coupling, of DNA elasticity.
We also neglect long-range electrostatic interactions (as is
appropriate at the high-salt conditions in the experiments we
study), assuming that electrostatic effects can be summarized
in effective values of the elastic compliances.

The presence of a large reporter bead at one end of the
DNA construct, and a wall at the other end, significantly
perturb looping in TPM experiments. We treat the bead as
a sphere, the wall as a plane and the steric exclusion between
them as a hard-wall interaction. We neglect nonspecific DNA–
protein interactions (‘wrapping’ [20]).

1.3.2. Outline of methods. Our method builds on prior work
[15, 21]. Section 7 discusses other theoretical approaches in
the literature.

Our calculations must include the effects of chain entropy
on loop formation, because we consider loop lengths as
large as 510 basepairs. We must also account for entropic-
force effects created by the large bead at one end of the
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(a) (b)

Figure 1. (a) Cartoon of a DNA molecule flexibly linking a bead to a surface via freely pivoting attachments (not to scale). The motion of
the bead’s center is observed and tracked, for example as described in [15]. In each video frame, the position vector, usually projected to the
xy plane, is found. After drift subtraction, the mean of this position vector defines the anchoring point. The projected distance from this
anchoring point to the instantaneous bead center is the bead excursion ρ. A regulatory protein, for example a LacI tetramer, is shown bound
to a specific ‘operator’ site on the DNA. (b) The conformational change of interest to us is loop formation: a loop forms when the repressor
also binds to a second operator. The figure shows an actual representative looped configuration from the simulations described in this paper,
drawn to scale. Figures 2 and 6 explain the graphical representations of DNA and LacI used here.

DNA and the wall at the other end, in addition to the
specific orientation constraints imposed on the two operators
by the repressor protein complex. To our knowledge such
a complete, first-principles approach to calculating DNA
looping for tethered particle motion has not previously
been attempted. In part because of these complications,
we chose to calculate using a Monte Carlo method called
‘Gaussian sampling’ (discussed in section 4 and sections
S6 and S7 (stacks.iop.org/PhysBio/6/025001)). Gaussian
sampling is distinguished from Markov-chain methods (e.g.,
Metropolis Monte Carlo) in that successive sampled chains are
independent of their predecessors.

We must also address a number of points before we can
compare our results to experiments. For example, DNA
simulations report a quantity called the ‘looping J factor’.
But TPM experiments instead report the time spent in looped
versus unlooped states, which depends on both J and a
binding constant Kd. We present a method to extract both J

and Kd separately from TPM data (discussed in section S5
(stacks.iop.org/PhysBio/6/025001)). We also describe two
new data-analysis tools: (1) a correction to our theoretical
results on bead excursion, needed to account for the effect
of finite camera shutter time on the experimental results
(discussed in section S2 (stacks.iop.org/PhysBio/6/025001)),
and (2) another correction needed to make contact with
a widely used statistic, the finite-sample root-mean-
square (rms) bead excursion (discussed in section S3
(stacks.iop.org/PhysBio/6/025001)). (To be precise, the latter
two corrections do both involve phenomenological parameters,
but we obtain these from TPM data that are different from
the ones we are seeking to explain. Each correction could
in any case be avoided by taking the experimental data
differently, as described in the Supplementary information
(stacks.iop.org/PhysBio/6/025001).)

1.3.3. Outline of results. Some of our results were first
outlined in [22, 23]. The assumptions sketched above amount
to a highly reductionist approach to looping. Moreover, we
have given ourselves no freedom to tweak the model with

adjustable parameters, other than the few obtained from non-
TPM experiments (four elastic constants and the geometry
of the repressor tetramer); all other parameters we used
had known values (e.g., bead size and details of the DNA
construct). So it is not surprising that some of our results are
only in qualitative agreement with experiment. Nevertheless,
we find that:

• Our physical model quantitatively predicts basic aspects
of the TPM experiments, such as the effects of varying
tether length and bead size (see figure 3).

• The model can roughly explain the overall value of the
looping J factor obtained in experiments for a range of
loop lengths near 300 basepairs (discussed in section 5).

• Perhaps most surprising, the same simple model predicts
rather well the observed, detailed structure of the
distribution of bead excursions, including its dependence
on loop lengths near 300 basepairs (see, e.g., figure 11).
The distinctive three-peaks structure of this distribution
[24–26] has sometimes been taken as prima facie evidence
for a hypothetical alternate ‘open’ conformation of
the repressor protein. But we show that it can also
arise without that hypothesis, as a consequence of the
contributions of loops with different topologies.

• Notwithstanding those successes, our simple model does
not successfully extrapolate to predict the magnitude of
the J factor for loop lengths near 100 basepairs, at least
according to the limited, preliminary experimental data
now available. Instead, there it underestimates J , pointing
to a breakdown of some of its hypotheses in this high-
strain situation. Perhaps the needed modification is a
nonlinear elastic theory of DNA [27, 28], significant
flexibility in the tetramer, additional nonspecific binding
of DNA to the repressor protein, or some combination of
these.

• However, our model does give a reasonable account of the
structure of the bead excursion distribution even for loop
lengths near 100 bp (see figure 13).
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• Because previous authors have proposed the specific
hypothesis that one of the excursion-distribution peaks
reflects an ‘open’ conformation of LacI, we simulated that
situation as well. We argue that this hypothesis cannot
by itself explain the high degree of looping observed
experimentally for short DNA constructs (discussed in
section 5.4.3).

Our calculations also quantify the importance of the orientation
constraint for binding to the tetramer, via a concept we
call the ‘differential J factor’ (discussed in section 5.2).
Finally, our simple model of blur correction quantitatively
predicts the observed dependence of apparent bead motion
on camera shutter time, and we expect it will be useful
for future TPM experiments (discussed in section S2.2
(stacks.iop.org/PhysBio/6/025001)).

1.3.4. Organization of this paper. Section 2 gives
an overview of various single-molecule experiments used
recently to study looping, emphasizing the particular
capabilities of TPM. Section 3 derives the elastic model of
DNA to be used in this paper. Section 4 introduces our
Monte Carlo method, and gives a crucial check that theory
and experiment are both working properly, by showing to
what extent we can accurately predict the excursion of the
tethered bead in the absence of looping. Section 5 shows how
to extend the simulation to study looping, defines the looping
J factor and gives results on J as a function of loop length,
both with and without the effect of the tethered bead and
surface, and for both the closed (V-shaped) and hypothesized
open conformation of the lac repressor tetramer. Section 6
gives a more refined measure of bead motion, the probability
distribution of the bead excursions. Section 7 discusses the
relation between our work and earlier theoretical papers, and
finally section 8 gives general discussion.

The supplementary information has its own table of
contents; it contains information more directly related to the
experimental data, details of our Monte Carlo algorithm and
some additional calculations in our model. For example,
we checked our work by calculating cyclization J factors
and comparing to the classic Shimada–Yamakawa result. In
addition, the online supplements include the Mathematica code
we used to perform the calculations reported in this paper (see
stacks.iop.org/PhysBio/6/025001).

2. Survey of experiments on looping

Experimental measurements of DNA loop formation have
fallen into four main classes. Readers familiar with the
experiments may wish to skip directly to section 3.

Cyclization. In these in vitro experiments, many identical,
linear DNA constructs are prepared with overhanging,
complementary ends. Ligase enzyme captures transient states
in which either two ends of the same DNA join, forming
a ring, or else ends of two different DNAs join, forming
a dimer. Under suitable conditions the ratio of rings to
dimers after the reaction runs to completion gives information
about the equilibrium populations of those paired states, and

hence about loop formation (e.g., [29–33]). Unfortunately, the
interpretation of these experiments is complicated by the role
of the large, complex ligase enzyme, the need to be in a very
specific kinetic regime, and so on [34]. Moreover, the process
of interest to gene regulation is looping, which is geometrically
quite different from cyclization.

In vivo repression. Other experiments measured the output
of an operon as its controlling promoter was switched by a
repressor (e.g., [13, 35–38]); theory then connects those results
to looping J factor values (or looping free energy changes)
[39–42]. Although the experiments showed that short loops
form surprisingly easily, their quantitative interpretation is
obscured by uncertainties due to the complex world inside
a living cell, for example, supercoiling and the many other
DNA-binding proteins (such as HU, H-NS and IHF) present
in cells.

Magnetic tweezer. To introduce supercoiling in an in vitro
preparation, some experiments manipulate the DNA using
a magnetic bead in a trap. Some earlier implementations
unavoidably also introduced extensional stress on the DNA
[43]; however, recent work has overcome this limitation [25].

Tethered particle. In the present work we study TPM
experiments [44], which can report directly on looping state
under controlled, in vitro conditions. Recent work on looping
via TPM includes [16–18, 26, 45–47]. TPM experiments do
require significant analysis to determine looping state from
bead motion, but techniques such as dead-time correction [16]
and hidden Markov modeling [17, 18] now exist to handle this.
Like cyclization, the TPM experiments we studied have the
biologically unrealistic (but theoretically convenient) feature
that the supercoiling stress applied externally to the loop is
zero. (For a theoretical approach to looping with supercoiling
see, e.g., [48].)

Additional advantages of TPM include the fact that it does
not involve fluorescence, and so is not subject to bleaching;
thus, an experiment can generate an unlimited data sample
simply by tracking a bead for a long time. Moreover, the
DNA is in solution, and minimally affected by the distant
bead. Some implementations of TPM do not track individual
trajectories, instead observing the blurred average image of
each bead [14, 24]; this paper will focus on particle-tracking
implementations (see, e.g., [15, 49]). Other experimental
aspects, including the attachment of the DNA of interest to
the mobile bead at one end and the immobile surface at the
other, are discussed in the original papers cited above.

TPM experiments also offer the ability to separate
the overall probability of looping, at least partially, into
the contributions of individual loop types (see section 6).
This additional degree of resolution allows more detailed
comparison with experiment than is possible when we observe
only the level of gene repression. Finally, TPM and other
in vitro methods also present the opportunity to dissect the
experimentally observed looping probability into separate
numerical values for the looping J factor and the binding
constant, via a titration curve (discussed in section S5
(stacks.iop.org/PhysBio/6/025001)). In contrast, some in vivo
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Figure 2. Basepair geometry (see [53]). The rectangle represents a DNA basepair. The red and blue dots are the phosphate backbones. The
circle is the outer envelope of the double helix, 2 nm in diameter. We set up an orthonormal frame (left) where Ê3 is out of the page, Ê1

points to the major groove and Ê2 completes the triad and points toward the 5′ → 3′ strand (red) as defined by the positive Ê3 direction.
‘Positive roll’ is then defined as a positive rotation about Ê2 as we pass from this basepair to the one on top of it (=‘bend into the major
groove’). Similarly ‘tilt’ is rotation about Ê1 and ‘twist’ is excess rotation about Ê3 (in addition to the natural helical twist). For our
purposes, a DNA chain conformation is a sequence of such frames. Graphically, we represent it in figures 1 and 6 as a chain of
double-helical segments, as shown on the right.

methods must obtain a value for the binding constant from a
single data point (repression with auxiliary operator deleted),
and moreover must rely on the accuracy of an estimate for the
effective repressor concentration in the cell [41].

3. Elasticity theory used in this paper

This section derives the elastic model of DNA to be used
in this paper. Section 3.2 first obtains the elasticity matrix
up to an overall constant from structural information; then
section 3.3 fixes the constant by requiring a particular value
for the persistence length. Our simulation method involves
matrix exponentiation, and may be simpler than other methods
sometimes used in the literature.

3.1. General framework

The physical model of DNA as a uniform, isotropic, slender,
linearly elastic rod [50] has proven to give an adequate
description of DNA mechanics for some purposes, notably
for computing the force–extension relation of long DNA
[51, 52]. However, this simple model is not obviously
appropriate for describing the formation of structures involving
DNA loops of length comparable to a helical repeat (�helix =
3.5 nm). For example, in this paper we are interested
in loops as short as nine times the helical repeat length.
On length scales comparable to �helix, the bend stiffness
anisotropy of the molecule certainly becomes significant, as
well as elastic cross-coupling between bend and twist [53,
54]. Section 3.2 spells out the details of the elasticity theory
we will use. (Section S8.1 (stacks.iop.org/PhysBio/6/025001)
explores the importance of including the anisotropy by
studying an alternative model.)

In other respects, our elastic model will be standard. We
assume that the unstressed state of DNA may be regarded as
a stack of plates (segments), each with thickness �0 and each
with a chosen reference point and an inscribed coordinate
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Figure 3. Theoretical prediction of equilibrium bead excursion.
Dots: experimental values for rms excursion of bead center, ρrms,t ,
for random-sequence DNA and three different bead sizes: top to
bottom, Rbead = 485, 245 and 100 nm. (Data from [47].) The
sampling times were t = 20, 10 and 5 s, respectively. For these
rather long times the finite-sample correction is negligible;
nevertheless, we included this correction (via a method given in
section S3 (stacks.iop.org/PhysBio/6/025001)). Each dot represents
20–200 different observed beads with the given tether length. Dots
and their error bars were computed by the method described in
figure S1. Curves: theoretically predicted rms motion, corrected for
the blurring effect of finite shutter time. For each of the three bead
sizes studied, two curves are shown. From top to bottom, each pair
of curves assumes persistence length values ξ = 47 and 39 nm,
respectively. There are no fit parameters; the theoretical model uses
values for bead diameter given by the manufacturer’s specification.

frame at that point (figure 2). Each plate is shifted a distance
�0 along its Ê3-axis relative to its predecessor, and also rotated
by 2π�0/(�helix) about the same axis. Next we need to quantify
the elastic energy cost for a deviation from this unstressed state.

We restrict attention to a harmonic elasticity model, that is,
we assume that the elastic energy at each junction is a quadratic
function of bend and excess twist, neglecting the possibility
of elastic breakdown at high strain [27, 28, 32]. We do this
because ultimately we are interested in testing the harmonic
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model, by confronting its predictions with experiment, and
also because there is not yet a unique candidate for the
detailed, three-dimensional form of an effective nonlinear
elastic function.

We neglect stretch elasticity of the segments because there
is no externally applied stretching force in TPM experiments
(and any entropic stretching force is insignificant in this context
[21]). Thus the displacement of each segment is always �0; the
‘pose’ (position and orientation) of each segment relative to its
predecessor is completely specified by the angular orientation.
For simplicity, we also neglect the sequence dependence of
DNA elasticity, so our results will apply only to random-
sequence DNA constructs; all our comparisons to experiments
will involve DNA of this type. Because we are making a
finite-element approximation to a continuum elasticity model,
we have some freedom in choosing the contour length �0 of
each segment, as long as it is much shorter than the persistence
length, about 150 basepairs. To speed up calculations, we
have chosen a segment length corresponding to one-fifth of
a helical repeat (about 2 basepairs). Making our segments
commensurate with the helical repeat also has the advantage
of showing clearly any helical phasing effects, i.e., modulation
of looping with period equal to �helix.

Let �θi be the excess rotation angles (beyond the natural
twist) from one segment to the next and let �i = �θi/�0

denote the corresponding strain rates per unit contour length,
where i = 1, 2 and 3 correspond to tilt, roll and twist,
respectively (see figure 2). We will define the elastic
deformation free energy per unit contour length as

E ≡ (
1
2kBT

)
�tQ�, (1)

so the stiffness matrixQ has units of length and is independent
of the choice of segment length �0. (The compliance matrix
is then Q−1.) In the traditional wormlike chain model Q is
diagonal, with the bend and twist persistence lengths on the
diagonal. We next propose a more realistic choice for this
matrix.

3.2. Relative elastic constants

To get values for the elements of Q, we first note
that (neglecting sequence dependence) B-form DNA has a
symmetry under 180◦ rotation about any line perpendicular
to its long axis and passing through its major groove. (Such
a line is labeled Ê1 in figure 2.) This symmetry forbids any
harmonic-elasticity coupling between twist and tilt (that is,
between small rotations about Ê3 and Ê1 in the figure), and
also between tilt and roll [53]. Thus the symmetric 3 × 3
matrix Q has only four independent nonzero entries [53, 55].

Next, we adapt a strategy used by Olson and coworkers
[56], who examined crystal structures of many DNA oligomers
and of DNA–protein complexes. They then supposed that
each basepair is subjected to random external forces (e.g.,
crystal forces), the same for every type of basepair junction,
analogous to the random forces in thermal equilibrium but of
an unknown overall magnitude. The observed deformations
of basepairs in this imagined random external force tell us
about the elastic compliances for deformation of each basepair
type, and in particular the covariances of deformations give the

off-diagonal terms. Finally, we adjust the overall scale of the
resulting elastic-energy matrix to obtain the desired persistence
length of DNA in the buffer conditions appropriate to the TPM
experiments of interest.

The method outlined above, although rough, nevertheless
captures the basic structure of DNA elasticity while preserving
the required overall persistence length. To carry it out, we
took the published covariance matrices for the �θi of various
basepair steps [56] and averaged them to obtain an elastic
compliance matrix. We inverted this matrix and observed
that indeed the (12), (13), (21), (31) entries of Q were much
smaller than the others; we subsequently set them to be exactly
zero. These steps yielded the entries of Q, up to an overall
scale factor, as

Q = γ ×
⎡
⎣0.084 0 0

0 0.046 0.016
0 0.016 0.047

⎤
⎦ . (2)

The overall constant γ has units of length; it will be specified
in section 3.3.

The expected anisotropy is evident in the form of the
matrix: the tilt eigenvalue (0.084) is much larger than the
smaller of the two remaining eigenvalues (0.030). Note that
the near-degeneracy of the last two diagonal elements
means that the eigenvectors are strongly mixed: the smaller
eigenvalue corresponds to a mixed deformation, with positive
roll and negative twist. Thus, bending the DNA tends to
untwist it [56]. Note, too, that the numerical values of the
diagonal entries are not a good guide to the relative actual bend
stiffnesses, because the eigenvalues of the 2×2 submatrix may
be quite different from its diagonal entries.

3.3. Specification of the overall scale factor

The persistence length ξ of a polymer is defined by the
falloff in correlation between the long-axis directions of nearby
elements when the polymer is free (no external forces). Thus,
〈Ê3(s) · Ê3(s + t)〉 → e−|t |/ξ at large t, where s, t are contour
lengths [51]. We now discuss how to compute ξ for an elastic
matrix of the form equation (2), as a function of the unknown
parameter γ that sets the strength ofQ; demanding a particular
value of ξ will then fix the value of γ . (A similar discussion
recently appeared in [57].)

To compute ξ given a choice of γ , we first generate a
string of random rotation matrices, each representing relative
rotations of one segment relative to its predecessor. These
matrices are drawn from a distribution that is centered on
the identity matrix and weighted by the Boltzmann factor
e−E�0/kBT . More explicitly, we choose a value of �0, then
diagonalize the matrix Q/�0, writing it as TtDT for an
orthogonal matrix T. We then use the diagonal entries of
D as inverse variances for three Gaussian random variables
{
i}, and let �θ = Tt
, obtaining three random variables
�θi with the desired statistical properties. We convert
these random angles into a rotation matrix by computing the
matrix exponential exp

(∑3
i=1 �θiJi

)
, where Ji are the rotation

generator matrices. For example,

J3 =
⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ .
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Finally, we multiply the resulting rotation on the left by
the natural, unstressed DNA rotation exp((2π�0/�helix)J3),
obtaining R(1), then repeat all these steps to make a long
string of matrices R(1),R(2), . . . .

Next, we step through the matrix string, cumulatively
applying each rotation R(k) in turn to an initial orientation to
obtain the orientations of successive basepairs from a standard
orientation for the first one. That is, let the frame vector at
arclength position s be Êa(s). We express it in components
using the fixed lab frame as [Êa(s)]i = hia(k), i = 1, 2, 3,
where s = k�0, hia(0) = δia and h(k + 1) = h(k)R(k).
Finally, we average the quantity 〈Ê3(s) · Ê3(s + t)〉 over the
generated chains, average over s for various fixed t, confirm
the exponential decay in t and extract the decay length ξ .

In solvent conditions used for TPM by Han et al [26, 47],
the persistence length has been previously measured by other
means to be around 44 nm [58, 59]; see also section 4.2, where
we show that this value is consistent with TPM calibration data.
Applying the above procedure to equation (2) and requiring
ξ = 44 nm fixes γ : we then have

Q =
⎡
⎣67 nm 0 0

0 37 nm 13.0 nm
0 13.0 nm 37 nm

⎤
⎦ . (3)

Equation (3) is the form suitable for angles �θ expressed in
radians; for angles in degrees the matrix should be multiplied
by (π/180)2.

4. Calculation of TPM distributions without looping

This section introduces our Monte Carlo method, and gives
a crucial check that theory and experiment are both working
properly, by showing to what extent we can accurately predict
the excursion of the tethered bead in the absence of looping.
Some details relevant to experimental data (blur correction and
finite-sample effects) are relegated to the Supplement.

We begin our analysis by predicting the motion of a
tethered particle in terms of the tether length and bead size,
both of which were systematically varied in the experiments
of [47]. Besides being a basic polymer science question,
such a priori knowledge of, say, the rms bead excursion for
simple tethers sets the stage for our calculations involving
looped tethers in section 6. More generally, in other kinds of
experiments the tether length may be changing in time, in a way
that we would like to measure, as a processive enzyme walks
along DNA or RNA [60], or as proteins bind to the DNA,
etc. Finally, by comparing theory to experiment, we gain
confidence both that the experiment is working as desired and
that our underlying assumptions about the polymer mechanics,
bead–wall interactions and so on, are adequate.

Although the end–end distribution of a semiflexible
polymer such as DNA is a classical problem in polymer
physics, the present problem differs from that one in several
respects. For example, the DNA is not isolated, but instead is
attached to a planar surface, and hence experiences an effective
entropic stretching force due to the steric exclusion from
half of space; a similar effective repulsion exists between the
DNA and the large bead. More important than these effects,
however, is the steric exclusion of the bead from the wall.

Segall et al [21] argued that the effect of this exclusion would
be to create an entropic stretching force on the DNA.

Additional subtleties of the problem include the fact that
the polymer itself has two additional length scales in addition
to the bead radius, namely its persistence length ξ and total
length L, and the fact that we do not observe the polymer
endpoint, but rather the center of the attached bead. Some
of these effects have been studied analytically for the case
with applied stretching force (e.g., [61]), but for zero applied
stretching force the steric constraints, not fully treatable in
that formalism, become important. For this reason, [15, 21]
developed a Monte Carlo calculation method4. A similar
method was independently used for a study of DNA cyclization
by Czapla et al [64], who call it ‘Gaussian sampling’. Here we
generalize that method to use the elasticity theory described in
section 3. We also extend our earlier work by computing the
dependence of the rms bead excursion on both tether length
and bead size, and comparing to experimental data in which
both were systematically varied.

4.1. Gaussian sampling

The Gaussian sampling approach is not a Markov-chain
algorithm; each chain is generated independently of all the
others, in the Boltzmann distribution associated with the
elastic energy function. What makes this approach feasible
is that the elastic energy functions of each junction between
links are all independent (because we assume that there is no
cooperativity between basepairs separated by more than our
segment length �0). Thus, the random bends between links are
also independent; we generate a chain by creating a string of
rotation matrices each generated as described in section 3.3. To
implement the steric constraints, we next suppose additional
energy terms of hard-wall type (i.e. either zero or infinity).
Although it is an approximation to real mesoscopic force
functions, the hard-wall approximation is reasonable in the
high-salt conditions studied in typical experiments. Together
with the approximate representation of a real microscope slide
as a perfect plane (a ‘wall’), it has proven successful in our
earlier work [15].

The constraint energy terms set the probability of the
sterically forbidden chains to zero. In practice, then, we
generate many chains, find each chain segment’s spatial
position (and that of the bead) by following the Ê3-axis of each
orientation triad, and discard the chain if any steric constraint
is violated. All our thermodynamic averages are then taken
over the remaining (allowed) chains. For short tethers, many
chains will be discarded, but as long as the fraction of ‘allowed’
chains is not too small the procedure is tractable.

We treat the biotin and digoxigenin linkages attaching
the DNA to bead and wall as freely flexible pivots, and
so the orientation of the first chain segment, and that of
the bead relative to the last segment, are taken to be
uniformly distributed in the half-spaces allowed by the
respective surfaces. This approach has previously been
successful in explaining experimental results [15, 21, 61, 65].
That is, the initial chain segment’s orientation is a

4 Bouchiat [62, 63] studied related spatial-constraint effects in an analytical
formalism; the present paper gives a numerical approach.
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uniformly distributed random rotation subject to the half-
space constraint; subsequent segments are then determined by
successive matrix multiplication by the rotations distributed as
in section 3.3; the final vector m describing the bead orientation
relative to its attachment point (black arrow in figure 1(a)
is again taken to be uniformly distributed in the half-space
defined by the final chain segment.

The steric constraints we implemented were (i) chain–
wall, (ii) chain–bead and (iii) bead–wall exclusion. For the
short DNA tethers we consider, chain–chain excluded volume
is not expected to be a significant effect (although it would be
important if supercoiling stress were applied to the bead [55]).

We can see the trends in the data more clearly if we reduce
the distribution of bead position to the rms excursion ρrms ≡√

〈ρ2〉, a quantity often used in experiments to characterize
tethered particle motion. A closely related quantity is the
finite-sample rms excursion, for example ρrms,4s ≡

√
〈ρ2〉4s.

Here the expectation value is limited to a sample consisting
of (4 s)/(0.03 s) consecutive video frames at a frame rate of
1/(0.03 s). Note that whereas ρrms is a single number for each
bead–tether combination, in contrast ρrms,4s has a probability
distribution. One of our goals in the remainder of this paper is
to predict ρrms (in this section), or the distribution of ρrms,4s (in
section 6), as functions of bead size, tether length and tether
looping state.

4.2. Calibration curve results

Section 4.1 explained how, given values of L,Rbead and
ξ , we generate many chain/bead configurations. From
these configurations, we can in principle compute quantities
like ρrms. (An additional correction, to account for
finite camera shutter speed, is explained in section S2.2
(stacks.iop.org/PhysBio/6/025001).) We compute ρrms,t in
this way and compare it to the experiments of Han et al
[47]. We took L to be 0.34 nm times the number of
basepairs in each construct, and accepted the manufacturer’s
specifications of Rbead for beads of three different sizes, leaving
us with just one remaining parameter, the persistence length
ξ . The finite sampling times used in the experiment had
an insignificant effect (data not shown), but nevertheless
we included this aspect of the experiment (see section S3
(stacks.iop.org/PhysBio/6/025001)) for consistency with our
later study of the probability density function of bead excursion
in section 6. In that context, the finite sampling time is
important.

DNA stretching experiments using high-salt buffer similar
to that used in the TPM experiments we study obtained a
persistence length of ξ = 45 nm [58] or 43 nm [59]. When we
turn to TPM, figure 3 shows that indeed taking ξ in the range
39–47 nm reproduces the trends of the data fairly well with no
fitting, even though this is a very different class of experiment
from stretching. (Previous work came to a similar conclusion
[15], although it considered only a single bead size.) The
curve with bead size 245 nm is particularly well predicted; all
TPM data appearing in the rest of this paper were taken with
this value of Rbead. Throughout the rest of this paper we will
use the value ξ = 44 nm.

5. DNA looping

This section attempts to distill loop formation into a
mathematical problem, the calculation of a quantity
called the ‘looping J factor’ (sections 5.1 and 5.2;
some geometrical details about the looping synapse are
deferred to section S4 (stacks.iop.org/PhysBio/6/025001)).
Section S5 explains how we extracted J from experimental
data (stacks.iop.org/PhysBio/6/025001). Next, section 5.3
describes the calculation of J (more details are in section S6
and S7 (stacks.iop.org/PhysBio/6/025001)) and section 5.4
compares to experiment. For loops of length near 300 bp,
our absolute prediction for J agrees with the preliminary
experimental data now available to within about a factor of
3; equivalently the corresponding looping free energies agree
to within about 1 kBT . However, the hypotheses embodied
in our model cannot explain the observed J factor for short
loops, near 95 bp between operators. We will argue that the
hypothesis of an alternate ‘open’ LacI conformation is not
sufficient to resolve this discrepancy.

5.1. Geometric structure of the loop complex

5.1.1. DNA construct. The experiments of Han et al [26]
studied DNA looping for random-sequence DNA in two
classes, forming ‘long’ and ‘short’ loops. (They also studied
special sequences [66], which we do not discuss in the present
paper.) Both ‘long’ and ‘short’ loop DNA constructs had the
general form

wall-(N1 bp)-(N2 bp)-(N3 bp)-(N4 bp)-(N5 bp)-bead.

(4)

The ‘short’ constructs had N2 = 20 bp (the Oid operator),
N4 = 21 bp (the O1 operator) and N1 = 144 bp, N3 = 89 + I

bp, N5 = 171 bp, where I is an integer equal to 0, 5 or 11. The
‘long’ constructs had N2 = 21 bp (O1), N4 = 20 bp (Oid) and
N1 = 427 bp, N3 = 300 + I bp, N5 = 132 − I bp, where I
is an integer5 between 0 and 10. For the purpose of labeling
loop topologies, we choose a conventional direction along the
DNA that runs from Oid to O1. Thus for the ‘short’ constructs
this direction runs from the wall to the bead, whereas for the
‘long’ constructs it runs from bead to wall.

The artificial sequence Oid (ideal operator) binds DNA
more strongly than the wild type O1. In fact, in the range of
[LacI] values we study, Oid is essentially always bound [26],
and the looping transition consists of binding/unbinding of the
already-bound LacI to O1.

5.1.2. DNA binding and its degeneracy. The LacI protein is
a tetramer consisting of two identical dimers (D1, D2), each
with two heads (H1–H4) that bind the DNA6. Figure 4 shows
a cartoon, drawn to scale, based on the RCSB Protein Data
Bank entry 1 LBG.pdb [69] (see also [70–72]). Two segments
of bound DNA (operators of type Oid) appear as well. The

5 Some of the actual constructs used in the experiment differed from the
simple formula above by 1–2 basepairs [26].
6 Lac repressor essentially always exists as tetramers under the conditions of
the experiments studied here [67, 68].
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Figure 4. Cartoon of the LacI tetramer (solid shapes) bound to two
operator DNA segments (shown as wireframes). The tetramer
consists of dimers D1 and D2, with binding heads H1–H4. The
wireframes show in detail the dispositions of the operators relative
to each other, as given in Protein Data Bank entry 1LBG.pdb. In the
present work we summarize the entire structure by the six
orthonormal frames shown, which represent the entry/exit and
center frames discussed in the main text and section S4
(stacks.iop.org/PhysBio/6/025001). The axes with blue, green and
black arrowheads represent Ê1, Ê2 and Ê3, respectively. These six
frames were determined from the PDB file by the method described
in section S4 (stacks.iop.org/PhysBio/6/025001).

cartoon is meant to portray the level of detail with which we
treat the tetramer in our calculations: we regard the protein
as a clamp holding the two bound operators rigid relative to
each other. Thus, as soon as we specify the pose (position and
orientation) of the DNA bound to head H1 (say), we have also
specified its exit from H2 as well as its entry and exit at H3
and H4. Figure 4 shows six particular poses, represented by
orthonormal triads, associated with the entry/exit and center
basepairs. These are described in greater detail below and in
section S4 (stacks.iop.org/PhysBio/6/025001). The axes are
color-coded; the blue, green and black arrows correspond to
the axis vectors Ê1, Ê2 and Ê3 in figure 2.

Actually, each binding site has two energetically
equivalent binding orientations, due to a twofold symmetry
of the LacI dimer [4], so figure 4 shows only one of the four
possibilities. (The DNA sequence of the operator need not be a

palindrome to have this degeneracy.) The symmetry operation
on the DNA that relates these orientations is the same one
described in section 3.2: 180◦ rotation about the frame vector
Ê1 passing through the operator center and pointing to the
major groove.

Referring to equation (4), we will speak of the DNA as
‘starting’ at the wall or bead, ‘entering’ a binding site at one
end of Oid, ‘exiting’ that binding site to the interoperator
segment, and (if looped) ‘then entering’ the other site at
O1 and ‘finally exiting’ to ‘arrive’ at the bead or wall.
Section S4 describes our mathematical characterization of
the geometry of LacI for the purposes of our simulation
(stacks.iop.org/PhysBio/6/025001). Here we only note that
because of an approximate twofold symmetry in the tetramer,
it is immaterial which dimer binds to Oid. However, we do need
to distinguish the two binding orientations at each site, because
they have inequivalent effects on the rest of the DNA. We will
distinguish them at Oid by the label β = 1, 2. Similarly, we
introduce a label α = 1, 2 denoting the binding orientation
at O1. Figure 5 defines our conventions for these labels,
which amount to specifying four topologically distinct classes
of loops7. Figure 5 also identifies each looping topology
using names consistent with previous LacI looping studies
[73, 74]. These topologies are grouped into two general
categories characterized by the relative orientation of the two
bound operator sequences: parallel (P1, P2) or anti-parallel
(A1, A2).

The dashed lines in figure 5 represent the DNA loops and
are added as visual aids; they are not results of our calculations.

5.2. The looping J factor

TPM (and some of the other experiments described in
section 2) provides information about the fraction P(looped)

of time that a DNA tether spends in one of its looped
conformations. Suppose that a repressor tetramer is already
bound to operator Oid. Then we can regard the looping
transition as a combination of two subprocesses, namely (i)
the occasional spontaneous bending of the DNA to bring LacI
and the other operator (O1) into proximity and (ii) binding of
O1 to LacI. The first of these processes will be characterized
by a quantity called the ‘looping J factor’ below, whereas the
second is characterized by a chemical binding constant Kd.
The looping J factor is the quantity of interest to us in this
paper, as it is the one that we will subsequently attempt to
predict theoretically. It is a generalization of the classical J

factor from DNA cyclization [75–77], which can roughly be
regarded as the concentration of one operator in the vicinity
of the other. In this section we define J mathematically;
section S5 (stacks.iop.org/PhysBio/6/025001) describes how
to obtain it from TPM data. (Section S5 will explain the
relation between J and the ‘looping free energy change’

7 Each of these classes in turn can be further subdivided into distinct
topoisomers. For example, we can take any of the loops shown in figure 5,
detach the DNA from one binding head, twirl it about its axis by one full
revolution, then reattach it, resulting in a topologically distinct loop with the
same values of α and β. Because in experiments the topoisomer class of a
loop can neither be observed nor controlled, however, we will not make any
use of this subdivision in this paper.
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Figure 5. Four possible orientations of simulated looped chain (dashed lines). Our convention is that the arrows run from Oid to O1. Two
binary variables describe the binding orientation at the two operators as shown. If the chain exits Oid at an inner headgroup (H2 or H3 in
figure 4), we say β = 1. If the chain enters O1 at an inner headgroup, we say α = 1. There are two ‘parallel’ loop configurations (P1, P2),
for which the entry and exit trajectories of the chain have nearly parallel Ê3 axes; likewise, there are two ‘anti-parallel’ loop configurations
(A1, A2), for which the entry and exit trajectories of the chain are nearly opposite. Configurations A1, A2 look equivalent under the
symmetry that reverses DNA direction and exchanges the two LacI dimers. However, this apparent degeneracy is broken when we add the
bead to one end, and the wall to the other.

�Gloop discussed by other authors.) Section 5.3 describes how
we compute J from our theoretical model, and section 5.4.2
makes comparisons to available experimental results.

The overall dependence of looping on the length of the
intervening DNA between the operators can be qualitatively
understood as reflecting two competing phenomena. First, a
short tether confines the second operator into a small region
about the first one, increasing the effective concentration. But
if the required loop is too short, then forming it will entail a
large bending elastic energy cost, depressing the probability
by a Boltzmann factor. For these reasons, the cyclization J

factor exhibits a peak at DNA length about 460 bp [78]. Later
work extended Shimada and Yamakawa’s calculation in many
ways, using a variety of mathematical techniques [42, 64, 79–
91–93]; section 7 will comment on some of this work.

We now state the definition of the J factor to be used
in this paper, and introduce the closely related ‘differential
J factor’, which we call J̃ . As outlined above, we
consider fluctuations of the DNA chain conformation only,
and ask how often operator O1’s position and orientation
fluctuate to coincide with a ‘target’ representing the available
binding site on a LacI tetramer already bound to Oid (see
figure 6). (A precise characterization of the target is given
in section S4 (stacks.iop.org/PhysBio/6/025001).) A chain
conformation is regarded as ‘looped’ if the pose (position
and orientation) of O1 matches the target to within certain
tolerances. We express the spatial tolerance as a small volume
δv in space (with dimensions (length)3), and the orientation
tolerance as a small volume δω in the group of rotations,
normalized so that the full group has volume 8π2 [94]. The
total group volume may be regarded as solid angle 4π for
the director Ê3, times angular range 2π for the rotations of the
frame about Ê3. Thus δω is dimensionless.

Our Gaussian sampling Monte Carlo code generates many
DNA chain conformations in a Boltzmann distribution. If we
suppose that a LacI tetramer is bound to Oid with binding
orientation β, then a certain fraction of these chains are looped
in the above sense with O1 binding orientation α = 1; a

different fraction are looped with α = 2. Clearly both of these
fractions go to zero if we take the tolerances δv or δω to be
small, so we define ‘differential J factors’ as

J̃ (β)
α = lim

δv,δω→0
(fraction in looped conformation α,

given β)/(δv δω). (5)

It is convenient to introduce the abbreviations

J̃ tot ≡ 1

4

∑
α,β

J̃ (β)
α and J = 8π2J̃ tot. (6)

Note that J̃ and J naturally carry the dimensions of
concentration. Our justification for the conventions in
equation (6) is that J defined in this way is a generalization of
the familiar cyclization J factor [75–77]. To see this, suppose
that we consider a very long loop. Then whenever O1 wanders
into its target volume, its orientation will be isotropically
distributed and in particular all four of the J̃ (β)

α are equal. If a
LacI tetramer is bound to Oid, then the effective concentration
J of O1 in the neighborhood of its other binding site (regardless
of orientation) is related to the probabilities defined in equation
(5) by (say) J = 8π2J̃

(1)
1 . For arbitrary loop length (not

necessarily long), we replace the last factor by its average,
obtaining equation (6).8

J̃ (β)
α depends on the position and orientation of the target;

section 5.4 will take these to be defined by the crystallographic
structure of the repressor tetramer. But more generally, we can
regard J̃ (β)

α as a function of arbitrary target pose, which we
will compute and display in section 5.3.1.

Although in principle TPM experiments can obtain
the absolute magnitude of J , in practice the available
experimental data are still sparse. Fortunately, the ratio
of J factors for two different situations is more readily
obtainable than the absolute magnitude (see section S5
(stacks.iop.org/PhysBio/6/025001)). For this reason, we will

8 For the case of cyclization there are no labels α, β and no average; we then
have J = 8π2J̃ , which with equation (5) agrees with the definition in [64].

10

http://stacks.iop.org/PhysBio/6/025001
http://stacks.iop.org/PhysBio/6/025001


Phys. Biol. 6 (2009) 025001 K B Towles et al

5x magnification

5 nm

1 nm

to wall

to bead

Figure 6. Illustration of the notion of target pose with a representative looped chain from our simulations. The chain shown is considered to
be ‘looped’ in the sense of section 5.3.2 because the center of its O1 operator matches its target within a certain tolerance (shown not to scale
by the blue-caged sphere), and the orientation of the operator (small arrows in the inset) aligns with the target orientation (large arrows in
the inset). DNA elasticity may favor thermal fluctuations that generate encounters with O1 correctly oriented for binding (enhancing
looping), or on the contrary, it may favor encounters incorrectly oriented for binding, depending in part on the number of basepairs between
the two operators. Figures 7 and 8 show this phenomenon in our numerical results.

sometimes report experimental values normalized to a mean
value J̄ , which we define as

J̄ (long) = mean of measured J values over the range

300 � Lloop � 310 bp. (7)

5.3. Calculation of the looping J factor

Sections S6 and S7 (stacks.iop.org/PhysBio/6/025001)
describe how we generalized the Gaussian sampling Monte
Carlo algorithm of section 4.1 to handle looping. Section S9
(stacks.iop.org/PhysBio/6/025001) describes how we checked
our code, and our definitions such as equations (5) and (6),
by calculating the cyclization J factor and comparing to the
classic result of Shimada and Yamakawa.

5.3.1. Orientation distribution of looped states. Each
binding orientation of Oid, with β = 1, 2, yields a
characteristic distribution Cβ of allowed chains, each with a
particular pose for the center basepair of O1. Of these, a small
subset C∗

β will be ‘hits’, i.e. will have that center basepair
inside its target volume for binding of the other site on LacI
(see figure 6 inset). We are ultimately interested in a smaller
subset still, namely those chains C∗

βα for which O1 is also in one
of its two target orientations. First, however, it is instructive
to examine the distribution of orientations for O1 in C∗

β . (The
importance of this distribution was discussed long ago by Flory
and co-authors [76].)

For each ‘hit’ configuration, we stored the orientation of
the O1 center segment relative to the exit segment of Oid.
Figures 7 and 8 show the distribution of the tangential (Ê3)

and normal vectors (Ê1), respectively, for the ‘short’ loop
construct with loop length equal to 89 bp (I = 0 in the
notation of equation (4)). In these graphs we have taken
the unit sphere and divided into 20 finite-solid-angle bins. The
coloring shown on each face of the icosahedron represents the
population of the corresponding angular bin.

Figures 7 and 8 show that the orientation of hits is quite
anisotropic, and not in general peaked in the target orientation
for forming any type of loop. These trends are characteristic
of all loop lengths; however, the same plots of the ‘long’
loop construct (not shown) reveal a broader, though still
peaked, distribution. The broadening of the distribution as
the loop length increases is to be expected and is a natural
consequence of the lability of long DNA loops. As the loop
length is increased one segment at a time, the distribution of
the tangential vector evolves slowly, but the peak of normal
vector distribution rotates with each added segment by about
2π�0/�helix ≈ 2π/5 radians (data not shown). This rotation
of the normal vector distribution with changes in loop length
corresponds to the helical nature of DNA; as the peak rotates
about the fixed target orientation, we get an approximately
periodic modulation in the J factor called ‘helical phasing’
[95]. A more quantitative treatment of this behavior follows
in section 5.4.

5.3.2. Looping criteria and tolerance choices. Chains
generated with the target segment located within the target
volume δv (hits) pass the first constraint, the spatial tolerance
check, as mentioned above (see also figure 6). All results
correspond to a spatial tolerance of δv = (4π/3)(2 nm)3.
Classification of chains as looped or not is further dependent on
an orientational constraint defined by δω. We required that the
tangent vector to the chain, Ê3, at the center of O1 lies within
a cone of angular radius π/4 radians of the target direction.
We also required that the major-groove direction at the center
of O1, Ê1, projected to the 1–2 plane of the target orientation,
must match the corresponding target frame vector to within
2π/5 radians. In other words, we checked whether the
orientation of the major groove of the generated chain’s central
operator segment matches its target orientation. If both of these
conditions are met, the ‘hit’ conformation is considered to be
‘looped’. The group volume corresponding to these angular
tolerances is thus δω = 2π

(
1 − cos π

4

)(
2 × 2π

5

) ≈ 4.63,
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Figure 7. Distribution of the chain tangent vector for generated chains ending in the target volume (hits, see section 5.3.2) for the short
construct tether. The possible directions for Ê3 at the center of O1 have been divided into 20 bins and the observed probabilities to land in
each bin are assigned colors. Each row of the figure shows an icosahedron painted with the corresponding colors, from various viewpoints.
The red faces correspond to the most populated bins; bluer faces correspond to lower hit densities. The four views represent clockwise
rotations of the viewpoint by 90◦ about Ê3 for the two binding orientations at Oid. The reference coordinate frames at the top represent the
orientation of the exit frame of Oid. Directions labeled P1, etc, refer to the target pose for the corresponding loop type, which does not in
general agree with the most-populated bin. A total of about 7.5 × 1010 chains were generated, resulting in 1673 hits with β = 1 and 12 540
hits with β = 2.

Figure 8. Distribution of the normal vector Ê1 for the short construct tether. Other conventions are similar to figure 7, except the directions
labeled P1, etc, correspond to the target normal vector Ê1 for the corresponding loop type.

which is much smaller than the full group volume 8π2. After
a chain is classified as looped or not, we proceed as described
in section S7 (stacks.iop.org/PhysBio/6/025001).

According to equation (5), we are interested in a limit
as the tolerances δv, δω approach zero. In practice we must
of course keep these quantities finite, but we checked that we
were reasonably close to the limiting behavior by checking two

other choices of these tolerances: we cut the spatial tolerance
in half, leaving the orientational tolerances the same, and we
cut the orientational tolerances in half, leaving the spatial
tolerance at (4π/3)(2 nm)3. We found that, although the
magnitude of the phasing oscillations increased slightly for
each reduction of the tolerances, nevertheless in each case the
qualitative effect on the J factor calculations (and also on the
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Figure 9. J factor for pure looping, as a function of loop length
Lloop in basepairs. The vertical axis shows minus the natural
logarithm of J (measured in molar). (Some authors call this quantity
�Gloop/kBT ; see section S5.5 (stacks.iop.org/PhysBio/6/025001).)
Thus, higher points on the curves indicate more difficult looping; the
curve rises at the left because of the high elastic energy cost of a
short loop. The triangle at 460 bp roughly corresponds to the
minimum of the overall looping J factor. Dots: Our Monte Carlo
results. Blue, red, green and cyan represent the quantities 2π2J̃ (β)

α

corresponding to P1, P2, A1 and A2 loops, respectively. Curves:
Each set has been summarized by an interpolating function
described in section 5.4.1. Black curve: The sum of the colored
curves, that is, the overall looping J factor assuming that each
looping topology is equally weighted (see equation (6)). Inset: An
enlarged portion of the graph for loop lengths of ≈ 300–330 bp.

rms probability distributions, section 6) was minimal (data not
shown).

We have chosen to report results of the larger tolerance
for two reasons: first, the number of hits is proportional
to the tolerance, so we obtain better statistics with larger
tolerance; second, larger tolerances may actually do a better
job of representing the real experimental situation, specifically
flexibility in the head regions of the Lac repressor, which we
do not otherwise include. Recent all-atom simulations suggest
that this flexibility is substantial [96].

5.4. J factor results

Before presenting results for looping in TPM experiments,
we briefly describe a simpler warmup calculation. Then
section 5.4.2 describes a calculation that can be compared
to TPM data, with moderately good agreement; section 6.2
shows a much more striking agreement of theory with another
kind of TPM data.

5.4.1. Pure looping. One can imagine an experiment
involving a DNA construct with only the two operators and the
basepairs between them, that is, no flanking segments joining
the loop to a wall and a bead. Here we present results on this
form of the looping J factor (pure looping). We will also plot
our results alongside corresponding experimental numbers for
in vivo looping, even though the latter correspond to rather
different physical conditions.

The J factor for this situation, defined via equations (5)
and (6), can be calculated by a simplified version of our
Monte Carlo algorithm that generates only the interoperator

Figure 10. Comparison of our Monte Carlo results for pure looping
to experimental data on in vivo repression. Experimental data from
in vivo gene repression experiments [13] were converted to J factor
values using a formula developed in [41] (see section S5.5
(stacks.iop.org/PhysBio/6/025001)) and are shown in blue. The
black line is an interpolation of our Monte Carlo results and is
identical to the one in figure 9.

DNA segments and hence omits the steric-constraint checking.
Figure 9 shows our calculation of this quantity as a function of
loop length. Three sets of Monte Carlo data are reported, each
spanning three helical repeats. The data for each topology
are summarized by a global interpolating function equal to
the minimum of a collection of parabolas, centered on Lloop

values separated by �helix. The interpolating functions are
specified by the overall phasing (horizontal shift), a scaling
function which determines the widths of the parabolas as a
function of loop length (physically representing effective twist
stiffness), and an envelope function describing the heights
of the successive minima (physically representing competing
effects of bend stiffness and entropy). The figure shows that
indeed interpolating functions of this form globally summarize
our simulation data over a wide range of Lloop values. At
shorter loop lengths, the contributions of a single topology
seem to dominate at any particular loop length, resulting
in a noticeable modulation of the overall looping J factor;
however, at longer loop lengths (e.g., 300 bp), the contributions
of each topology are all similar and tend to cancel out each
others’ modulations. The anti-parallel loop topologies are
predicted to be the preferred state, accounting for 90% or more
of the looped chains for loop lengths of about 89–120 bp.

Figure 10 shows the free energy of looping for an
in vivo repression study [13], as interpreted by Saiz et al
[41], along with our Monte Carlo results for the total pure
looping J factor. The cellular environment is far from ideal in
terms of understanding DNA looping behavior: for example,
superhelical stress, other DNA binding proteins and molecular
crowding all complicate the interpretation. Moreover, some
analyses assume that LacI is free in solution at a known
concentration [41], whereas much of it is instead likely to
be nonspecifically bound to DNA [39, 40] or otherwise
unavailable.

Despite these reservations, the comparison to our
predictions is interesting: our calculation seems able to predict
the rough magnitude of the in vivo looping J factor, to within
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about a factor of 2, at long loop lengths. At shorter loop
lengths, however, in vivo looping is far more prevalent than
predicted from our simple model. The following subsection
presents qualitatively similar results for the case of in vitro
TPM experiments.

5.4.2. TPM looping. For the situation relevant to TPM
experiments, the bead and wall must be taken into account.
This necessitates the use of the algorithm described in
section S7 (stacks.iop.org/PhysBio/6/025001), to obtain an
estimate of the looping J factor at each loop length and for
each topology. The bead and wall affected the overall looping
J factor, generally reducing it by about 30% for loops of length
100–300 bp. We can interpret this reduction in terms of the
slight entropic stretching force generated by the bead and the
wall [21]. We also found that the presence of the bead and
wall significantly changes the relative weights of the various
loop topologies from the corresponding pure looping case.
For example, consider the ‘short’ constructs. Even when the
simulation generates a DNA conformation that qualifies as a
type P1 loop, there is some chance that the conformation may
be discarded because it violates one of the steric constraints;
the chance of retaining a P1 loop was found to be about twice
the corresponding probability for an A1 loop.

We can understand this phenomenon qualitatively as
follows: due to the relatively short length of tether between the
wall and the first operator, the DNA is generally pointing away
from the wall when it enters the loop (at the first operator),
thus favoring loops (P1 and P2) that maintain this directionality
and keep the bead away from the wall. This bias is significant
because the length of DNA from the second operator to the
bead is relatively short. Presumably the reason P1 exhibits a
larger shift than P2 is because the P1 topology exits the loop
about 7 nm in front of where it enters the loop, whereas P2
exits about 7 nm behind where it enters.

Overall magnitude of J . We first examine the overall
magnitude of J . To minimize the effects of statistical
experimental error, we computed the average quantity J̄ (see
equation (7)) for both the ‘long’ and ‘short’ constructs. Our
Monte Carlo calculation yielded the value J̄ (long, theory) =
100 nM and the ratio

J̄ (short, theory)/J̄ (long, theory) = 2.0/100 ≈ 0.020. (8)

That is, harmonic elasticity theory makes the qualitative
prediction that the short loop should be strongly penalized
for its high elastic energy cost.

Turning next to the experimental values, we faced the
problem that TPM data yielding an absolute number for J

are so far available only for one loop length (see section S5.4
(stacks.iop.org/PhysBio/6/025001)). However, equation (S9)
(stacks.iop.org/PhysBio/6/025001) shows that this one point
can be used to normalize all the others. With this procedure,
we found that J̄ (long, exp) lies in the range 24–45 nM. Thus
the predicted overall magnitude of the J factor for long loops,
computed with no fit parameters, lies within a factor of 2.2–4
of experiment, or equivalently our simulation found the free
energy of looping �Gloop in agreement with our experimental
determination to within about kBT ln 3 ≈ 1 kBT .
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Figure 11. Comparison of the relative J factor from our Monte
Carlo results (solid, heavy black curves) and TPM data of Han et al
[26] on random-sequence DNA (open circles with dashed black
curves). (a) Relative J factors for the ‘short’ DNA constructs (see
equation (4)), based on about 8 × 109 simulated chains. (b) Relative
J factors for the ‘long’ constructs, based on about 1010 simulated
chains. All the experimental J factors are quoted relative to
J̄ (longexp) defined by equation (7) for the experimental data in
panel (b); similarly, the theory values are relative to J̄ (long theory).
The blue, red, green and cyan solid lines represent contributions
from P1, P2, A1 and A2, respectively; the heavy black solid line
represents their sum.

Our uncertainty in overall normalization drops out of
ratios such as J̄ (short, exp)/J̄ (long, exp) ≈ 0.35. Comparing
to equation (8) shows that our theoretical model cannot account
for the relation between short- and long-loop J factors: in the
short-loop regime, looping is much easier than predicted by
harmonic elasticity theory. The following paragraph gives
more details.

Variation of J . Figure 11 shows the behavior of J as
we scanned through two ranges of loop lengths (‘short’
and ‘long’). Because of the large experimental uncertainty
in the overall magnitude of J , we divided both theory
and experimental values of J by their respective averages
J̄ (long), thus forcing both the solid (our theory) and dashed
(experiment) black curves in panel (b) to be centered on
zero. Figure 11(b) shows that, although individual looping
topologies have significant phasing effects, these nearly cancel
in our simulation results, because in this paper we assume that
all four operator binding orientations have the same binding
energy (see figure 5). (Similar phenomena were discussed in
[97, 98].) Figure 11(a) shows that harmonic elasticity theory,
embodied by our simulation, was unable to account for the
relative free energy of looping of long versus short loops,
overestimating �Gloop(94 bp) − �Gloop(long) by up to about
3.7 kBT . This observed excess of looping for short DNAs
joins other signs of non-classical elastic behavior, which also

14

http://stacks.iop.org/PhysBio/6/025001
http://stacks.iop.org/PhysBio/6/025001
http://stacks.iop.org/PhysBio/6/025001


Phys. Biol. 6 (2009) 025001 K B Towles et al

begin to appear at short length scales [32, 99]. However, it
could instead be explainable in terms of other effects neglected
in our model (see sections 1.3.3 and 8).

5.4.3. Open LacI conformation. Section 5.4.2 showed
that the hypotheses of harmonic elasticity, a rigid V-shaped
LacI tetramer and no nonspecific DNA–repressor interactions,
cannot explain the high looping incidence seen in our
experiments for short DNA. One possible explanation, for
which other support has been growing, is the hypothesis of
DNA elastic breakdown at high curvature [27, 28, 99]. Indeed,
[92] showed that such elastic breakdown can accommodate
both enhanced looping at short lengths, and normal DNA
behavior observed for loops longer than 300 bp.

An alternative hypothesis is that for our shorter loops,
looping is actually dominated by the contribution from
a distinct, ‘open’ conformation of the repressor tetramer.
Accordingly, we repeated our simulation for one particular
representative version of the open conformation, the one
discussed in [24]. Here each dimer is assumed to be rigid, but
the opening angle of the hinge where the dimers join has spread
to 180◦. This time we found J̄loop(95 bp)/J̄loop(305 bp) ≈
0.13 exp(−�Gopen), where �Gopen is the free energy cost of
opening the tetramer. There are a wide variety of estimates
of �Gopen, but we see that even if it were equal to zero,
the hypothesis of an open conformation still would not be
consistent with our results.

6. Effect of looping on bead excursion

Section 8 will discuss the status of the results in the
previous section, but clearly the agreement between theory
and experiment is rather rough. We now turn to a much
more striking comparison. In addition to studying the total
probability of looping, TPM yields more detailed information
about the effect of looping on bead excursion (see figures 12
and 13). A common experimental practice is to bin the
data into finite sample windows, giving rise to a probability
distribution of bead excursion. In this section we describe how
we modeled this situation theoretically; for more details see
section S3 (stacks.iop.org/PhysBio/6/025001). Figures 12 and
13 show the degree to which our model successfully predicts
the experimental observations.

6.1. Mimicking looped, doubly bound DNA tethers

In the absence of LacI proteins, our procedure is
straightforward: we generate chains as in section 4.2,
divide them into batches representing 4 s windows (see also
section S3 (stacks.iop.org/PhysBio/6/025001)) and compute
the rms excursion in each batch. Instead of computing the
mean of these ρrms,4s values, however, we instead histogram
their distribution. We will now apply essentially this same
procedure to the more elaborate calculation of section 5 to
obtain the looping distributions we want, with one important
modification.

Section 5 considered the potential for binding the O1

operator. That is, we computed the fraction of time for which

Figure 12. Theory and experiment for the probability density
functions of rms bead excursion for six of the ‘long chain’ constructs
(L ≈ 900 bp, Lloop ≈ 306 bp) studied by Han et al [26]. Blue
dashed curves show experimental TPM data on random-sequence
DNA. Black curves show our theoretically predicted distributions for
the corresponding interoperator spacings. The model yields these
histograms as the sum of five contributions, corresponding to the
four looped topologies (A1, A2, P1 and P2), and the unlooped state.
Because our simulation results were not fits to the data, they did not
reproduce perfectly the ratio of looped to unlooped occupancies.
For visualization, therefore, we have adjusted this overall ratio by a
factor common to all six curves (see main text). This rescaling does
not affect the locations of the peaks, the relative weights of the two
looped-state peaks, nor the dependences of weights on loop length
Lloop, all of which are zero-fit-parameter predictions of our model.
The separate rms displacements for each individual loop topology,
for the 300 bp case, are also shown as vertical dashed lines.

an unbound O1 operator was positioned close to a pose suitable
for binding to take place. Once binding does occur, however,
the geometry of O1 alters: it develops a kink. Modeling
the bead excursion for looped states requires that we account
for the geometry of the fully bound complex, not the about-
to-bind state. (See section S4 for more on this distinction
(stacks.iop.org/PhysBio/6/025001).)

Because we model the LacI tetramer as a rigid object, it
may seem that for each selected looping topology we need
only consider the DNA outside the loop region, replacing
the entire loop by a single rigid Euclidean motion from
the entry to the exit poses determined by the tetramer (see
figure 4). Eliminating the loop region from the simulation
would certainly speed up calculations, and indeed, is nearly
correct. However, this procedure would miss the possibility
of steric clashes between the loop region and the bead and
wall, potentially skewing the reported distribution of bead
excursions. As a compromise between speed and accuracy,
we simulated the regions wall→entry, and exit→bead, as
usual, but, for each looping topology, inserted a representative
loop between them. The representative was an actual loop
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Figure 13. Theory and experiment for the probability density
functions of the finite-sample rms bead excursion for our three
‘short chain’ constructs. The separate rms displacements for each
individual loop topology, for the 89 bp case, are also shown as
vertical dashed lines. In other respects the figure is similar to
figure 12.

configuration stored from the more exhaustive simulation in
section 5. The entire chain was then checked for steric clashes
as usual, and the distribution of bead excursions for each of
the four looping topologies was built up.

To find the appropriate relative weights to assign
each of these four distributions, we used the simulations
described in section 5. Finally, we combined the
resulting overall distribution for looped states with the
corresponding one for the unlooped state. In principle,
we could have found the appropriate relative weighting
by using our computed looping J factor and the binding
constant Kd extracted from experimental data in section S5
(stacks.iop.org/PhysBio/6/025001). In practice, however, the
experimental data do not yet yield very precise values for
Kd. Moreover, the theoretical prediction for overall weighting
depends very sensitively on the value of DNA persistence
length, which is not precisely known. Accordingly (and in
the spirit of figure 11), we chose the overall relative weighting
between looped and unlooped states by hand for one value of
Lloop. That is, we chose a common, constant value of this
factor for all curves shown in figure 11. Our justification for
this step is that our adjustment does not modify the locations,
widths, nor relative strengths of the looped-state peaks, which
are thus no-parameter predictions of the theory9.

6.2. Bead excursion results

We followed the method of the previous subsection, including
applying a modified blur correction appropriate for looped
tethers (see section S2.2 (stacks.iop.org/PhysBio/6/025001)).
In order to obtain smooth distributions, we ran the Monte Carlo
code until a total of 2.5×104 observations (independent values
of ρrms,4s) were obtained. The results were then binned with
bins of width 2 nm and normalized.

Figures 12 and 13 show the experimentally determined
probability density functions for bead excursion as (blue)

9 More precisely, we started with the predicted bead excursion histograms
Ploop(ρ) and Pnoloop(ρ). Then we chose a constant λ and displayed
(λPloop + Pnoloop)/(1 + λ). Choosing a value for λ that is smaller than unity
thus enhances the relative contribution of the unlooped states.

dashed lines. The rightmost peaks in these distributions
correspond to our expectations for unlooped tethers (figure 3).
One might think that at least one of the remaining peaks would
be located at a value corresponding to an imagined tether
that is unlooped, but shortened by the number of basepairs
between the two operators; in contrast, this expected peak
location generally falls between the two peaks seen in the
data [26]. Figures 12 and 13 show that in contrast to this
naive expectation, our simulation does a fairly good job of
predicting both peak locations. Indeed, the figures show
significant resemblance between the theory and experiment,
including the trends as Lloop is varied. Specifically, the theory
automatically yields two looped peaks, and roughly gives
their observed locations and widths (each to within about
10 nm). The theory also predicts that the middle peak is
small at 302–304 bp, and bigger elsewhere, and that the lower
peak is not modulated as much as the middle one, all of
which are in agreement with the experimental data. All of
these qualitatively satisfactory conclusions emerge without the
hypothesis of any major conformational change of LacI.

The dissection of bead excursion into distinct peaks is also
relevant to the question of a possible open conformation of the
LacI tetramer. Even if we suppose that the middle looped peak
in figure 13 reflects an open LacI conformation, as proposed
by Wong et al, nevertheless those authors also proposed that
the lower peak reflected the closed (V-shaped) conformation
[24]. The experiments of Han et al show that these peaks
have comparable strength, and so in particular the lower one is
inconsistent with the assumption of harmonic DNA elasticity.
(One could instead propose that both peaks reflect an open
conformation, but section 5.4.3 argued that even this new
hypothesis is unlikely to explain the experimental results.)

7. Relation to others’ results

The calculational approach in this paper is Gaussian sampling
Monte Carlo (see section 4). Here we make just a few
specific comments about representative examples of other
calculational methods. The reader may wish to pass directly
to the discussion in section 8.

7.1. Analytic methods

Some methods do not involve the generation of random
matrices.

Diffusion equation on E(3). A series of independent steps
defines a random walk. Thus the successive bends between
chain segments can be regarded as defining a walk on the group
manifold of SO(3), the rotation group; more generally, the
successive poses of segments define a walk on the Euclidean
group E(3). The probability density function of segment poses
evolves as we move along the chain, in a way that can be
calculated by using a set of orthonormal functions [89, 100],
a procedure mathematically similar to some calculations in
quantum mechanics. In some cases the resulting series can be
summed and represented as a continued fraction [86, 87, 93,
101]. Another approach to the evolution of a distribution
is via matrix exponentiation [90], or other transfer-matrix
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approaches [88]. These approaches converge slowly, however,
for the case of short chains, and none accommodates easily the
sort of nonlocal constraints arising in TPM experiments.

Gaussian approximation. The looping J factor is essentially a
probability for configurations satisfying a global constraint.
As such it can be represented as a functional integral,
which in turn can be approximated by an expansion of its
integrand around its critical points (maxima). Keeping the
value of the integrand only at the critical points recovers the
equations of elastic rod equilibrium; however, it omits entropic
contributions to the free energy (see, for example, [48, 73,
102]). An improvement to this procedure approximates the
integrand as a sum of Gaussians about its maxima; the integral
may then be done, yielding the entropic contribution as the
log of a functional determinant [42, 74, 78, 84, 91, 103,
119]. Unfortunately, this approximation breaks down when
any eigenvalue of the fluctuation operator becomes small,
and in particular when the loop becomes bigger than a few
hundred basepairs. Also, it is again difficult to generalize this
approach to incorporate nonlocal constraints such as bead–
wall exclusion. And although the method is efficient for
comparing the free energies of different looped topologies, the
direct comparison of looped to unlooped is difficult. Perhaps
for this reason, we do not know of any work using this
approach that has attempted to include the dependence on
LacI concentration; that analysis was crucial to the present
work in order to disentangle the effects of J and Kd in the
experimental data.

Note, however, that Zhang et al, using this approach, have
introduced a more detailed model of the LacI conformation
than the one in the present paper [42, 91]. Also, they
and Swigon et al introduced a detailed model of sequence
dependence in their calculations, unlike the present work
[74].10 Like the present work, [42, 74, 91] neglected possible
‘wrapping’ effects. Swigon et al considered very low-
salt concentrations (and so had to account for long-range
electrostatic effects), so their results cannot be directly
compared to ours; moreover, they considered only the
situation we have called ‘pure looping’ (section 5.4.1).
Nevertheless, it is interesting that for pure looping, our results
agree qualitatively with their finding that, assuming the V-
conformation of LacI, the anti-parallel loop has the lowest
looping free energy.

7.2. Monte Carlo methods

We chose a Monte Carlo method because it is computationally
tractable, calculates the quantities actually observed in TPM
experiments, covers the entire range of loop lengths of
interest to us and allows a simple implementation of all steric
constraints relevant to our problem. Additionally, the method
can readily be generalized to include sequence dependence
[64] or nonlinear models of DNA elasticity [92]. As a bonus,
Monte Carlo methods give a direct visualization of which chain
conformations, and in particular which topologies, dominate

10 Popov and Tkachenko also studied statistical properties of sequence
dependence effects [104] in models of this type. See also [85, 102, 105–
107].

the statistical sum, unlike the diffusion equation or matrix-
exponentiation methods. It also gives us the distribution
of near-miss configurations, allowing us to quantify the
importance of the stereospecificity of binding (section 5.3.1).
Also, we are not obliged to find every critical point of the
elastic energy, an error-prone search in a high-dimensional
space of configurations. For example, it is easy to miss stability
bifurcations as the loop length is stepped through a range. Our
Monte Carlo code stumbles upon the dominant configurations,
including all topologies, without requiring human insight. (It
also automatically lumps together all distinct topologies that
cannot be experimentally distinguished, without the need to
find their individual critical points, then add the corresponding
contributions by hand.) Finally, unlike some methods, Monte
Carlo simulation easily allowed us to work out the distribution
of bead excursions (section 6).

Among prior Monte Carlo methods we mention the
following.

Gaussian sampling. The work in this paper extends prior
work in [15, 21]. As mentioned before, Czapla et al
also applied this method to cyclization (but not looping)
[64]. Section S8.2 (stacks.iop.org/PhysBio/6/025001) makes
a specific point about a side calculation in that work.

Metropolis Monte Carlo, Brownian dynamics. These powerful
and general methods can in principle handle chains of any
length, with arbitrarily complex constraints and in some forms
can also study kinetics (see, e.g., [79–83, 108–110]). We
only note that for the equilibrium calculations of interest to
us, Gaussian sampling Monte Carlo is a simpler alternative
method, which completes in a reasonable time on current
laptop computers. Moreover, because in GS Monte Carlo
every chain is independent of every other one, we have fewer
worries about pre-equilibration, coverage of the allowed phase
space, and so on than in Markov-chain MC methods.

All-atom simulation. Schulten and co-authors have developed
a hybrid method that represents the DNA as an elastic
continuum, coupled to an all-atom simulation of the LacI
tetramer [96, 111–114]. They did not apply this method to
TPM experiments, and their simulation appears to neglect
twist–bend coupling and entropic contributions from the DNA
chain. However, simulations of this type did identify a
‘locking’ mechanism, which apparently prevents opening of
the tetramer (i.e. maintains its overall V-form), even in the
presence of significant external stress.

7.3. Fitting

Some insight into mechanisms can be gleaned by fitting data
to phenomenological parameters roughly representing DNA
stiffnesses, etc, essentially obtaining interpolation formulas
summarizing the data [41, 98]. For example, the anomalously
high looping compared to theoretical expectations
(section 5.4.1) was previously noted in [41], and the
possibility of partial cancellation of phasing modulation
(section 5.4.1) in [97, 98]. Saiz et al [41] also called attention
to an asymmetric modulation in their graphs of looping free
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energy versus Lloop; we agree with their later observation that
such asymmetries can arise from the sum of different loop
topologies (fine structure in figure 10).

A drawback of the fitting approach, however, is that
the inferred values of fit parameters do not have a literal
interpretation as elastic constants; for example, their numerical
values depend on extraneous variables [98]. The present
work sought instead to predict the data from first principles,
using fixed values of elastic constants. Also, many prior
works studied in vivo data, whereas we have focused on TPM
experiments for reasons described earlier.

7.4. Estimates and other analyses

The analysis of Wong et al attempted to estimate the positions
of the peaks in their TPM data from simple geometry applied
to assumed configurations for the repressor tetramer [24]. The
present work sharpens and corrects some qualitative estimates
made, for example, in their Supplement.

Vanzi et al obtained a looping J factor ≈ 0.1 nM from
their data and noted that this value is much lower than those
measured in other types of experiments [16]. Both our
theory and our experimental results obtained from data in [26]
agree that J is much larger than 0.1 nM, albeit with large
uncertainties for now. Vanzi et al suggested that it would
be important to calculate effects such as the entropic force
generated by the bead; the present work gives the needed
calculations.

8. Discussion

Our theoretical model and its main results were summarized
in section 1.3.

As mentioned earlier, DNA cyclization and looping have
been the focus of many prior calculations. Broadly speaking,
the novelty of the present work lies in the combination
of a number of features: we have calculated looping, not
cyclization; we have calculated quantities relevant to TPM
experiments; and we have presented detailed comparisons
to experimental data, with no fitting parameters. (Section 2
explained why we found TPM to be a particularly revealing
class of experiments.) Finally, we know of no prior work
that predicts the detailed distribution of bead excursions in
looping as functions of loop length and LacI concentration.
TPM experiments yield such data, and with it the prospect of
experimentally separating the contributions of different loop
topologies.

Figure 3 shows that our simple model adequately captures
much of the physics of equilibrium tethered particle motion
without looping. Alternatively, the effective bead size may
be slightly different from the nominal value, or effectively
different due to surface irregularity. Despite these reservations,
clearly our understanding of TPM is more than adequate to
distinguish changes in effective tether length of 100 bp or
more.

Section 5.4 gave a determination of the absolute
magnitude of the looping J factor as a function of operator
spacing, and a comparison to experiment. These comparisons

were only approximately successful. We may point out,
however, that the experimental determination had large
uncertainties, because the available data are still somewhat
sparse. In particular, all our absolute values currently depend
on a single measurement, of the fraction of time spent looped
for a 306 bp loop at [LacI] = 100 pm (see equation (S9)
(stacks.iop.org/PhysBio/6/025001)). Also the slope of the
titration curve, and hence the parameter J∗, is still poorly
characterized by available data (see figure S2 and equation (S9)
(stacks.iop.org/PhysBio/6/025001)). Additional experiments
would help improve this situation.

On the theory side, we note that existing measurements
of the DNA persistence length ξ are subject to uncertainties,
and that rather small changes in the assumed value of ξ

make significant changes in our prediction for the overall J

factor. Thus an accurate absolute prediction of J is perhaps
demanding too much at this time; and in any case we also
just argued that experiments, too, do not yet yield an accurate
absolute experimental determination of J . To address both
of these concerns, we noted that the relative J factors for
different situations are better determined by experiments than
the absolute magnitude, and so we scaled the theory and
experimental results by their respective averages for loop
lengths near 305 bp. Then we compared the predicted and
observed relative J factors for several individual lengths near
305 bp, and also for a few lengths near 94 bp. Here the
results were that (i) near 305 bp, neither theory nor experiment
were strongly modulated by phasing, though experiment was
more modulated than theory (figure 11(b)) and (ii) near 94 bp,
traditional harmonic elasticity theory predicts far less looping
(lower J ) than was observed (figure 11(a)).

The fact that harmonic elasticity theory underestimates
Ploop for short loops cannot simply be attributed to our neglect
of sequence information. Indeed, special sequences are
observed to cyclize [115] and to loop [66, 116, 117] even
more avidly than the random-sequence constructs studied here
and in [26]. Nor can we simply suppose that we overestimated
the true value of the DNA persistence length; reducing the
value in the simulation would increase looping at both short
and long lengths, leading to a worse discrepancy at the long
end. Instead, we must look to our other physical hypotheses to
see which is breaking down for short DNA (see section 1.3.3).

The very small phasing modulation observed in our
calculations results partly from the near cancellation of out-
of-phase modulations in the contributions from individual
looping topologies. Certainly we could have obtained greater
modulation had we been willing to adjust our model’s twist
stiffness ad hoc, but our goal was to see how well the model
predicted the data without fitting. It is possible that the
degeneracy we assumed between the binding in each of the
four topologies is an oversimplification, and that therefore
the cancellation is not as complete as what we found in our
simulation. (For example, we neglected the strain on the
tetramer exerted by the DNA, which could differentially affect
the different looping topologies.)

Our results were much more striking when we turned to
the detailed distributions of bead excursions. These results
are complementary to the ones on absolute and relative J
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factors, because the locations of the peaks are not affected by
any possible elastic breakdown of the DNA within the loops;
instead, they depend sensitively on the assumed geometry of
the repressor tetramer. Figure 12 shows that the distinctive
three-peak structure, including the positions, and even the
relative strengths, of the two lower peaks, emerges as a natural
consequence of the four discrete looping topologies for LacI
and its known geometry. We also found reasonable agreement
with the less extensive available data on the peak positions for
the short-loop bead excursion distribution (see figure 13).

Our calculations did not systematically study alternate,
‘open’, conformations of LacI such as the one proposed in
[118], although we did simulate one somewhat artificial model
(a rigid, 180◦ conformation [24]). Although certainly such a
conformational switch is possible, we note that Villa et al
have argued against it on grounds of molecular mechanics
[96]. On the other hand, Wong et al observed direct transitions
between their two looped states (i.e., without an intervening
unlooped episode), and they argued that this rules out any
interpretation of the different looped states in terms of the
distinct binding topologies. Our work has not resolved this
issue. But in any case, the four loop topologies we studied
must exist with any LacI conformation, and we showed that
the closed conformation alone gives a surprisingly detailed
account of the observations of Han et al [26]. We also found
that when we simulated the maximally advantageous, 180◦,
conformation, the resulting looping J factor still fell short of
the value observed in experiments, even if we supposed zero
free energy cost to pop into that state. And if desired, our
calculation scheme may easily be extended to incorporate any
desired hypothesis for LacI opening.

Finally, to illustrate the generality of our method, we
also calculated J factors for DNA with no bead or wall (pure
looping). This calculation also gave us a quantitative estimate
of the effect of the bead and wall on looping.

8.1. Future experiments

More extensive titration experiments will help pinpoint the
values of J better, and eliminate the need to base all
determinations of J on a single titration curve, as we
have been compelled to do. Also, taking data with a
fast camera shutter would eliminate, or at least minimize,
the role of the blur correction (see also section S2
(stacks.iop.org/PhysBio/6/025001)).

Our ability to resolve bead excursion distributions into
distinct contributions from different looping topologies in
section 6 involved a subtle tradeoff. The finite sample rms bead
excursion, ρrms,t , is more sharply peaked for longer sampling
time t. Thus, using larger values of t could in principle clarify
the structure of the distributions in figures 12 and 13. But
increasing t also increases the fraction of incidents when a
tether changes its looping state in the middle of a sample. One
could imagine instead increasing the video frame rate, but
section S3 (stacks.iop.org/PhysBio/6/025001) points out that
the bead diffusion time sets a limit to what can be gained in this
way. Thus it would be desirable to do experiments with smaller
beads, hence faster bead diffusion times and correspondingly
faster video frame rate.

A second advantage to using smaller beads is that this
would minimize the perturbation to looping caused by the
bead, for instance the entropic force pushing the bead away
from the wall, which slightly stretches the DNA.

Finally, it would be interesting to try experiments of
the sort considered here but using other regulatory proteins,
particularly ones not suspected to be as labile as LacI, in order
to see if the effects we calculated really are generic, as we
believe they are.

8.2. Future theory

Certainly we could improve agreement with experiment by
introducing two fitting parameters, which could be considered
as effective twist and bend stiffnesses11. Alternatively,
the method in this paper could trivially be adapted to a
detailed model of sequence-specific, harmonic DNA elasticity.
But such detailed models may miss a larger point, that
harmonic elasticity itself seems to break down at high bend
and/or twist strain. An advantage of our Monte Carlo
scheme is that it does not depend on the assumption of a
Gaussian distribution of elementary bends; any distribution
of interest may be substituted in the code, for example the
one proposed in [99]. Finally, any desired characterization
of repressor flexibility, for example the one outlined in
[24], can be incorporated by drawing the matrices M,N,
etc (see section S4 (stacks.iop.org/PhysBio/6/025001)) from
appropriate distributions.

8.3. Conclusion

Our goal was to go the entire distance from an elasticity
theory of DNA to new, quantitative experimental results.
To cast the sharpest light on the comparison, we chose to
study experiments that are free from confounding elements
present in vivo, e.g., molecular crowding and DNA bending
proteins other than the repressor of interest. We developed
a number of techniques that will also be relevant for other
experiments involving tethering of particles near surfaces.
Although even this simplified setting presents some daunting
geometrical complications (the effects of the tethered bead
and wall), nevertheless it really is possible to understand
much of the available experimental data (e.g., the three-peak
structure of the bead excursion distribution) with a physically
simple model. This level of detailed agreement will be helpful
when trying to identify the many peaks in future experiments
involving more than two DNA-binding sites. It also gives us
strong evidence that our experiments are working as intended;
for example, if bead sticking events were corrupting our
data, it would be quite a coincidence if nevertheless we
found agreement with theory for the full histogram of bead
excursions. We did find significant deviations between theory
and experiment, at short loop lengths. Here the fact that our
underlying physical model had very few assumptions lets us
focus attention more specifically on what modifications to
those assumptions may be needed.

11 The other two elastic constants, involving anisotropy and the twist–
bend coupling, had small effects on our results (see section S8.1
(stacks.iop.org/PhysBio/6/025001)).
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