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Supporting Information Text10

A. Derivation of the kinetics equation from the chemical master equation. The instantaneous probability distribution for the11

number of stator units bound to the motor is governed by the chemical master equation12

dp(n, t)
dt = (n+ 1)k−p(n+ 1, t) + (N − n+ 1)k+p(n− 1, t)− nk−p(n, t)− (N − n)k+p(n, t) [1]13

Each term in Eq. 1 accounts for a transition that either brings the number of bound units to n or moves it away from n.14

Probability of gaining a unit is proportional to the number of empty binding sites, therefore the two gain terms contain15

(N − n+ 1) and (N − n) respectively. Similarly, the probability of losing a unit is proportional to the number of bound units,16

hence the two loss terms contain (n+ 1) and n, respectively. To go from the chemical master equation to a kinetics equation17

for the average number of bound units, multiply both sides by n and sum over all possible values of n, i.e. from 0 to N ,18

N∑
n=0

n
dp(n, t)

dt =
N∑
n=0

n(n+ 1)k−p(n+ 1, t) +
N∑
n=0

n(N − n+ 1)k+p(n− 1, t)−
N∑
n=0

n2k−p(n, t)−
N∑
n=0

n(N − n)k+p(n, t)

d
dt

N∑
n=0

np(n, t) = k+

(
N∑
n=0

n(N − n+ 1)p(n− 1, t)−
N∑
n=0

n(N − n)p(n, t)

)
+ k−

(
N∑
n=0

n(n+ 1)p(n+ 1, t)−
N∑
n=0

n2p(n, t)

)
.

∑N

n=0 np(n, t) = 〈n〉 and we can make index substitutions to convert all probability terms to p(n, t). Knowing that p(n) = 019

for n < 0 or n > N , we get20

d〈n〉
dt = k+

(
N−1∑
n=0

(n+ 1)(N − n)p(n, t)−
N∑
n=0

n(N − n)p(n, t)

)
+ k−

(
N∑
n=1

n(n− 1)p(n, t)−
N∑
n=0

n2p(n, t)

)

= k+

(
N∑
n=0

(n+ 1)(N − n)p(n, t)−
N∑
n=0

n(N − n)p(n, t)

)
+ k−

(
N∑
n=0

n(n− 1)p(n, t)−
N∑
n=0

n2p(n, t)

)
,

since (n+ 1)(N − n)p(n, t) = 0 at n = N and n(n− 1)p(n, t) = 0 at n = 0. The different terms can now be combined, to give21

d〈n〉
dt = k+

(
N∑
n=0

(n+ 1− n)(N − n)p(n, t)

)
+ k−

(
N∑
n=0

(n2 − n− n2)p(n, t)

)

= k+

(
N

N∑
n=0

p(n, t)−
N∑
n=0

np(n, t)

)
− k−

(
N∑
n=0

np(n, t)

)
= k+(N − 〈n〉)− k−〈n〉

which is the kinetics equation for the average number of stator units as a function of time. The steady state solution for this22

equation can be found by setting the rate of change d〈n〉
dt equal to 0, such that23

k+(N − 〈n〉ss)− k−〈n〉ss = 0

〈n〉ss = N

1 + k−
k+

and the time dependent solution is easily found by separation of variables followed integration with appropriate initial condition,24

resulting in25

〈n〉(t) = 〈n〉ss + (〈n〉0 − 〈n〉ss)e−(k++k−)t, [2]26

where 〈n〉0 is the average number of units at initial time (t = 0). Thus, the time constant τ for the exponential approach to27

steady state is give by τ = 1
k−+k+

.28

B. Probability of success of stator unit assembly post-contact. As mentioned in the main text, the probability of success ps29

depends on the contact time tc between a stator unit and a rotor subunit, and the post-contact assembly rate κ. To get ps, we30

evaluate the probability that a stator unit contacting the rotor at time t = 0 will successfully assemble at any time between 031

and tc. The probability that the stator unit will assemble during any small interval of duration ∆t is κ∆t so the probability32

that it will not assemble during the same interval is 1− κ∆t. The probability that the stator unit will not have assembled by33

the time tc = N∆t is (1− κ∆t)N = (1− κtc
N

)N . Therefore, the probability that the stator unit will have successfully assembled34

by time tc is35

ps = lim
N→∞

1−
(

1− κtc
N

)N
= 1− e−κtc . [3]36
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C. Probability distribution of stator binding to the motor. The binding of a single stator unit to the motor changes its free37

energy by an amount εb − µ, where εb is the free energy of the bound unit at zero-torque and µ is the chemical potential for38

taking a single free stator unit out of the membrane pool. We hypothesize that the production of torque lowers this free energy39

difference by an amount εT which depends on torque. Thus, the energy level of a state with n bound units is n(εb − µ− εT),40

assuming no interaction between the bound units. The number of ways of picking n binding sites from a total of N available41

sites is given by the binomial coefficient
(
N
n

)
= N !

n!(N−n)! with n! denoting factorial of n. Thus, the probability of having n units42

bound to the motor is43

Pn =
(
N
n

)
e−βn(εb−µ−εT)∑N

n=0

(
N
n

)
e−βn(εb−µ−εT)

[4]44

where β = 1
kBT

with the Boltzmann constant kB and the absolute temperature T . Since that the denominator in Eq. 4 is a45

binomial expansion, we get46

Pn =
(
N
n

)
e−βn(εb−µ−εT)(

1 + e−β(εb−µ−εT)
)N . [5]47

The average steady state stoichiometry can be found by summing nPn over all possible values of N . This leads to the average48

steady state occupancy49

r = 〈n〉ss
N

= 1
N

N∑
n=0

nPn = 1
1 + eβ(εb−µ−εT) . [6]50

D. Alternative models for the assembly kinetics. The observed steady state stator stoichiometry is well described by the51

statistical mechanical description, leading to a good agreement between measured εT and a model in which it is a linear52

function of the torque per stator unit Γ. Proceeding to the kinetics of stator assembly, Eq. 7 of the main text thus describes53

the constraint on the rate constants k+ and k− at the broadest level,54

k+

k−
= e−β(εb−µ−εT). [7]55

We tested four different models for the dependence of the rate constant on motor’s operational parameters:56

1. Fixed off-rate: In this model, the off-rate k− remains constant while the on-rate k+ is a function of Γ, so that k− = k157

and k+ = k1e
−β(εb−µ−λΓ). For the time constant, we get τ = 1

k1

(
1+e−β(εb−µ−λΓ)

) . As shown in Fig. S1A, this model58

predicts τ to be a monotonically decreasing function of Γ, which does not compare well with the observations from the59

experiments.60

2. Fixed on-rate: In this model, k+ remains constant while k− is a function of Γ, such that k+ = k2 and k− = k2e
β(εb−µ−λΓ).61

Including all data points in the fit results in a poor fit (Fig. S1B). However, this model does well in fitting the time62

scales measured from stator dissociation during the electrorotation period (Fig. S1D) when we excluded from the fit63

the data points obtained from the kinetics of re-assembly after electrorotation was turned off. This suggests that a64

torque-dependent off-rate is likely to be a part of the underlying kinetics but misses some key element that is relevant for65

the re-assembly kinetics.66

3. Both on- and off-rate torque dependent: We relaxed the constraint that one of the rate constants is fixed and developed a67

model in which both could depend on the torque per unit Γ. The rate constants are still constrained by Eq. 7 of the68

main text, so we assumed that k+ = k3e
−β(1−χ)(εb−µ−λΓ) and k− = k3e

βχ(εb−µ−λΓ). Consequently, this model has two69

free parameters k3 and χ. The best fit of this model on the time constant data still failed to capture the experimental70

observations (Fig. S1C ). We further explored this model by systematically varying χ between 0 and 1, and determining a71

best-fit on the data with respect to k3 (Fig. S2). While this model does result in a non-monotonic τ as a function of Γ,72

none of the parameter values are able to capture the experimental observations.73

4. Speed dependent on-rate: As described in the main text, in this model we assumed that the on-rate decreases with74

increasing motor speed as k+ = k0(1−e− κF ) where k0 is the on-rate at stall, κ is a constant proportional to the post-contact75

assembly rate, and F is the motor speed in Hz. From Eq. 7 of the main text we get k− = k0e
β(εb−µ−εT)(1− e− κF ). The76

time constant τ for this model is given by τ = 1
k0(1−e− κ

F )(1+eβ(εb−µ−εT))
. A best fit captured both the dissociation and77

the recovery data (see main text). According to this model, τ increases rapidly with Γ for small values of Γ, and above Γ78

= 100 pN nm, it drops sharply. The sharp drop is caused by a rapid drop in the speed-dependent terms of τ (Fig. S3),79

which closely follows the trend in motor speed as a function of torque. The peak in τ occurs when the motor crosses the80

knee-torque and is due to the sharp bend in the torque-speed relationship. The kink in the τ vs Γ curve an artifact due81

to the piece-wise linear approximation for the torque-speed curve.82
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Fig. S1. Comparison between experiments and alternative models for on- and off-rates. The blue points represent data measured from dissociation kinetics and the
green points are data measured from the recovery kinetics. Each curve is a best fit of the model to the data with the respective free parameters. A. The fixed off-rate model
(k1 = 0.01 s−1) is the worst performer in which the time constant τ is a monotonically decreasing function of the torque per stator unit Γ. B. The fixed on-rate model (k2 =
0.01 s−1). C. The model in which both k+ and k− are torque-dependent (k3 = 0.004 s−1 and χ = 0.33). D. The fixed on-rate model this time fit excluding the recovery data
(k2 = 0.0008 s−1), to show that the fixed on-rate model is able to capture the dissociation kinetics but not the recovery kinetics.
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Fig. S2. Fits of the model with torque-dependent on- and off-rates for various values of the parameter χ. The blue points represent data measured from dissociation
kinetics and the green points are data measured from the recovery kinetics. For 0 < χ < 1, this model results in a non-monotonic τ as a function of Γ. However, none of the
parameter values in this model are able to capture all the experimental observations.
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Fig. S3. Role of individual terms of Eq. 8 of the main text in the torque dependence of τ . The term (1 + eβ(εb−µ−εT))−1, shown in red, is the primary torque

dependent term which steadily increases with the torque per stator unit Γ. The other component of τ , [k0(1− e− κ
F )]−1, shown in blue, decreases slowly until about Γ = 100

pN nm, after which it drops rapidly. The rapid drop is mainly caused by a sharp drop in motor speed above the knee-torque of about 100 pN nm, as shown in yellow.

6 of 7 Navish Wadhwa, Rob Phillips and Howard C. Berg



Fig. S4. Fits on the time-dependent stoichiometry data with the solution of Eq. 2 of the main text. The solid line and the shaded region are the ensemble average and
the standard deviation, respectively. The grey line is the model fit with two parameters, 〈n〉ss and τ , which are listed in the plots for each fit.
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