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Genes are connected in complex networks of interactions where often the product of one gene is
a transcription factor that alters the expression of another. Many of these networks are based on a
few fundamental motifs leading to switches and oscillators of various kinds. And yet, there is more
to the story than which transcription factors control these various circuits. These transcription
factors are often themselves under the control of effector molecules that bind them and alter their
level of activity. Traditionally, much beautiful work has shown how to think about the stability
of the different states achieved by these fundamental regulatory architectures by examining how
parameters such as transcription rates, degradation rates and dissociation constants tune the circuit,
giving rise to behavior such as bistability. However, such studies explore dynamics without asking
how these quantities are altered in real time in living cells as opposed to at the fingertips of the
synthetic biologist’s pipette or on the computational biologist’s computer screen. In this paper, we
make a departure from the conventional dynamical systems view of these regulatory motifs by using
statistical mechanical models to focus on endogenous signaling knobs such as effector concentrations
rather than on the convenient but more experimentally remote knobs such as dissociation constants,
transcription rates and degradation rates that are often considered. We also contrast the traditional
use of Hill functions to describe transcription factor binding with more detailed thermodynamic
models. This approach provides insights into how biological parameters are tuned to control the
stability of regulatory motifs in living cells, sometimes revealing quite a different picture than is
found by using Hill functions and tuning circuit parameters by hand.

I. INTRODUCTION

The first half of the twentieth century was a time in
which many of the great mysteries of nineteenth century
physics were resolved [1–4]. Though perhaps less well
known, the study of living organisms had enormous mys-
teries of its own including the molecular and cellular basis
of the laws of heredity [5]. One key puzzle centered on
a phenomenon known at the time as “enzymatic adapta-
tion” [6, 7]. Those words refer to the apparent induction
of enzyme action as a result of changes in the metabolic
or physiological state of cells, such as those that occur
upon shifting from one carbon source to another [7]. In
the nineteenth century, Louis Pasteur had noted that
yeasts behave differently under different growth condi-
tions. Frédéric Dienert followed up on those observations
with great foresight by doing experiments that quantita-
tively characterized the phenomenon [7]. Jacques Monod
made these studies a fine art through the use of bacte-
rial growth curves “as a method for the study of bac-
terial physiology and biochemistry” [8] (see Figure 9 of
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Monod’s paper for a compelling example of the induction
phenomenon).

As a result of studies like these, in the early 1960s
Jacob and Monod shook the world of biology by show-
ing that there are genes whose job it is to control
other genes [5, 9], culminating in their repressor-operator
model which showed how proteins could bind to DNA and
repress the expression of nearby genes [5, 9–11]. Their
original work was extended and amplified through the
discovery of architectures that were mediated not only
by repression, but by activation as well [12], and even
by combinations of activators and repressors [13]. In
the late 1960s, the vision was considerably broadened
through the generalization of these ideas from their first
context in bacteria to the much broader set of regula-
tory problems associated with animal development such
as those schematized in Fig. 1 [14]. The study of the
lysis-lysogeny decision in bacteriophage lambda became
a paradigm for the genetic switch [15, 16], and in the
time since then those ideas have been generalized, real-
ized, and exploited across biology.

The repressor-operator model of Jacob and Monod
provided not only a successful conceptual vision for gene
expression writ large, but also served as the basis of
mathematical models of transcription based upon the
precepts of statistical mechanics [21–23]. These models
provided a quantitative description of a variety of differ-
ent regulatory contexts in which the strengths of binding

https://arxiv.org/abs/2505.07053v1
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Figure 1: Gallery of examples of regulatory circuits participating in the genetic decisions of animal development.
(A) A three-node network thought to be relevant to the control of digit formation, adapted from [17]. (B) An
example involving vulval development in C. elegans, where epidermal growth factor (EGF) and Notch induce cells
toward one of three possible fates, adapted from [18] and [19]. (C) Transcription factors compete and maintain cell
pluripotency unless sufficiently induced to reprogram a cell to a differentiated fate, adapted from [20].

sites, the repressor copy number and DNA loop length
were altered, illustrating how genetic circuits could be
tuned directly and quantitatively [24–28]. Interestingly,
these pioneering studies became a jumping off point for
the construction of a number of synthetic variants that
when combined with fluorescent reporters made it pos-
sible to watch synthetic switches and oscillators in real
time in single cells [29–31].

In addition to the seminal discoveries of the existence
of gene circuits themselves, a parallel set of discoveries
unfolded which added a second layer of regulatory control
to the original repressor-operator model and its subse-
quent generalizations and elaborations. Specifically, the
mystery of induction required another insight into bio-
logical feedback and control. Enzymatic adaptation, the
idea that somehow enzymes that were latent would be-
come active in the presence of the right substrate [6], led
to the discovery of allostery, a concept that Monod him-
self referred to as the “second secret of life” [32]. In
the context of gene regulation, this idea implies that
transcription factors themselves are subject to control
through the binding of effector molecules that alter their
activity [33–40]. Writ large, these insights now fall un-
der the general heading of allosteric transitions, a phe-

nomenon in which proteins of all types undergo confor-
mational changes that alter their activity. This idea
applies broadly to ion channels, enzymes, the respira-
tory protein hemoglobin, membrane receptors mediating
chemotaxis and quorum sensing, and of course, to the
main subject of our paper, transcription factors [40].

The mathematical analysis of genetic circuits is its
own fascinating enterprise, using the tools of dynamical
systems to explore the stability of switches and oscilla-
tions [41–45]. The idea for describing some circuit involv-
ing n different proteins is to write dynamical equations
of the form

d[TFi]

dt
= fi({[TFj ]}), (1)

where there is one such equation for each transcription
factor (for which we will often use the shorthand nota-
tion). The function on the right side acknowledges that
the dynamics of the ith TF can depend upon the con-
centrations of all the others, represented here by the no-
tation {TFj} signifying “the set of all n TFs.” Perhaps
the simplest such example we will discuss as our first case
study is the auto-activation switch as shown in Fig. 2 and
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Figure 2: The auto-activation regulatory circuit. (A) Schematic of the operation of the circuit. Polymerase binding
at the promoter (blue) transcribes the gene (encoded in the light green region), producing a protein that can
activate its own expression at a sufficient concentration. In our model, an activator can bind at one of two possible
sites to enhance gene transcription. (B) Thermodynamic states, weights, and rates for the circuit in the traditional
model without induction. The parameter ω denotes the cooperative strength of two activators binding. (C)
Thermodynamic states, weights and rates for the case in which the effector tunes the fraction of active activators.
Note that in both of these cases the parameters Kd, ω, r0, r1 and r2 are effective parameters that have hidden
dependence upon the number of polymerases and the strength with which it binds the promoter. The explicit
definitions of these effective parameters are worked out in Appendix A.

described by an equation of the form

dA

dt
= −γA+

r0 + r12
A
Kd

+ r2ω(
A
Kd

)2

1 + 2 A
Kd

+ ω( A
Kd

)2
, (2)

where A is the number of activators, Kd is the dissoci-
ation constant for A in its interaction with DNA, and
ω is the cooperativity between two activators bound to
the gene promoter along the DNA. The first term on the
right captures the degradation of activator at rate γ, and
the second term characterizes protein production with a
basal level of production r0 and a saturating level r2.

The production rate in Eqn. 2, and throughout this
work, is modeled using a thermodynamic framework re-

lating promoter occupancy to output [21, 23, 27, 46–48].
We note that often instead of adopting the full thermo-
dynamic model to treat promoter occupancy, it is consid-
ered convenient to use Hill functions as an approximation
to describe the probability of promoter binding [42–45].
The auto-activation example will serve as our first foray
into the problem of induction of genetic circuits by ef-
fector molecules as well as an opportunity to bring some
critical scrutiny to the use of Hill functions to describe
the physics of occupancy.

Typically, the exploration of the stability behavior of
these circuits is based upon varying theoretically accessi-
ble parameters such as dissociation constants (Kd), tran-
scription rates (ri) and degradation rates (γ) as fea-
tured in Eqn. 2 and in Fig. 3(B-D), without reference to
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Figure 3: Tuning genetic circuits. The schematic shows different knobs which are available to the cell, the theorist
and the experimentalist, namely (A) effector concentration (and by consequence the number of active activator or
repressor molecules), (B) binding affinity Kd, (C) protein production rate r, and (D) cooperativity ω.

how such parameters are themselves controlled by living
cells [40]. In fact, often the underlying response is dic-
tated by the presence and absence of experimentally ac-
cessible effector molecules that alter the balance between
inactive and active forms of key regulatory molecules
such as transcription factors as shown in Fig. 3(A). Thus,
while all of the tunable parameters in Fig. 3 make it pos-
sible to systematically tune the level of gene expression,
some of these parameters are more conveniently acces-
sible to the experimentalist and to the cell itself as it
rapidly tunes its behavior in response to stimuli. Our
goal is to use explicit statistical mechanical models of
the induction phenomenon to explore the behavior of ge-
netic circuits as a function of the presence or absence of
effectors.

In the next few sections, we work our way through an
array of increasingly sophisticated gene regulatory cir-
cuits and leverage the statistical mechanical framework
to uncover how the presence of effectors dictates complex
gene expression dynamics. We envision that the predic-
tions and systematic analysis stemming from our work
will make it possible to better understand how cells ex-
ploit these genetic circuits to regulate their decision mak-
ing processes, as well as enable the predictive design of
synthetic circuits with prescribed functions in response
to input effector dynamics.

II. THE STATISTICAL MECHANICS OF
INDUCTION

We now undertake a systematic analysis of a number
of different regulatory circuits from the point of view of
allosteric regulation, building upon earlier work in which
the biological parameters are tuned by hand rather than
through the action of effectors [29, 42, 43, 49, 50]. In par-
ticular, we argue that often the number of active tran-

scription factors TFact is given by

TFact = pact(c)TFtot, (3)

where TFtot is the total number of transcription factors
and pact(c) is the probability that the transcription fac-
tor is active as a function of the effector concentration
c. We will show that the fraction of transcription fac-
tors that are active can be given by the Monod-Wyman-
Changeux (MWC) model, which can be used to compute
pact(c) using statistical mechanics [33–40]. Note that al-
though we invoke the MWC model to describe allostery,
we could just as well use the KNF model or even the
phenomenological Hill functions to capture the role of
the effector [40].

In the MWC model, we consider an inactive state and
an active state of the transcription factor with energy
difference ε = εi − εa. The states and weights for such
an allosteric transcription factor with two binding sites is
shown in Fig. 4. Appealing to these states and weights,
the probability of a transcription factor being active is
then of the form

pact(c) =
(1 + c

KA
)2

(1 + c
KA

)2 + e−βε(1 + c
KI

)2
, (4)

where c is the concentration of effector molecules. Here
we define β = 1/kBT , and KA and KI as the dissociation
constants for the transcription factor in its active and
inactive states, respectively.

An alternative way of thinking about this approach is
to express an effective dissociation constant Keff

d between
transcription factors and DNA as

Keff
d = Kd/pact(c), (5)

where Kd is the fixed physical dissociation constant and
pact(c) modulates the activity of that transcription factor
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Figure 4: States and weights for an allosteric transcription factor with an effector that can bind at two sites on the
molecule. The sum of the thermodynamic weights for the active and inactive conformations are shown at the
bottom.

in an effector-concentration-dependent way. For a tran-
scription factor with two effector binding sites, we can
write the probability of being in the active state in the
form given by Eqn. 4. The activity of the transcription
factor as a function of effector concentration is shown in
Fig. 5(A). This input-output function has the typical sig-
moidal behavior of pact(c). It is worth noting that here
we show the behavior of a transcription factor for which
the effector renders the proteins inactive. By tuning the
relative values of the active and inactive dissociation con-
stants, however, we can also generate situations in which
the activity of the transcription factor increases with ef-
fector concentration.

Writing Keff
d = Kd/pact(c) in gene regulatory network

motifs is useful and informative in many ways. First, tra-
ditionally, theoretical models of the behavior of network
motifs are studied by tuning Keff

d , while experiments gen-
erally tune the effector concentration c. Incorporating
pact bridges theory and experiments by providing exper-
imentally accessible “knobs” to control the behavior of
the genetic circuit of interest. Second, since pact(c) is
highly nonlinear in c, model variables might react to
varying c differently than varying Keff

d . Third, pact(c)
constrains the range of accessible Keff

d values. When dis-
cussing input-output curves, there are a variety of sum-
mary parameters that help us understand their charac-
ter qualitatively. For example, in the case where effector
binding renders the protein inactive, the leakiness is the
amount of activity at saturating concentrations of effec-
tor, namely, pact(∞). Similarly, the maximal activity
known as the saturation occurs in the zero-effector limit,
namely, pact(0). These important summary variables can

be calculated as

pmax
act = lim

c→0
pact =

1

1 + e−βε
(6)

and

pmin
act = lim

c→∞
pact =

1

1 + e−βεK̄2
c

, (7)

where K̄c = KA/KI . With the parameters used in
Fig. 5(A), pmin

act and pmax
act are separated by about three

orders of magnitude, and thus Keff
d can also only be

tuned across three orders of magnitude, as shown in
Fig. 5(B). The restricted Keff

d range can have important
consequences. For example, consider a bistable system
with a stability curve such as that shown in Fig. 6. The
x-axis is Keff

d and the y-axis tracks the steady state con-
centration of some protein A. The range of Keff

d resulting
in bistability might not be fully accessible, depending on
the baseline Kd value.

Our fundamental goal is to reconsider the classic sta-
bility analysis for a broad array of different regulatory ar-
chitectures in light of the MWC model for transcription
factor activity described above. For example, as seen in
Fig. 6, tuning the Kd for the simple auto-activation cir-
cuit yields two stable fixed points. In the first section,
we examine this circuit by modulating the concentration
of effector molecules, which tunes the concentration of
active transcription factors. From this simple genetic
circuit, we then turn to the ubiquitous mutual repres-
sion switch, well known not only as a key part of the
repertoire of natural genetic circuits as shown in Fig. 7,
but also as one of the classic examples of synthetic bi-
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Figure 5: Activity of a transcription factor as a function
of its effector concentration c. Unless stated otherwise,
the parameters used throughout this work are:
KA = 140µM , KI = 530nM , ε = 4.5 kBT . (A)
Probability of active transcription factor as a function
of effector concentration, defined by Eqn. 4. The half
maximal effective concentration EC50, defined as the
effector concentration c∗ such that
pact(c

∗) = (pmax
act + pmin

act )/2, is plotted in purple. (B)
The effective dissociation constant Keff

d (dimensionless
with respect to Kd) as a function of effector
concentration. Saturation of pact(c) corresponds to
minimal Keff

d , and leakiness of pact(c) corresponds to
maximal Keff

d .

ology [29]. Both auto-activation and mutual repression
can exhibit bistable dynamics [29, 42, 49, 50]. We ex-
amine the conditions for bistability as well as the relax-
ation dynamics in each. Finally, we turn to three-gene
feed-forward loops, in which an input gene regulates ex-
pression of another both directly and indirectly through
regulation of an intermediary. Depending on the precise
architecture, these circuits exhibit unique time-varying
behavior in response to pulsing effector signals [51–53].

III. BISTABILITY IN GENETIC CIRCUITS

Different gene networks serve different biological func-
tions. Among the most important classes of networks
are those that yield bistability. Bistability refers to the
situation in which, for a given set of parameters, a sys-
tem can exist in one of two possible stable steady states.
Such a feature is biologically significant. For example, of-
ten the expression level of one protein determines a cell’s
fate. To obtain cells with different functions, there might
be some cells with high concentrations of the protein of
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Figure 6: Allosteric tuning restricts the range of
accessible Keff

d . The dark blue curve shows the
steady-state values of activator concentration A, with
filled circles indicating stable fixed points and open
circles indicating unstable ones. The light blue and
light green shaded regions represent two example ranges
of accessible Keff

d = Kd/pact(c) values, obtained by
varying the effector concentration c for two proteins
with different DNA binding affinities (and thus different
baseline Kd values). For the blue region,
Kd = 3.2× 10−2 µM = 10−1.5 µM; for the green region,
Kd = 1 µM. The parameters for the auto-activation
stability curve are: γ = 1/min, r0 = 0.1 µM/min, r1 = 1
µM/min, r2 = 20 µM/min, ω = 100. If Kd itself were
tunable, the full positive Keff

d axis would be accessible.
However, tuning the biologically relevant parameter c
imposes constraints on the range of achievable Keff

d .
The light blue range does not intersect the bistable
region, while the light green range does, illustrating
that bistability may not be fully accessible due to the
functional dependence of Keff

d on pact(c).

interest and some cells with low concentrations, requir-
ing a bistable system regulating the protein in question.
Broad computational surveys have shown that switch-
like, bistable behavior can emerge from a wide range
of simple biochemical network architectures [58]. Here,
we analyze the two simplest and most ubiquitous gene
circuits that produce bistability [44], considered now
through the new lens of how effector molecules modulate
the dissociation constants of regulatory proteins binding
to DNA. This is in contrast to the conventional setting
in which the tuning strategy is simply to modulate the
binding parameters within thermodynamic models [42–
44, 49], rather than those parameters being naturally
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Figure 7: Mutual repression is ubiquitous in cellular decision making. (A) The bacteriophage lambda switch that
mediates the phage decision to become a lysogen in the bacterium or engage in lysis through mutual repression of cI
and cro (and some autoactivation of cI as well). (B) In hematopoietic development, mutual repression between
different genes have been suggested to ensure the switch-like adoption of alternate cellular fates. Diagram adapted
from [54] and [55]. (C) Mutual repression in the early fruit fly gene network has been associated with the emergence
of discrete domains of gene expression. Diagram adapted from [56] and [57].

tuned through the action of signaling molecules.

A. The auto-activation regulatory motif

Auto-activation circuits, in which a gene product en-
hances its own transcription, are among the simplest ge-
netic regulatory motifs and are capable of generating
bistable behavior [42]. Such motifs have been studied
extensively in both synthetic and natural biological sys-
tems. In vitro synthetic networks have demonstrated ro-
bust switching between high and low expression states
under controlled biochemical conditions [59], and positive
feedback loops have been implicated in natural processes
like cell differentiation, where they convert graded input
signals into binary gene expression responses [60]. Moti-
vated by these observations, we now turn to a theoretical
analysis of the auto-activation switch. The architecture
we study is shown schematically in Fig. 2, where a tran-

scription factor activates its own production, forming a
feedback loop.

The states included in the states and weights diagram
of Fig. 2 reveal that an essential element of achieving
bistability is the cooperative binding of more than one
activator on the regulatory region of the gene’s promoter.
Given these states, weights, and rates, we can now write
the kinetic equation governing the dynamics of the auto-
activation system as

dA

dt
= −γA+

r0 + r1(2pact(c)
A
Kd

) + r2ω(pact(c)
A
Kd

)2

1 + 2pact(c)
A
Kd

+ ω(pact(c)
A
Kd

)2
,

(8)

where γ is the degradation rate of protein A, ri is the
production rate when i activators are bound, ω is the
cooperativity of activator binding, and Kd is the bio-
physical dissociation constant specific to a gene and a
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transcription factor. The effect of allosteric regulation is
included in pact(c), as we introduced earlier. This proba-
bility modifies the active transcription factor concentra-
tion from A to pact(c)A.

Note that we could alternatively describe this auto-
activation switch by explicitly considering all possible
regulatory states with bound and unbound RNA poly-
merase (RNAP), and explicitly defining an energy for
interaction between activators and RNAP. Appendix A1
demonstrates, however, that this representation is equiv-
alent to Eqn. 8, with the rates ri, dissociation constant
Kd, and cooperativity ω implicitly dependent on poly-
merase concentration, the strength of polymerase bind-
ing to the DNA, and the strength of interaction between
polymerase and activator. The discussion throughout
this paper will thus remain in the equivalent coarse-
grained realm, as depicted in Fig. 2, and effectively focus
on polymerase-bound states.

It is helpful to write our dynamical equation in di-
mensionless form. To do so, we non-dimensionalize the
system by using 1/γ as the unit of time and Kd as the
unit of concentration. Within the pact paradigm, we can
write the dynamical equation in dimensionless form as

dĀ

dt̄
= −Ā+

r̄0 + r̄1(2pactĀ) + r̄2ω(pactĀ)2

1 + 2pactĀ+ ω(pactĀ)2
, (9)

where t̄ = γt, Ā = A/Kd and r̄i = ri/γKd.

At a given effector concentration, we can represent the
gene expression dynamics that unfold through a phase
portrait as in Fig. 8. The points of intersection of the
production and degradation curves correspond to steady
state activator concentrations. Fig. 8 highlights a system
that can stabilize to one of two possible states with a high
(Āhigh) or low (Ālow) activator concentration. Depend-
ing on the initial concentration of activator protein, the
system will converge to one of these stable points. At the
unstable steady state Āunstable, only a small perturbation
is needed for the system to evolve toward one of the two
stable steady states.

We can now qualitatively visualize how the dynamics
of auto-activation transform at different effector concen-
trations. Specifically, as we will see explicitly in the next
section, for each effector concentration c we generate a
phase portrait analogous to that shown in Fig. 8. We
then determine the number of stable and unstable fixed
points and their corresponding activator concentrations.
Performing this analysis as we tune effector concentra-
tion yields the bifurcation curve shown in Fig. 9. At a
low effector concentration, activators are more likely to
be found in their active configurations, enhancing gene
expression such that the system always stabilizes to a
state with a high concentration of activator. The mag-
nitude of this concentration approaches a maximal value
defined by the rate r̄2 for activated protein production.
As the effector concentration increases, the system be-
comes bistable, allowing a bimodal distribution in protein
concentrations for an ensemble of cells [50].

Ultimately, at sufficiently high effector concentration,
activators are sequestered in their inactive configuration
such that the system can only stabilize to a state with
low activator concentration. The magnitude of activa-
tor expressed is then largely defined by the basal rate of
production without bound activator, i.e., r̄0. Tracking
the system’s corresponding production and degradation
curves through a series of snapshots in Fig. 9, we ob-
serve that these shifts between bistable and monostable
dynamics emerge because the increasing effector concen-
tration shifts the system production curve toward higher
activator concentration. Expressed differently, as effector
concentration increases, a higher activator concentration
is necessary to achieve a given production rate.

Note that the threshold at which the system switches
from one stable state to another differs when increasing
and decreasing the effector concentration. If the system
initially contains a high concentration of activator before
tuning, a higher concentration of effector is necessary to
switch to the low activator state than is required when
decreasing effector concentration for a system with ini-
tially low activator concentration. Considering Fig. 9
again, the higher threshold corresponds to the maximum
effector concentration at which the system is bistable,
and the lower threshold to the minimum concentration
at which the system is bistable. Fig. 10 illustrates this

102
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10–2

10–2 10–1 100 101 102

ra
te

activator concentration, A

production
degradation

Figure 8: Plot of production and degradation rates for
an auto-activation switch as a function of activator
concentration. This figure illustrates the competition
between the production and degradation terms for a
system with rate constants r̄0 = 0.1, r̄1 = 1, r̄2 = 20,
and cooperativity ω = 10 at effector concentration
c = 25 µM. Intersections of the curve denote stable
(filled nodes at low concentration Ālow and high
concentration Āhigh) and unstable (unfilled node
Āunstable) fixed points. The vectors denote a phase
portrait representing the direction and magnitude of
change in activator concentration as a function of
activator concentration itself.
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Figure 9: Bifurcation diagram for auto-activation system with rate constants r̄0 = 0.1, r̄1 = 1, r̄2 = 20, and
cooperativity ω = 10. This curve plots all stable (filled nodes) and unstable (unfilled nodes) fixed points,
demonstrating a shift at intermediate effector concentrations from one to three fixed points. Each black dashed line
denotes a specific effector concentration, pointing to a plot of the corresponding production (blue) and degradation
(orange) rates as a function of activator concentration. Curve intersections mark the stable (filled nodes) and
unstable (unfilled nodes) fixed points found at the given effector concentration.

phenomenon of hysteresis more explicitly, overlaying the
previously discussed bifurcation diagram, and showing
how the threshold at which the blue stable equilibrium
trajectory switches from high to low activator concentra-
tion differs from the threshold for the orange trajectory
tracing the switch in reverse.

We are particularly interested in characterizing the
conditions for bistability to occur at effector concentra-
tions c, as well as how the bistable regime (if it exists)
responds to changes in parameters such as production
rates and cooperativity. While previous studies have an-
alyzed bistability in auto-activation circuits using ther-
modynamic models without effectors [42, 61], our aim
is to extend this to include effector dependence explic-
itly and systematically explore how the bistable region
evolves across a broader parameter space.

1. Regimes of bistability

We now analyze the ways in which bistability emerges
in the context of effector-mediated genes. One could
begin with simply a fixed set of parameters and asking
whether the system is bistable. In other words, can the
concentration of gene product A settle at either a high
or low steady state depending on the initial condition,
thereby functioning as a binary switch?

The question becomes more nuanced, however, when
taking the role of effector molecules into account. Some
parameters are more intrinsic and less readily tunable
than others. For instance, molecular constants such
as binding affinities or cooperativity are typically en-
coded in the system’s molecular architecture. In contrast,
cells can regulate the concentration of effector molecules
relatively easily and rapidly, either through controlled
expression, import/export mechanisms, or degradation
pathways. Given this, the most relevant questions to ask
are (i) under what constraints on the system’s intrinsic
parameters can bistability be achieved for at least some
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Figure 10: Plot of stable state evolution, exhibiting
hysteresis under different trends for effector
concentration. The blue curve plots how the stable
state evolves with increasing effector concentration from
an initial high concentration of activator. The orange
dashed curve plots the change in stable activator
concentration starting from an initially low level as
effector concentration decreases. Comparing to the
bifurcation diagram (grey) previously shown in Fig. 9,
the history of steady-state evolution determines the
threshold concentration of effector at which the system
switches state, highlighting hysteretic behavior.

range of effector concentration c, and (ii) how wide is
that range? Indeed, even if the effector concentration is
a more accessible control knob, the cell is unlikely to op-
erate at a single precise value, if only due to molecular
noise and environmental fluctuations. It is therefore bio-
logically relevant to assess not just whether bistability is
possible, but whether it is robust to such fluctuations in
effector levels.

We observe that even under the idealized assumption
that the cell could freely choose its effector concentration,
bistable behavior arises only within a restricted range of
parameter values. This is shown numerically in the red
regions of Fig. 11. To investigate the conditions under
which multiple steady states are possible, we also derive
analytical bounds in parameter space in Appendix B 1.
By setting dĀ/dt̄ = 0 and rewriting the resulting ex-
pression in standard polynomial form, we can infer the
number of positive real roots using classical results (i.e.,
Descartes’ rule of signs) that relate sign changes in the
coefficients of a polynomial to the number of positive
roots. This leads to a necessary condition on the param-
eters of the system: for bistability to be possible for at
least one value of the effector concentration, the system

must satisfy the inequalities

ωr̄2
2

> 1 + e−βε, (10)

2r̄1 < 1 + e−βεK̄2
c , (11)

ωr̄2 > 4r̄1. (12)

Notably, these conditions do not depend on r̄0.

In Fig. 11, we systematically modulate the four pa-
rameters of the auto-activation system: the strength of
cooperative binding ω, the protein production rate r̄0 in
the absence of activator binding, the protein production
rate r̄1 when one activator is bound to the DNA, and
the protein production rate r̄2 when two activators are
bound. Fig. 11(A) shows the consequences of varying the
cooperativity parameter ω, sampling values from 10−6

to 106 to represent systems with positive cooperativity
(ω > 1), systems that are non cooperative (ω = 1), and
systems with negative cooperativity (ω < 1). Recall that
cooperativity describes the energy of interaction between
two bound activators, εint, and therefore can be written
as ω = e−βεint . The range of cooperativity shown in the
figure thus corresponds to interaction energies ranging
from εint ≈ −14kBT to εint ≈ 14kBT , encompassing a
broad and biologically relevant spectrum of interaction
strengths [46, 47, 49].

Fig. 11(B), (C), and (D) explore the effects of varying
the rates r̄0, r̄1 and r̄2, respectively. To do so, we impose
constraints on these parameters to ensure that the system
remains within the auto-activation regime, as defined in
Appendix E. Specifically, we require that the production
term in Eqn. 9 remains a monotonically increasing func-
tion of Ā, such that Ā consistently acts as an activator
across all concentrations. This condition imposes the in-
equality r̄0 ≤ r̄1 ≤ r̄2, which we enforce throughout our
analysis when varying r̄0, r̄1 and r̄2.

We note that the necessary criteria for bistability de-
rived in Eqns. 10 - 12 do not impose any effective con-
straint when tuning either r̄0, r̄1, or r̄2 for the set of
parameters chosen in Fig. 11. Specifically, the predicted
lower bound on r̄1 exceeds the upper limit on r̄1 allowed
by the auto-activation constraint (i.e., r̄1 ≤ r̄2). Simi-
larly, the threshold for r̄2 above which bistability is pos-
sible lies below r̄1, meaning the system no longer behaves
as a strictly auto-activating unit. Indeed, we observe that
for parameter values consistent with the auto-activation
regime, when either r̄1 or r̄2 is varied individually in
Fig. 11(C) and (D), the system fails to exhibit bistability
only in a narrow region where r̄1 approaches r̄2. Note,
however, that this behavior is not universal. For different
parameter values, the relative positioning of these thresh-
olds may change, and the necessary conditions specified
by Eqns. 10-12 could become more explicitly informa-
tive. The conclusions drawn here are therefore specific
to the parameter set used in this analysis.

We show that the parameters r̄2 and ω play similar
roles in shaping the system’s ability to exhibit bistability.
As seen in Fig. 11(A), there exists a critical threshold of
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Figure 11: Range of effector concentrations for which the system exhibits bistability. The red shaded region
indicates bistability. Outside this region, the system is monostable. Unless otherwise specified, parameters are fixed
at: ω = 7.5, r̄0 = 0.1, r̄1 = 1, and r̄2 = 20. (A) Bistable concentration range as a function of cooperativity ω, varied
over the interval ω ∈ [10−6, 106], corresponding to interaction energies between the two activators from
approximately +14, kBT to −14, kBT , since ω = e−βεint . The dotted line shows the analytical lower bound on the
minimal cooperativity required for bistability. (B) Bistable concentration range as a function of r̄0, sampled over the
interval r̄0 ∈ [10−6, r̄1]. (C) Bistable concentration range as a function of r̄1, sampled over the interval r̄1 ∈ [r̄0, r̄2].
(D) Bistable concentration range as a function of r̄2, sampled over the interval r̄2 ∈ [r̄1, 10

6]. The rate parameters
are varied under the constraint of the auto-activation condition r̄0 ≤ r̄1 ≤ r̄2, which ensures that the production rate
increases with the number of bound activators.

cooperativity ω below which the system is strictly monos-
table, indicating that a minimal level of nonlinearity is
required for bistability. The analytical bounds derived
in Eqns. 10 and 12 accurately capture this threshold.
Likewise, Fig. 11(D) demonstrates that r̄2 must exceed a
minimum value to support bistability; below this thresh-
old, the system remains monostable for all effector con-
centrations.

Increasing r̄2 strengthens the contrast between states
with high and low activator steady state concentrations
in a positively cooperative system (ω > 1), and as a re-
sult, the system becomes unstable for a broader range
of effector concentrations. Therefore, as either ω or r̄2
increases, the region of effector concentrations that sup-
ports bistability broadens. This leads to a wider hystere-
sis zone and expands the range over which the system
can toggle between high and low steady states under
a fixed set of parameters. The region of bistability in
effector concentration space is displaced toward higher
concentrations, where the activation probability pact(c)
approaches the leakiness limit. This reflects the fact that
the effector destabilizes the activator by decreasing its
effective DNA binding affinity. In this sense, increas-
ing effector concentration counteracts the effect of high
ω and r̄2, which tend to promote high expression lev-
els of A. These two opposing effects—activation-driven
amplification and effector-driven destabilization—create
a balance that enables bistability.

Due to the system’s leakiness, complete inactivation
of the activator is never achieved, even at high effector
concentrations. As a result, for sufficiently large values
of ω and r̄2, bistability can occur for all concentrations
above a finite lower bound cmin(ω, r̄0, r̄1, r̄2). This behav-
ior corresponds to a limited region in parameter space
where the system remains bistable at large c, as illus-
trated by the blue and green dotted lines in Fig. 11(A)
and (C). In Appendices B 2 and D, we derive analyti-
cal bounds that predict the onset and breakdown of this
upper-unbounded bistable regime.

Beyond a certain point and with fixed values of effector
concentrations, further increases in either parameter have
the opposite effect. When ω becomes too large, activators
bind excessively tightly to the DNA, effectively locking
the system into a high-expression state. Similarly, if r̄2
becomes too large, the system favors high levels of gene
expression, and bistability is again lost (we analyze this
transition using two-dimensional numerical sweeps and
supporting analytical arguments in Appendix D). This
behavior is a direct consequence of how the effector en-
ters the model. If, instead of varying the effector concen-
tration, we varied an effective dissociation constant Keff

d ,
the bistable region would always remain bounded within
a finite range of values.

This behavior contrasts with the effect of increasing
r̄0 or r̄1. As shown in Fig. 11(B) and (C), higher val-
ues of either parameter reduce the width of the bistable
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Figure 12: Comparison between Hill function and thermodynamic treatments of bistability in the auto-activation
switch. (A) The Hill function model predicts bistability even when it is forbidden in the thermodynamic formulation
by the Descartes bounds. Shared parameters are r̄0 = 0.1, r̄2 = 2. Two illustrative thermodynamic curves are shown
here in blue as the two remaining parameters, r̄1 and ω, are varied. Regardless of the choices of r̄1 and ω, the
thermodynamic curves exhibit no bistability in the bistable region of the Hill function. One thermodynamic curve
shown here have parameters r̄1 = 0.1, ω = 2; the other has parameters r̄1 = 1, ω = 100. (B) Hill function fails to
capture the tunability of the EC50 in the thermodynamics formulation. By changing the parameters r̄1 and ω, the
switch from high to low concentrations of Ā can be tuned to occur at different effector concentration c. Shared
parameters are r̄0 = 0.1, r̄2 = 10. The left thermodynamic curve shown here has parameters r̄1 = 1, ω = 1. The left
thermodynamic curve shown here has parameters r̄1 = 1, ω = 50. Nevertheless, all Hill function curves switch at the
same effector concentration, regardless of Hill coefficient n, with the evidence shown in Fig. 31 in Appendix F. The
Hill functions shown in (A) and (B) have n = 2.

region, and beyond a critical threshold, bistability disap-
pears entirely. We can therefore infer that, in a positively
cooperative system (ω > 1), elevated values of r̄0 and r̄1
undermine the system’s ability to function as a bistable
switch.

Interestingly, we observe bistability for values of the
cooperativity parameter ω that are less than one, as seen
in Fig. 11(A). This can be reconciled in two complemen-
tary ways. First, we can define an effective cooperativity
for the system, given by ωeff = ω · r̄2/2. From the neces-
sary conditions for bistability derived in Eqns. 10 and 12
we find that ωeff > 1 is required for bistability. While this
condition is necessary but not sufficient, it suggests that
ωeff captures the functional cooperativity of the system
more accurately than ω alone, as it incorporates both the
interaction between bound activators and the maximal
rate of activator production. We can also reconcile our
bistable results containing values of ω less than one by
examining the effective Hill coefficient of the steady-state
input–output function. As shown in Appendix G, bista-
bility is observed only when the effective Hill coefficient
exceeds one. This reinforces the idea that the system can
exhibit bistability even when ω < 1, provided the over-

all nonlinearity—quantified either by ωeff or the effective
Hill coefficient—is sufficiently strong.

2. Comparing Hill function and thermodynamic
formulations

Thus far our paper has employed a thermodynamic
formulation of the auto-activation switch, rooted in the
principles of statistical mechanics. In previous discus-
sions of gene circuits, however, a phenomenological Hill
function is the predominant method to model these dy-
namics (e.g., [29, 30]). We note the fascinating origins
of the Hill function in the work of Archibald Hill. More
than 100 years ago, Hill wrote down a description of the
binding between oxygen and hemoglobin that we now
know as the Hill function, which he wrote as

pbound(x) =

(
x
K

)n
1 +

(
x
K

)n , (13)

where x is the concentration of O2 and K is its allied
dissociation constant.
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As Hill himself tells us, this functional form provides
a summary of the occupancy of hemoglobin (the ex-
ample he used, though it has been applied much more
broadly). If we think of the huge topic of input-output
functions in biology, then the kind of characteristics em-
bodied in the Hill approach include a representation of
leakiness (the amount of output even in the absence of
input, pbound(0)), dynamic range, EC50 (the input con-
centration at which the output reaches half its maximum,
EC50 = K) and the sensitivity as measured by the slope
of the input-output curve (usually in logarithmic vari-
ables) at the midpoint. It is instructive to hear Hill com-
menting on his thinking: “My object was rather to see
whether an equation of this type can satisfy all the obser-
vations, than to base any direct physical meaning on n
andK [62].” He goes further in his 1913 paper noting [63]
“In point of fact n does not turn out to be a whole num-
ber, but this is due simply to the fact that aggregation is
not into one particular type of molecule, but rather into
a whole series of different molecules: so that equation (1)
(our Eqn. 13) is a rough mathematical expression for the
sum of several similar quantities with n equal to 1, 2, 3,
4 and possibly higher integers.” We think it important
to remember that the Hill function is a phenomenological
description of equilibrium binding that assumes certain
states of occupancy are irrelevant, or alternatively, that
bunches all of the states of occupancy into one effective
non-integer state of occupancy.

In comparing and contrasting the two treatments of
transcription factor binding, we find that they can yield
different results. Hill functions approximate away some
thermodynamic details (such as cooperativity) and de-
scribe the dynamics as

dĀ

dt̄
= −Ā+

r̄0 + r̄2(pact(c)Ā)n

1 + (pact(c)Ā)n
, (14)

where n is the Hill coefficient. We observe that the func-
tional form of the production term is similar to that of
the thermodynamic model. In Appendix F, we further
show that the probabilities of each state of transcrip-
tion factor binding are similar between the Hill function
and the thermodynamic model. Nevertheless, the steady
states predicted by Hill functions surprisingly differ from
the thermodynamics prediction in two principal ways.

First, Hill functions can contradict the thermodynamic
model in their prediction of bistability, as shown in
Fig. 12(A). We compute bifurcation curves—reporting
the fixed points of the system—using both Hill and ther-
modynamic formulations under identical baseline param-
eters r̄0 = 0.1 and r̄2 = 2. For the thermodynamic model,
we additionally explore a wide range of intermediate ac-
tivation strengths r̄1 ∈ [0.1, 2] (ensuring r̄0 ≤ r̄1 ≤ r̄2)
and cooperativity values ω ∈ [10−4, 104]. The Hill func-
tion model with Hill coefficient n = 2 predicts a bistable
regime at low c, highlighted in light orange. In contrast,
across all combinations of r̄1 and ω, the thermodynamic
model exhibits no bistability in this same region, demon-

strating that the Hill formulation can introduce bista-
bility not permitted by physical thermodynamic con-
straints.
Second, the Hill function model does not capture the

variability in the effector concentration at which the
switch is flipped—that is, the critical c value at which
the system transitions from a high to a low steady-state
level of A. In Fig. 12(B), we again compute the bifur-
cation curves with r̄0 = 0.1 and r̄2 = 10 for both the
thermodynamic and the Hill model. The thermodynamic
model predicts that this threshold depends sensitively on
both r̄1 and ω, allowing the switch-like transition to occur
over a broad range of effector concentrations. In contrast,
all Hill function curves, regardless of Hill coefficient, un-
dergo the transition at approximately the same c value,
shown by the orange circle in Fig. 12(B). We show Hill
function bifurcation curves with other Hill coefficients in
Appendix F to demonstrate this fact. From this point of
view, the thermodynamic model predicts a more flexible
switch than the Hill function model. Given the relatively
light computational requirements for the model systems
discussed here, as opposed to more complex and high-
dimensional gene-interaction networks [64], we will pro-
ceed with the thermodynamic formulation for all other
gene circuits considered in the paper.

3. Timescale for stabilization

In addition to the question of steady states, it is inter-
esting to examine the timescale for an inducible genetic
circuit such as the auto-activation switch to reach steady
state. In doing this analysis we remind the reader that
our treatment assumes separation of time scales between
the dynamics of effector binding and allosteric transi-
tions, and the dynamics of the relaxation to steady state.
As a result, the binding of effector and the allosteric state
of the activator rapidly equilibrate as the activator con-
centration changes dynamically.
As shown in Fig. 13(A), the relaxation timescale de-

pends strongly on the initial activator concentration
Ā0. In particular, as seen in the figure, the relaxation
timescale to steady state increases as the initial value of
activator concentration, Ā0, gets closer to the unstable
fixed point. The increased time to reach steady state
near the unstable point reflects the typical behavior of
positive feedback systems near bifurcations, where the
system lingers near the threshold before switching [65].
However, for large initial concentrations of A, the di-
mensionless relaxation timescale approaches 1, as shown
by the line at t̄ = 1 in Fig. 13(A). This corresponds to
the protein degradation timescale 1/γ, which serves as
the unit of time in our nondimensionalization. This also
corresponds to the relaxation timescale of a simply regu-
lated gene, activated solely by an upstream transcrip-
tion factor. We find that auto-activation consistently
delays the response compared to simple regulation, al-
though the two converge in the high-A limit. Within the
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Figure 13: Dynamics of the auto-activation switch. The parameters of the system are fixed at: ω = 7.5, r̄0 = 0.1,
r̄1 = 1, r̄2 = 20, and c = 2 · 10−5 M. (A) Time evolution of the activator concentration for various initial conditions.
Each black curve represents a trajectory Ā(t̄) starting from a different initial condition Ā0. Dashed horizontal lines
indicate the stable (Āhigh and Ālow) and unstable (Āunstable) fixed points. (B) Relaxation timescale obtained

from exponential fits to the trajectory Ā(t̄) as a function of the initial concentration Ā0. Vertical lines indicate the
positions of the steady states, while horizontal dashed lines mark the timescales associated with small perturbations
around each fixed point, computed from the inverse slope |f ′(Ā)|−1 of the function f defined in Eqn. 16. The solid
horizontal black line corresponds to the reference timescale t̄ = 1.

Hill-function framework, positive autoregulation has like-
wise been shown to slow gene circuit response times [66],
in contrast to the accelerating effect of negative feed-
back [67].

To further interpret these trends, we apply linear sta-
bility analysis to Eqn. 9, as is commonly done in the
study of dynamical systems [68]. Linearizing around a
point Āi with Ā(t̄) = Āi+δĀ(t̄) and expanding the right-
hand side, that we denote f(Ā), to first order yields

f(Ā(t)) ≈ f(Āi) + f ′(Āi) δĀ(t) (15)

for sufficiently small δĀ(t̄). The function f is given by

f(Ā) = −Ā+
r̄0 + r̄1(2pactĀ) + r̄2ω(pactĀ)2

1 + (2pactĀ) + ω(pactĀ)2
. (16)

Therefore, the linearized equation governing the evolu-
tion of a small perturbation δĀ(t) around the point Āi

becomes

dδĀ

dt̄
= f(Āi) + f ′(Āi)δĀ. (17)

If Āi is a steady state, then f(Āi) = 0, and the equa-
tion reduces to exponential relaxation with dimension-
less timescale |f ′(Āi)|−1. Stable fixed points, denoted
Ālow and Āhigh, satisfy f ′(Ālow/high) < 0, so perturba-
tions decay over time. For unstable fixed points, where
f ′(Āunstable) > 0, small deviations grow exponentially
and drive the system away from the fixed point.

However, if Āi is not a fixed point, then f(Āi) ̸= 0 and
the solution to Eqn. 17 does not represent convergence to

a steady state. Instead, it predicts that δĀ asymptotes to
a finite offset f(Āi)/|f ′(Āi)|, breaking the assumption of
linearity (δĀ(t̄) → 0). In this case, the derivative f ′(Āi)
still encodes the local response to small perturbations,
but only describes the dynamics while deviations remain
small. Therefore, the timescale |f ′(Ā)|−1 is most mean-
ingful in the vicinity of fixed points, even if it can still
provide qualitative insights elsewhere.
These insights are reflected in Fig. 13(B), where we

numerically compute the relaxation timescale as a func-
tion of the initial condition Ā0. For initial values near
the stable fixed points, the timescale closely follows the
linear prediction |f ′(Ālow/high)|−1. In contrast, when the
initial condition lies near the unstable fixed point, the
system initially diverges exponentially and only later re-
laxes nonlinearly to a stable state. This leads to an
overall increase in the time to reach steady state, con-
sistent with the trajectories displayed in Fig. 13(A) (see
Appendix H for the precise numerical procedure used to
compute these timescales). Together, these results reveal
that the stabilization timescale in auto-activation circuits
is not fixed but depends sensitively on initial conditions,
particularly near unstable fixed points—highlighting the
importance of considering nonlinear transient dynamics
when predicting response times in bistable gene networks.

B. The mutual repression regulatory motif

Many regulatory circuits in prokaryotes and eukaryotes
alike are mediated by the interaction between two genes
that repress each other as shown in Fig. 14 [54, 55, 69].
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Figure 14: The mutual repression regulatory circuit. (A) Schematic of the operation of the circuit. When the gene
for repressor 1 is expressed, the resulting protein downregulates the expression of the gene for repressor 2. Repressor
2, in turn, downregulates the expression of the gene for repressor 1. (B) Thermodynamic states, weights, and rates
for expression of repressor 1. In our model, a repressor can bind non-exclusively at one of two possible sites within
the target promoter region to suppress gene transcription. The parameter ω2 denotes the cooperative strength
between two bound repressors R2. (C) Thermodynamic states, weights, and rates for expression of repressor 2. The
states and weights for the regulation of the promoter responsible for the production of repressor 2 are analogous to
those shown for repressor 1. However, the dissociation constant of repressor 1 in this case is given by K1, and the
cooperativity term for the interaction of two repressor 1 molecules bound to the DNA is ω1.

Indeed, one of the signature achievements of the early
days of synthetic biology was the consideration of a mu-
tual repression switch in bacteria whose behavior was re-
ported by the use of fluorescent proteins and controlled
by a small molecule inducer [29]. As the name suggests,
two genes R1 and R2 mutually repress each other. To
simplify our analysis we assume that the two genes share
the same degradation rate γ and production rate r.

By inspecting the states and weights diagrams of
Fig. 14, we can express the dynamics of repressor 1 ex-
pression as

dR1

dt
= −γR1 +

r

1 + 2pact(c2)R2

K2
+
(

pact(c2)R2

K2

)2

ω2

, (18)

where we have defined an effector with concentration c2
that regulates the activity of repressor 2. Similarly, the
dynamics for R2 expression are described by an equation

analogous to Eqn. 18 but swapping R1 and R2, given by

dR2

dt
= −γR2 +

r

1 + 2pact(c1)R1

K1
+

(
pact(c1)R1

K1

)2

ω1

, (19)

where we have also defined an effector with concentra-
tion c1 that regulates the activity of repressor 1. The
production term attributes a rate r to the state with
no bound repressors as shown in Fig. 14. As in auto-
activation, this analysis only accounts for the presence of
RNA polymerase implicitly, which we discuss further in
Appendix A 2.

We can write dimensionless forms of these kinetic
equations by transforming t̄ = γt, r̄i = Ri/K2, and



16

inducer concentration, c (M)inducer concentration, c (M)

stable, 
R1 > R2

stable, 
R2 > R1

unstable

(A)

(B)

R1

(C)

R1

dR1

dt
= 0

dR2

dt
= 0

¯ ¯

¯ ¯

single inducer only regulating repressor 1

re
pr

es
so

r
co

nc
en

tr
at

io
n

R̄
1

re
pr

es
so

r
co

nc
en

tr
at

io
n

R̄
2

2.0

1.5

1.0

0.0
10–7 10–6 10–5 10–4 10–7 10–6 10–5 10–4

0.5

R
2

2.0

1.5

1.0

0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.5

R
2

2.0

1.5

1.0

0.0

0.5

2.0

1.5

1.0

0.0

0.5

low inducer concentration
c1 = 1.42 × 10-7 M

high inducer concentration
c1 = 5.34 × 10-5 M

Figure 15: Bifurcation diagrams and phase portraits for mutual repression in the presence of a single inducer
regulating the activity of repressor R1 (with fixed parameters K̄ = K1/K2 = 1, r̄ = 2 and ω1 = ω2 = 7.5). (A)
Bifurcation diagrams tracking steady-state R̄1 and R̄2 expression as inducer concentration increases. The red curves
track expression in the steady state for which R̄1 > R̄2, the blue curves track expression in the steady state for
which R̄2 > R̄1, and the unfilled nodes denote unstable saddle points. (B) Phase portrait at a low inducer
concentration, demonstrating bistable dynamics between two possible stable states favoring either R̄1 (red) or R̄2

(blue). Steady states occur at the intersections of the nullclines as shown. (C) Phase portrait at a high inducer
concentration, for which the system is monostable to favor R̄2.

r̄ = r/γK2, and obtain

dR̄1

dt̄
= −R̄1 +

r̄

1 + 2pact(c2)R̄2 + ω2

[
pact(c2)R̄2

]2 , (20)
dR̄2

dt̄
= −R̄2 +

r̄

1 + 2pact(c1)
R̄1
K̄

+ ω1

[
pact(c1)

R̄1
K̄

]2 .(21)
As a reminder, ω1 and ω2 are the cooperativity for R̄1

and R̄2, respectively, c1 and c2 are the inducer concen-
trations for each repressor, and K̄ = K1/K2 is the ratio
of dissociation constants. Note that the equations above
assume that each repressor responds to induction with
the same inducer-protein binding chemistry, obeying the
same activation probability function pact, but responding
to potentially different inducer concentrations c1 and c2.
In the most general case, however, the two probability
functions could differ.

This formulation now provides a two-dimensional knob

for tuning the concentrations of the inducers correspond-
ing to R̄1 and R̄2. The system may then be tuned to
follow arbitrary trajectories in the two-dimensional pa-
rameter space spanned by c1 and c2. Frequently, this
tuning generates non-trivial bifurcation curves.

To build intuition about this system, we first con-
sider a scenario in which only one of the repressors may
be induced. Fig. 15(A) plots the resulting bifurcation
diagrams for R̄1 and R̄2 steady-state expression. At
low inducer concentrations, the system is bistable and
can either evolve to favor R̄1 (red) or R̄2 (blue) expres-
sion. Fig. 15(B) shows an example phase portrait within
this low induction regime that depicts vector field flows
through expression space toward these fixed points. At
a sufficiently high inducer concentration, R̄1 expression
can no longer be maintained, and the system transitions
to a monostable regime in which only the state favoring
R̄2 expression survives. A higher inducer concentration
amplifies the expression of R̄2 up to its production limit.
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Fig. 15(C) depicts a phase portrait in this regime.
We now turn to a two-dimensional setting for allosteric

regulation, with distinct inducers downregulating the ac-
tivity of each repressor. Fig. 16(A) plots the phase di-
agram for the dynamics of mutual repression at differ-
ent combinations of inducer concentrations. The dark
green region denotes the region of parameter space with
bistable dynamics, with monostable behavior elsewhere.
Note the symmetry of this phase diagram with respect
to the diagonal c1 = c2. This is unsurprising given the
condition K̄ = 1 which amounts to saying that the two
different repressors bind with the same dissociation con-
stant. This condition will be discussed further in the
following subsection.

We can now consider how dynamics evolve as inducer
concentrations change at different rates. Fig. 16(A)
considers different “protocols” for simultaneously vary-
ing the concentration of each inducer. For example, in
Fig. 16(B), we examine a protocol in which the inducer
concentration for each gene increases at the same con-
stant rate (corresponding to the red trajectory shown in
Fig. 16(A)). We then plot the corresponding bifurcation
diagram. As inducer concentration increases, the scope
of the bistable switch shrinks in expression space, with
the stable states continuously approaching each other.
At c1 = c2 ≈ 3.2 · 10−6 M, the system then undergoes a
pitchfork bifurcation to monostable expression, stabiliz-
ing at increasingly high concentrations of both R̄1 and
R̄2.

We could follow an alternative trajectory (denoted by
the purple arrow in Fig. 16(A)) through parameter space
such that the inducer concentrations evolve at different
rates, in this case with c1 increasing more rapidly than
c2. This purple trajectory then passes in and out of the
green bistable region several times. Fig. 16(C) plots the
corresponding bifurcation diagram tracking stable and
unstable steady states as the inducer concentrations in-
crease, and demonstrates the switches between bistabil-
ity and monostability. Note that while the intermediate
monostable regime favors R̄1 expression, the monostable
regime at later times favors R̄2 instead, reflecting the
swap in the dominant inducer concentration that occurs
between these time periods. Thus, by modulating the in-
duction dynamics of each repressor we can access a broad
range of dynamical responses in repressor concentrations.

1. Conditions for bistability

We now study how the size, shape, and symmetry
of the bistable region observed in the phase diagram of
Fig. 16(A) varies with system parameters. Specifically,
in Fig. 17 we first identify three distinct geometries for
the bistable region in the (c1, c2) plane, each reflecting
different limiting behaviors of the inducers.

The first geometry (marked orange in the legend of
Fig. 17) corresponds to a situation where bistability
is present only when c1 lies within a finite interval

[cmin
1 , cmax

1 ] for a given c2. In this case, both bounds of
the interval are strictly positive and finite, and c2 must
be smaller than a certain threshold. The limiting fac-
tor is therefore c1, which must be finely tuned to enable
bistability, while c2 simply needs to remain below a crit-
ical level. Nevertheless, when decreasing c2 the bistable
interval in c1 broadens, showing that lower c2 expands
the range of c1 values supporting bistability.

A second geometry (marked red in the legend of
Fig. 17) mirrors the first, but with the roles of c1 and
c2 reversed. Here, bistability is present only when c2
lies within a finite interval, while c1 must remain be-
low a threshold. In this case, c2 becomes the more con-
strained parameter to tune. In contrast, a third geom-
etry (marked blue in the legend of Fig. 17) arises when
bistability is supported broadly for small enough values
of both c1 and c2, with no lower bound required for either
parameter. Although the bistable region remains upper-
bounded, neither inducer is particularly limiting, with a
broad range of concentrations allowing for bistability as
long as neither becomes too large.

Fig. 17 illustrates how these phase space geometries for
bistability depend on system parameters. We vary the
relative DNA-binding affinity of the repressors by tuning
K̄ = K1/K2, while keeping the basal production r̄ fixed,
and the cooperativities fixed and equal (ω1 = ω2). We
observe that the most permissive bistable region—broad
in both c1 and c2, for the range of concentration stud-
ied—occurs when K̄ ≈ 1, corresponding to a symmetric
system where both repressors bind with comparable affin-
ity. As K̄ decreases (i.e., R1 binds more tightly than R2),
the phase space becomes increasingly constrained in c1.
If c1 is too low, R1 remains fully bound and strongly re-
pressesR2, suppressing bistability. Conversely, if c1 is too
high, R1 becomes fully unbound, leaving R2 unrepressed
and again eliminating bistability. Only an intermediate
range of c1 supports bistability in this regime, while c2
simply needs to be small enough. A similar scenario oc-
curs when K̄ becomes large (i.e., R2 binds more tightly
than R1), but with c1 and c2 effectively reversed. Even-
tually, c2 is no longer sufficient to counteract the tight
binding of R2, and above a critical value of K̄, bistabil-
ity disappears entirely from the parameter space. Tuning
the cooperativity parameter ω2 produces similar qualita-
tive changes in the bistability phase space as varying the
relative binding affinity K̄.

In both cases, we observe the same sequence of transi-
tions in the structure of the bistable region, as shown in
Appendix I 3. High values of ω2 reflect strong coopera-
tive binding of repressor R2 to the DNA, meaning that
binding becomes more favorable when two repressors are
present. This effect mirrors what happens when increas-
ing K̄: if K̄ > 1, then K1 > K2, implying that higher
concentrations of R1 are required for effective DNA bind-
ing compared to R2. As a result, increasing K̄ effectively
enhances the influence of R2, analogous to increasing ω2.
Conversely, tuning ω1 affects the system similarly, but
with the roles of c1 and c2 reversed. The effects of coop-
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erativity are examined in greater detail in Appendix I 3.

From Fig. 17, we note that extreme (low or high) val-
ues of K̄ tend to suppress bistability, as they strongly
favor one repressor over the other across all concen-
trations. In contrast, high values of ω1 or ω2 amplify
repression mostly when the corresponding repressor is
present at high concentration. As a result, the system re-
quires finely tuned inducer concentrations to counteract
this cooperative imbalance and sustain bistability, effec-
tively constraining the range of inducer concentrations
for which the system can be bistable—as shown in Ap-
pendix I 3.

We next explore how the interplay between cooperativ-
ity and production rate controls the presence and extent
of bistability in mutual repression systems, focusing on
the symmetric case K̄ = 1 shown in Fig. 18. We note
that, in contrast to parameters like ω1, ω2, or K, tuning
the rate parameter r̄ does not break the symmetry be-
tween the two genes, as it controls the production rate of
both repressors equally.

In Fig. 18(A), we classify parameter combinations in
the (ω1, ω2) plane for r̄ = 1 according to whether the sys-
tem exhibits bistability for any inducer concentrations
(c1, c2). Fig. 18(B) shows how the boundary between
monostable and bistable regimes shifts with r̄, separating
regions where bistability is either inaccessible or achiev-
able for at least some inducer pairs. We observe that
the production rate, when coupled to cooperativity, plays

a critical role in enabling bistability—much like in the
auto-activation system, where the product ωr̄2 must ex-
ceed a threshold to generate bistability. We quantify this
cooperative relationship between ωi and r̄ further in Ap-
pendix I 1 by deriving a necessary condition for bistability
where

r̄ >
1

pmax
act − pmin

act +min(ω2, ω1)pmax
act /2

, (22)

with pmax
act and pmin

act defined in Eqns. 6 and 7.

Increasing r̄ systematically expands the range of co-
operativity values that can support bistability in the
range of r̄ swept in Fig. 18. We observe from the figure
that at low production rates, bistability only arises when
both repressors exhibit stabilizing cooperative binding to
DNA (ωi > 1). As r̄ increases, this constraint relaxes:
bistability becomes possible even without cooperativity
(ω1 = ω2 = 1), and for sufficiently high r̄, bistability
can occur even in the presence of destabilizing interac-
tions between the two repressors (ωi < 1). Intermediate
production rates typically require at least one positively
cooperative repressor.

In auto-activation systems, the effective Hill coefficient
can vary above or below one, but bistability only occurs
when it exceeds one. In contrast, for mutual repression,
the effective Hill coefficients for R1 and R2 vary with
parameters but remain strictly greater than one when
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ω1, ω2 > 0 (Appendix I 1), making the Hill coefficient
less informative about the existence of bistability. Even
in models using empirical Hill functions to describe the
production terms, Hill coefficients above one are not al-
ways sufficient for bistability, and computational studies
show that extended network interactions can yield bista-
bility even with coefficients below one [70].

2. Timescale for stabilization

Beyond identifying the final steady state of the mu-
tual repression system, it is important to characterize the
time required for the system to reach steady state start-
ing from different initial conditions. We define the relax-
ation time τ as the maximum of the times τ1 and τ2 taken
by the two trajectories, R̄1(t̄) and R̄2(t̄), to reach 95% of
their respective steady states. Fig. 19(A) illustrates the
influence of the initial condition on the final steady state
in a symmetric system, where K̄ = 1, ω1 = ω2 = 7.5,
and c1 = c2 = 10−6 M. The figure reveals that the
phase space is divided into two basins of attraction, each
leading to one of the two stable steady states. The sep-
aratrix, plotted in green, denotes the boundary between
these basins, and is derived analytically in Appendix J.
Fig. 19(B) and (C) quantify the relaxation time τ

across the phase space (R̄0
1, R̄

0
2) for both symmetric and

asymmetric parameter regimes. In both cases, the re-
laxation time is shorter when the initial condition lies far
from the separatrix and near the final stable steady state.
In contrast, initial conditions close to the separatrix re-
sult in significantly longer relaxation times, as the system
evolves slowly near the unstable fixed point before diverg-
ing toward a stable state. Exactly on the separatrix, the
relaxation to steady state is more difficult to quantify
because the system may remain indefinitely near an un-
stable manifold without converging to either stable fixed
point. In practice, however, even minimal noise in a real
system will eventually drive the system away from this
unstable region toward a stable state. For this reason,
we disregard the white line—signifying artificially short
relaxation times—observed exactly on the separatrix in
Fig. 19(B). This feature is absent in Fig. 19(C), as the
separatrix has a more complex shape and the numerical
sweep over initial conditions does not sample it precisely.
In the asymmetric case (Fig. 19(C)), with ω1 = 50,

ω2 = 7.5, and distinct inducer concentrations (c1 =
5 · 10−6 M, c2 = 10−6 M), the phase space becomes
skewed. The separatrix, corresponding to the ridge of
maximal relaxation time in the grayscale colormap, delin-
eates the boundary between the two basins of attraction.
We do not overlay it explicitly, as doing so would inter-
fere with the visualization of the relaxation times, which
are particularly sensitive near this boundary. Compared
to Fig. 19(B), where the separatrix coincides with the di-
agonal R̄0

1 = R̄0
2 due to the symmetry of the system, we

observe that the separatrix is now deformed, and the rela-
tive sizes of the basins of attraction have shifted. Despite
these geometric changes, the maximal relaxation times
across both regimes remain comparable. This indicates
that, although asymmetry reshapes the phase space and
can affect which attractor is reached, it does not substan-
tially alter the overall timescale required for the system
to stabilize. The main contribution to long relaxation
times remains the initial conditions–and how close they
are to the separatrix–regardless of symmetry.
This whole section has had as its primary ambition
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to carefully consider the famed mutual repression ge-
netic switch from the new perspective in which the two
repressors are controlled separately by different effector
molecules. We have seen that the steady-states and the
dynamics in this case are extremely rich, making it clear
that there is much freedom in the biological context to
exploit different kinds of behavior.

IV. KINETICS AND TIME DELAYS IN
FEED-FORWARD LOOPS

In this section, we consider gene circuits whose func-
tionality appears in their dynamics rather than in their
steady state responses. Specifically, we focus on a three-
gene circuit called the feed-forward loop shown schemat-
ically in Fig. 20(A) [51]. Here, we denote the input genes

as X and Y , and the output gene as Z. In a feed-forward
loop, X regulates Y , and X and Y together regulate Z.
X thus controls expression of output Z through both
direct and indirect regulatory paths. This network typ-
ically features a sign-sensitive delayed or accelerated re-
sponse (depending on architecture) to a step-wise change
in the effector concentration for protein X [51]. That
is, while the qualitative nature of the response (delay
or acceleration) remains fixed, its magnitude depends on
the sign (an increase or a decrease) of the input change.
This delayed or accelerated response has been hypothe-
sized to have important biological consequences, partic-
ularly in information-processing systems that filter noisy
inputs [51]. Beyond their role in shaping temporal re-
sponses, coherent feed-forward loops have been shown to
attenuate input noise, thereby enhancing the reliability
of gene expression [71–73].
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Interestingly, there are various architectures of feed-
forward loop depending on whether X and Y work to-
gether or at cross purposes. We will largely focus on the
particular architecture where X activates Y and Z, and
Y also activates Z, which is the so-called type I coherent
feed-forward loop, with the word “coherent” attached to
this architecture since X and Y alter the expression of Z
in a coherent manner. We consider this particular motif
primarily because at the time of the most recent census
of regulatory architectures in E. coli, this version of the
feed-forward loop appeared the most frequently [74, 75].
The logic of our analysis can be applied to any of the
other feed-forward architectures as well.

Previous literature explores feed-forward loops from
a dynamical systems perspective using Hill functions to
model transcription factor-DNA interactions and consid-
ering the effector concentration for X as a Boolean vari-
able that is either fully on or fully off [51]. We build upon
that earlier analysis also by making a systematic search
for network parameters that gives rise to various func-
tions. Our goal is to expand the theoretical understand-

ing of the feed-forward loop architecture by incorporat-
ing the thermodynamic model to describe transcription
factor binding to the DNA and to explicitly include ef-
fector function. Specifically, we explore what gives rise
to the dynamical features of the feed-forward loop, the
robustness of such features, and the effect of continuously
tuning the effector concentration.

As usual when writing the dynamical equations, we
begin with the states, weights and rates for the regu-
latory architecture of interest. Fig. 20(B) provides the
states, weights and rates for the coherent feed-forward
loop architecture, where we assume one binding site per
transcription factor. In light of the states and weights, we
can write the time-evolution equations for the coherent
feed-forward loop as

dY

dt
= −γY +

r0Y + r1Y pXact(cX) X
KXY

1 + pXact(cX) X
KXY

(23)

for the regulation of Y by X and

dZ

dt
= −γZ +

r0Z + r1Z

(
pXact(cX) X

KXZ
+ pYact(cY )

Y
KY Z

)
+ r2Z ω pXact(cX) X

KXZ
pYact(cY )

Y
KY Z

1 + pXact(cX) X
KXZ

+ pYact(cY )
Y

KY Z
+ω pXact(cX) X

KXZ
pYact(cY )

Y
KY Z

, (24)

for the regulation of Z by both X and Y. We assume here that the two proteins Y and Z have the same degradation
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rate γ. The production rates and dissociation constants
are assumed to be different in general for each thermo-
dynamic state. Specifically, riG denotes the production
rate of gene G when i number of transcription factor are
bound. Further, KG1G2

denotes the dissociation constant
of transcription factor G1 binding to gene G2. ω is the
cooperativity, which takes into account the extra interac-
tion energy between X and Y when bound to the DNA.
Finally, the probabilities pXact(cX) and pYact(cY ) scale the
activity of transcription factors X and Y . Note also that
we consider different effectors cX and cY for the two genes
that can be varied independently. These functions may
be distinct in principle, and the analytic discussions here
make no assumption regarding their nature. For numer-
ical results, however, we assume these probability func-
tions, and thus effector activity functions, to be the same
regardless of target transcription factor for simplicity.

We non-dimensionalize the equations by using 1/γ as
our unit of time and KXY as our measure of concentra-
tion. In light of these conventions, we arrive at

dȲ

dt̄
= −Ȳ +

r̄0Y + r̄1Y pXact(cX)X̄

1 + pXact(cX)X̄
, (25)

and

dZ̄

dt̄
= −Z̄ +

r̄0Z + r̄1Z(X + Y) + ωr̄2ZXY
1 + X + Y + ωXY

. (26)

To make subsequent analysis less cumbersome, we
further introduce X = pXact(cX)X̄/K̄XZ and Y =
pYact(cY )Ȳ /K̄Y Z as simpler notation for the effective regu-
latory contributions of X̄ and Ȳ to Z̄ expression. The bar
indicates quantities where time is measured in units of
1/γ, and where concentration and dissociation constants
are measured in units of KXY . Specifically, we define
dimensionless dissociation constants K̄XZ = KXZ/KXY

and K̄Y Z = KY Z/KXY . The rates are then in units of
γKXY . Note that this model fixes the concentration of
X̄ for simplicity, such that its activity regulating Ȳ and
Z̄ depends entirely on effector concentration cX .

A. Characterizing delay responses in coherent
feed-forward loops

Previous work has shown that coherent feed-forward
loops can delay a system’s response to an input sig-
nal [51]. Here, we demonstrate from our thermodynamic
modeling perspective the analytic origins of this delay.
In particular, we rigorously define how the introduction
of an indirect but coherent path for regulation of output
Z̄ affects its response.

Suppose that we keep the effector concentration cY
fixed, and that at time t̄ = 0 the effector concentration
cX changes sharply from an initial concentration ciX to a

final concentration cfX such that input X̄ activity either
increases (an “ON” step) or decreases (an “OFF” step).

This then means that

X (t̄) =


Xi =

pXact(c
i
X)X̄

K̄XZ
if t̄ ≤ 0,

Xf =
pXact(c

f
X)X̄

K̄XZ
if t̄ > 0.

(27)

In the coherent feed-forward loop, since all the regula-
tory relations are activation, both Ȳ and Z̄ increase in
response to an ON step, and decrease in response to an
OFF step.

To understand intuitively how exactly the feed-forward
loop regulatory structure responds to such a switch in in-
put signal, let us first consider a simpler scheme in which
X̄ no longer regulates Ȳ , leaving X̄ and Ȳ to regulate
Z̄ independently with Ȳ (t̄) = Ȳ fixed at a value. Since
we are keeping effector concentration cY fixed constant,
this then also means that Y is constant. We refer to this
setting as “simple regulation.”

Before the switch in cX , the simple regulation system
is at steady state, with initial output expression Z̄i

s where
subscript s denotes simple regulation. After the switch,
the system relaxes to a new steady state with final ex-
pression Z̄f

s . For t̄ > 0, the production term in Eqn. 26
is simply a constant, yielding the following differential
equation for Z̄.

dZ̄

dt̄
= −Z̄ +

r̄0Z + r̄1Z(Xf + Y) + ω r̄2Z XfY
1 + Xf + Y + ωXfY

≡ −Z̄ + Z̄f
s . (28)

Integrating Eqn. 28, we thus determine that under simple
regulation, output Z̄ evolves after the switch in input X̄
signal by a standard exponential behavior defined as

Z̄s(t̄) = Z̄i
se

−t̄ + Z̄f
s (1− e−t̄). (29)

By contrast, in the coherent feed-forward loop, the con-
centration of Ȳ directly depends on X̄ as seen in Eqn. 25.
As a result, additional time is needed for Ȳ to evolve from
its initial steady-state value Ȳi to a new value Ȳf follow-
ing a change in X̄. Expressed mathematically, since Ȳ
itself is a function of time, the solution of Z̄ to Eqn. 26
is not strictly an exponential relaxation to steady state.
More formally, output expression for the coherent feed-
forward loop evolves by a function of the form

Z̄(t̄) = Z̄ie
−t + Z̄f (1− e−t) + Θ(t̄), (30)

where Z̄i is the initial steady state in the feed-forward
setting before the change in cX , and Z̄f is the final steady
state after the change that Z̄(t̄) relaxes to eventually.
We derive Eqn. 30 explicitly from Eqns. 25 and 26 in
Appendix K. Note that the sum of the first two terms in
Eqn. 30 describes behavior of the same form as simple
regulation in Eqn. 29. Therefore, by rescaling Eqn. 29
we can treat the exponential portion of Eqn. 30 as an
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Figure 21: Delay in coherent feed-forward loop response
compared to simple regulation. (A) The input signal is
applied by tuning cX as a step function: from high
(10−4 M) to low (10−7 M) at t̄ = 6, and back to high at
t̄ = 18. cY is kept constant at low (10−7 M)
throughout. The effector concentration cY is held
constant at 10−7 M. These inputs determine the
activation probabilities pXact and pYact, shown in red and
purple, respectively. The second panel plots the time
evolution of the dimensionless output concentration
Z̄(t̄) under feed-forward and simple regulation schemes,
with r̄0Y = r̄0Z = 0, r̄1Y = r̄1Z = 2, r̄2Z = 10,
K̄XZ = K̄Y Z = 1, and ω = 1. (B) Schematic
demonstrating the two ways to equivalently quantify
the delayed response of the feed-forward loop compared
to simple regulation, captured by the shaded area
between the two curves. One can either integrate over
individual time delay measurements ∆t̄(Z̄) as a
function of Z̄, or equivalently integrate the difference in
responses Θ(t̄) as a function of t̄.

equivalent Z̄simple with the same relaxation dynamics as
observed for simple regulation. We can also then express
output response for the feed-forward loop as

Z̄(t̄) = Z̄simple(t̄) + Θ(t̄). (31)

We thus observe that the feed-forward loop’s output re-
sponse differs from behavior in simple regulation by a
function Θ(t̄). Analytically solving Eqns. 25 and 26 re-
sults in

Θ(t̄) = −Φ∆Y
S2

e−t̄ log

(
Set̄ −∆Y(1 + ωXf )

S −∆Y(1 + ωXf )

)
. (32)

Here, Θ(t̄) depends on the three quantities ∆Y, Φ, and
S. First, the quantity

∆Y = Yf − Yi =
pYact(cY )

K̄Y Z

(
Ȳf − Ȳi

)
(33)

denotes the total change in quantity Y in response to
the change in input effector concentration cX . ∆Y thus
contains implicit information about regulation of Ȳ by
X̄ from its evolution as defined in Eqn. 25. Θ(t̄) also
depends on the coefficient

Φ = ω(Xf )
2(r̄2Z − r̄1Z) + ωXf (r̄2Z − r̄0Z)

+(r̄1Z − r̄0Z), (34)

which encodes how the rates and cooperativity regulate
output Z̄ expression as a function of input signal Xf . In-
terestingly, we note that all types of feed-forward loops
have the same solution as Eqn. 32, except with a poten-
tially different Φ. Appendix K4 discusses this in more
detail. Finally, the quantity

S = 1 + Xf + Yf + ωXfYf (35)

is the sum of the dimensionless weights for all possible
regulatory states with zero, one, or two transcription fac-
tors bound, at final concentrations of active X̄ and Ȳ .

Fig. 21(A) highlights the coherent feed-forward loop’s
delayed response to changes in input signal for a specific
set of parameters. In our simulations, we set the rates
r̄0G to zero, indicating that this system requires activa-
tor(s) to be bound to express output Z̄. In the top plot
of Fig. 21(A), the effector concentration cY is fixed such
that pYact(cY ) is always at high activity, and the effector
concentration cX jumps such that pXact(cX) reaches high
activity as a step function (ON step), and then back to
low activity (OFF step). The bottom plot of Fig. 21(A)
shows how the output Z̄ evolves over time in response
to a step function input X̄ activity, evolving and stabi-
lizing to a high Z̄ value before the OFF step in pXact(cX)
causes the output concentration to decay back down to
steady state value zero. We observe that, compared to
simple regulation, the change in output concentration Z̄
is slower when responding to both an increase and a de-
crease in input activity, matching our expectation.
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Fig. 21(B) visualizes how to quantify this delay in the
time it takes the feed-forward system to reach a given
output concentration as it responds to an input pulse.
The diagram on the left illustrates the response to the
ON step, in which the output starts to increase from Z̄i

to Z̄f at (dimensionless) time t̄ = 0. If we choose a value
of Z̄ in this time frame, we observe that it takes longer
to reach this value on its way to steady state Z̄f in the
feed-forward loop setting than in simple regulation. We
highlight one such horizontal distance between the two
curves as the time delay ∆t̄(Z̄). Explicitly, we define
∆t̄(Z̄) to be the difference between the time it takes for
simple regulation to reach a given Z̄ and that for feed-
forward loop. ∆t̄(Z̄) < 0 signifies a delay and ∆t̄(Z̄) > 0
signifies acceleration. We can then compute the average
time difference observed between the two curves by inte-
grating ∆t̄(Z̄) over the range of output Z̄, and normal-
izing by this range. Therefore, for a given step function
change in input X̄ activity, the average delay during the
system’s evolution toward its new final steady state is

⟨∆t̄⟩ = 1

|Z̄f − Z̄i|

∫ Z̄f

Z̄i

∆t̄(Z̄)dZ̄. (36)

Note, however, that it is not straightforward to derive
an expression for ∆t̄(Z̄). Instead, since this integral geo-
metrically captures the area between the two curves, we
can equivalently evaluate this area as shown in the sec-
ond diagram of Fig. 21(B) by integrating vertical slices
through this shaded region. At a given time t̄, the ver-
tical dotted line corresponds to the difference in output
response between the two curves, defined by the function
Θ(t̄) previously derived in Eqn. 32.

From this description, we can then also derive the av-
erage time delay from the offset Θ(t̄), and thus arrive at
the equivalent definition

⟨∆t̄⟩ = 1

Z̄f − Z̄i

∫ ∞

0

Θ(t̄)dt̄. (37)

Notice that the absolute value on Z̄f − Z̄i is dropped to
match the sign of ⟨∆t̄⟩ in Eqn. 36. Substituting Θ(t̄)
from Eqn. 32 and evaluating the integral, the average
time delay becomes

⟨∆t̄⟩ = Φ(Z̄f − Z̄i)
−1

S(1 + ωXf )
log

(1 + Xf + Yi + ωXfYi

S

)
.

(38)

This result highlights that ⟨∆t̄⟩ depends on both the ini-
tial state and the final state of X and Y. In fact, it is
this dual dependence that causes the delays in response
to ON and OFF steps to differ in Fig. 21(A). Switching
from ON to OFF and vice versa simply swaps the initial
and final expression states of X and Y. Applying these
transformations Xi ↔ Xf and Yi ↔ Yf in Eqn. 38 shows
that the magnitude of the average delay ⟨∆t̄⟩ is in gen-
eral not conserved under the exchange of initial and final

states. It is therefore this asymmetric dependence on ini-
tial and final states that directly leads to differences in
output responses to ON and OFF steps in the coherent
feed-forward loop.
From Eqn. 38, we can analytically deduce whether a

feed-forward loop delays or accelerates output response
from the sign of ⟨∆t̄⟩. In Appendix K2, we prove that
in general ⟨∆t̄⟩ ≤ 0 for the coherent feed-forward loop,
leading to delay for both the ON and OFF steps as seen
in the example of Fig. 21(A).

B. Robustness of delayed response for different
coherent logic gates

While Fig. 21(A) demonstrates delays in both the ON
and OFF step of the feed-forward loop for an arbitrary
choice of the dimensionless rates, dissociation constants,
and cooperativity, distinct choices for this set of param-
eters lead to different magnitudes of delay. Returning
to Fig. 20, the thermodynamic states and weights listed
here are defined generally such that all of the states can
contribute to transcription factor expression, and this
is reflected in the example feed-forward loop shown in
Fig. 21(A). However, certain alternative choices for pa-
rameters can carry physical significance because they re-
strict the regulatory states allowing expression to only a
subset of those depicted in Fig. 20. How would the feed-
forward loop’s behavior differ, for example, if expression
could only be enhanced when both activators are bound?
We use the framework of logic gates to define such unique
categories for regulatory conditions.
Specifically, we highlight three commonly-encountered

logic gates—the AND, XOR, and OR gates. We will
assume here that all gates can express output Z̄ at a basal
level, as defined by rate r̄0Z for the state. Each logic gate
is then characterized by a different set of parameters for
the states in which one or both activators can be bound,
and these parameters determine whether a given state’s
expression is enhanced or remains unaffected at the basal
level.
In the AND gate, Z expression is enhanced only when

both X and Y are bound. From the description in
Fig. 20, this corresponds to systems in which cooperativ-
ity ω is nonzero and r̄2Z > r̄1Z = r̄0Z , such that X and
Y have no activating effect on basal expression unless si-
multaneously bound. In the XOR gate, X and Y cannot
be bound at the same time (ω = 0), and single-activator
bound states enhance Z expression (r̄1Z > r̄0Z). Finally,
the OR gate allows enhanced expression when either X,
Y , or both are bound, and broadly applies to systems for
which r̄2Z ≥ r̄1Z > r̄0Z . Note that the expression rates
when one or both transcription factors bind can differ.
In previous work, XOR and AND gates have been re-

ported to exhibit sign-sensitive delays in response to a
signal change in cX : the XOR gate feed-forward loop de-
lays the OFF step but not the ON step, while the AND
gate delays the ON step but not the OFF step [51]. While
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Figure 22: Magnitude of average time delay observed across parameter space in the ON and OFF steps of different
coherent feed-forward logic gates. Each colorplot shows ∆t̄ as a function of K̄XZ and K̄Y Z . ON (row (i)) and OFF
(row (ii)) steps are defined by the same cX step function as in Fig. 21. Each panel represents a different logic gate
— (A) the XOR gate, (B) the AND gate, and (C) the OR gate. For each gate, we select a set of (K̄XZ , K̄Y Z) that
exhibit unexpected behaviors, and in row (iii) plot the corresponding feed-forward and simple regulation trajectories
observed from numerical integration. The cX and cY signal for these trajectories are the same as in Fig. 21. The
XOR gate parameters are r̄0Y = r̄0Z = 0, r̄1Y = r̄1Z = 2, and ω = 0. The AND gate parameters are
r̄0Y = r̄0Z = r̄1Z = 0, r̄1Y = r̄2Z = 2, and ω = 10. The OR gate parameters are r̄0Y = r̄0Z = 0, r̄1Y = r̄1Z = 2,
r̄2Z = 10, and ω = 1, which are the same as in Fig. 21.

these descriptions hold for certain parameter choices, it
remains unclear how robust these patterns are across pa-
rameter space as the conditions governing regulatory in-
teractions change. We will now examine the conditions
under which the feed-forward loop response delays both
ON and OFF steps, delays only one, or delays neither as
we compare the different types of logic gates.

To evaluate the robustness of time delays across dif-
ferent types of logic gates, we sweep across parameter
space and find regions with high average delay, ⟨∆t̄⟩.
For now, we choose to fix rate and cooperativity pa-
rameters and sweep across the two-dimensional space
(K̄XZ , K̄Y Z). The motivation is to find the suitable dis-
sociation constants given a logic gate, in the case in which

the production rates and cooperativity must satisfy cer-
tain requirements. For example, in the XOR gate, ω = 0
is fixed and is not a tunable parameter.

In Fig. 22, we show a parameter sweep for three sets
of rates and cooperativity parameters that correspond to
three different logic gates. For each set of parameters,
both ON and OFF steps are studied. These calculations
inspire several observations. First, for a given step un-
dergone by pXact(cX), we can computationally identify a
maximum ⟨∆t̄⟩ with respect to all other parameters. Fur-
ther, this maximum is different for ON and OFF steps.
For example, in Fig. 22(i), specific to the input step cho-
sen here, we observe that in all logic gates the maximal
⟨∆t̄⟩ achievable is about 1 for the ON step and 4.5 for
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the OFF step. To tie this back to units of time, we con-
sider E. coli. Here, proteins tend to be stable over the
timescale of a cell cycle and hence the dilution resulting
from cell division becomes the effective degradation rate.
Taking a rate of degradation of order γ = 10−2min−1,
we then get a maximum delay of 500 min, which is more
than 8 hours! The asymmetry between maximal ⟨∆t̄⟩ the
ON and OFF steps resonates with the analytic discussion
in the previous section. We show computational evidence
in Appendix L that sweeps across all other parameters
indicate the existence of a global maximum ⟨∆t̄⟩. Note
that the exact value and existence of this maximum is a
result specific to function pact(cX) and allosteric param-
eters we chose to describe effector activity in Fig. 5.

Second, both the XOR and AND gates exhibit the ex-
pected sign-sensitive delay across a substantial portion of
the (K̄XZ , K̄Y Z) parameter space, though not uniformly.
In particular, Fig. 22(A)(i,ii) shows that for the XOR
gate, the lower half of this space yields negligible ON-
step delay but a pronounced OFF-step delay. Conversely,
Fig. 22(B)(i,ii) reveals that for the AND gate, the upper
half of the space yields negligible OFF-step delay and a
pronounced ON-step delay. Nevertheless, in specific re-
gions of the (K̄XZ , K̄Y Z) parameter space—namely, the
upper left quadrant for the XOR gate and the lower right
quadrant for the AND gate—neither the ON nor the OFF
step exhibits any appreciable delay. More intriguingly,
certain extreme choices of dissociation constants contra-
dict the expected behavior: the XOR gate can show delay
on both ON and OFF steps, and the AND gate can only
delay the OFF step. Example trajectories corresponding
to these atypical regimes are shown in Fig. 22(A,B)(iii).

Finally, the OR gate can produce sizable delays, but
only for more extreme values of the dissociation con-
stants. Near the region where K̄XZ ≈ K̄Y Z ≈ 1—which
corresponds to similar binding strengths between X, Y ,
and Z with the DNA—the delays for both ON and OFF
steps are minimal. This suggests that in some biologi-
cally relevant regimes, where dissociation constants are
typically of the same order of magnitude, the OR gate is
the least effective at generating a temporal delay.

We observe that the average delay ⟨∆t̄⟩ in coherent
feed-forward loops depends strongly on the dissociation
constant K̄Y Z , which sets the binding affinity of Y to the
promoter of Z—one of the interactions that distinguishes
feed-forward loops from simple regulation. A clear trend
emerges: ON steps (Fig. 22(A-C)(i)) exhibit stronger de-
lays when Y binding is weak (large K̄Y Z), whereas OFF
steps (Fig. 22(A-C)(ii)) show stronger delays when Y
binding is strong (small K̄Y Z).

Since the feed-forward loop ultimately aims to control
Z activation, another relevant feature is the output am-
plitude ∆Z̄ = |Z̄f −Z̄i| for a given change in input cX . A
small ∆Z̄ would imply that Z̄ remains nearly constant,
making the response uninformative. However, we show
in Appendix L that ∆Z̄ scales linearly with the produc-
tion rates. Although the dependence of ∆Z̄ on other
parameters is non-trivial, globally the effect of the rates

dominates. We thus reserve a detailed discussion of the
optimization of ∆Z̄ values for Appendix L and remain
focused here on the average delay ⟨∆t̄⟩.

C. Existence of pulse in incoherent feed-forward
loop

We now turn our attention to the incoherent feed-
forward loop depicted in Fig. 23. This architecture is
a commonly observed motif in E. coli, where X activates
both Y and Z, while Y represses Z [74, 75]. This motif
gives rise to a qualitatively distinct dynamical behav-
ior from the coherent feed-forward loop: a pulse in the
output Z. A pulse is conventionally defined as a tran-
sient trajectory of Z̄(t̄) such that there exists a time t̄
where Z̄(t̄) > Z̄f if the response of Z̄(t̄) is increasing,
or Z̄(t̄) < Z̄f if the response of Z̄(t̄) is decreasing. In
incoherent feed-forward loops, an ON step signal where
pXact(cX) increases does not necessarily produce an in-
creasing response in Z̄(t̄), as activation induced by in-
creasing X̄ competes with repression induced by increas-
ing Ȳ . This is precisely the incoherence in the name of
such circuits.
Referring to the states, weights, and rates shown in

Fig. 23, the non-dimensional dynamics of the system are
described by

dȲ

dt̄
= −Ȳ +

r̄0Y + r̄1Y pXactX̄

1 + pXactX̄
(39)

and

dZ̄

dt̄
= −Z̄ +

r̄0Z + r̄1Z X
1 + X + Y + ωXY

, (40)

with X = pXact(cX)X̄/K̄XZ and Y = pYact(cY )Ȳ /K̄Y Z .
Again the bar indicates the time in units of 1/γ, concen-
trations and dissociation rates in units of KXY and rates
in units of γKXY .
Intuitively, pulses emerge because of the delay in the

repression exerted by Y . Following an ON step in cX ,
Ȳ increases exponentially to its final value. In the early
phase of the response,X already activates Z strongly, but
Y has not yet accumulated enough to exert repression.
As a result, Z̄ temporarily overshoots its final steady
state. This behavior is depicted in Fig. 24(D), where
the blue curve exhibits a pronounced pulse, in contrast
to the monotonic exponential relaxation of the simple
regulation output (orange).
The accelerating nature of the incoherent feed-forward

loop can also be captured analytically by repeating the
calculation leading to Eqn. 32 but adapted to this new
setting. The modified prefactor

Φ = −(r̄0Z + r̄1ZXf )(1 + ωXf ) (41)

is always negative. As a result, the average time dif-
ference ⟨∆t̄⟩ as defined in Eqn. 37 is always positive,
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Figure 23: The incoherent feed-forward loop. (A) Schematic representation of the incoherent feed-forward loop.
Expression of output protein Z is controlled by expression of protein X, either by direct activation or indirectly, first
activating expression of Y which then represses Z. The regulatory circuit is incoherent because the pathways have
opposing effects on Z. (B) Thermodynamic states, weights, and rates for expression of repressor Y and output
protein Z. X and Y interact with cooperativity ω, but bound repressor suppresses expression regardless of activator
presence.

both for ON and OFF steps, meaning that the incoher-
ent feed-forward loop accelerates the response for both
transitions. In Appendix M, we remark that the defini-
tion and interpretation of ⟨∆t̄⟩ is subtle when Z̄ exhibits
a pulse. Thus, we only consider ⟨∆t̄⟩ when a pulse does
not exist, and focus on the difference between the peak
of the pulse and final steady state of Z̄ for the pulses.

To further quantify this acceleration, we again com-
pute the average time difference ⟨∆t̄⟩ between the feed-
forward loop and simple regulation trajectories with
Eqn. 37. Fig. 24(A) shows ⟨∆t̄⟩ across the phase space
defined by (K̄XZ , K̄Y Z), when the output does not
present a strong pulse. The definition of “strong” is de-
scribed in Appendix M. We observe that acceleration is
limited to a maximum value of 1. This upper bound
arises because the most accelerated trajectory would con-
sist of an instantaneous jump to the final steady state
(green curves in Fig. 24(C) and (D)), corresponding to
⟨∆t̄⟩ = 1 as shown in Appendix M. An example of a
feed-forward trajectory that does not exhibit a strong
pulse is shown in Fig. 24(C). The region of highest ac-
celeration lies near the boundary separating the strongly
pulsed and not strongly pulsed regimes. Interestingly,
acceleration is only substantial in a restricted region of
parameter space. For example, we see in Fig. 24(A) that
high values of K̄Y Z—corresponding to weak binding of
Y—lead to negligible acceleration.

In addition to acceleration, the presence and magni-
tude of a pulse is another hallmark of the studied net-
work. In Fig. 24(B), we map the pulse height, defined as

the maximum deviation of Z̄(t) above its steady state
value, across the (K̄XZ , K̄Y Z) space. Pulses are ob-
served only in a portion of this space—specifically, for
small enough values of K̄XZ , where X binds strongly.
The highest pulses occur when both K̄XZ and K̄Y Z are
small, indicating that strong binding of both regulators
enhances the transient overshoot in this case.

D. Continuous signal

To conclude our discussion of feed-forward loops, we
now consider the system’s response to a continuously
tuned effector concentration, rather than an abrupt step
change. When the timescale of effector concentration
variation, denoted t̄c, is much shorter than the system’s
relaxation timescale, the dynamics resemble those ob-
served under step function inputs. Conversely, when t̄c
is much longer than the relaxation time, the system re-
mains quasi-stationary when the input is evolving, effec-
tively tracking steady states values of the output Z̄ at
each time step.
To analyze this quantitatively, we compare t̄c to the

intrinsic relaxation timescales of both the simple regu-
lation case and the coherent feed-forward loop. In co-
herent feed-forward loops, we have shown that the out-
put response is consistently delayed relative to simple
regulation. However, the precise relaxation timescale
of this architecture is not straightforward and depends
strongly on the biochemical parameters. As a result, we
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Figure 24: Existence of a pulse and acceleration in the incoherent feed-forward loop. Parameters used here are
r̄0Y = r̄0Z = 0, r̄1Y = r̄1Z = 2, and ω = 0. (A) Average acceleration |⟨∆t̄⟩| during ON step across the phase space
(K̄Y Z , K̄XZ), computed only for parameter sets where no strong pulse is observed. For the parameters we chose, the
ON step in pXact(cX) coincides with Z̄(t̄) having an increasing response. (B) Pulse amplitude Z̄max − Z̄f across the
same phase space, quantifying the transient overshoot above steady state. (C) Example trajectories corresponding
to (K̄XZ , K̄Y Z) = (1, 2). No strong pulse is observed, but the feed-forward loop response is accelerated compared to
the simple regulation response. The green curve is the trajectory with the largest ⟨∆t̄⟩ without a pulse. The blue
and orange curves are the feed-forward loop and simple regulation trajectories, respectively. (D) Example
trajectories corresponding to (K̄XZ , K̄Y Z) = (1, 0.1). A strong pulse is observed.

use the relaxation timescale of the simple regulation sys-
tem—which is 1 in units of 1/γ—as a reference estimate
for the order of magnitude of the feed-forward loop’s re-
laxation time. We can thus define two limiting regimes:
a fast tuning regime where t̄c ≪ 1, and a slow tuning
regime where t̄c ≫ 1.

Before proceeding to the analysis of the delay, we must

first clarify the definition of simple regulation in the case
of a continuous signal. We adopt the same definition as
the step function case, where we fix concentration Ȳ =
1 here. Further, in our previous analysis, when cX(t̄)
is a step function, the choice of Ȳ does not affect the
dynamics of relaxation of the simple regulation output.
However, when cX(t̄) is a continuous function, the choice



30

0.5

1.0

1.5

0

1

0

1

0

1

ou
tp

ut
 c

on
ce

nt
ra

ti
on

, Z

0 10 20 30 40 50
dimensionless time, t

simple regulationfeed-forward loop

pact
Ypact

X

rate of tuning effector concentration
slowfast

p a
ct

(A) (B) (C)

tc = 0.24 tc = 1.65 tc = 5.18

0.5

1.0

1.5

0 10 20 30 40 50
dimensionless time, t

0.5

1.0

1.5

0 10 20 30 40 50
dimensionless time, t

Figure 25: Feed-forward loop response to the rate of continuous tuning of effector concentration. From left to right,
the rate of tuning effector concentration slows down while every other parameter is kept constant. Each ON step is
a loglinearly increasing function from cmin

X = 10−4 M to cmin
X = 10−7 M across some time; an OFF step is the

reverse. From left to right, the timescale of effector concentration variation are t̄c = 0.24, t̄c = 1.65, t̄c = 5.18. t̄c, as
defined in the main text, is the time it takes for pXact(cX(t̄)) to increase from 0.2 to 0.8. Ȳ is set to be 1 at all times
for simple regulation. Parameters used are the XOR gate parameters in Fig. 22.

of Ȳ changes these dynamics slightly. Fortunately, the
effect of Ȳ is small and does not qualitatively change
our observations in the rest of the section, allowing us to
continue with the comparison between feed-forward loop
and simple regulation (for a more detailed discussion, see
Appendix N).

We numerically integrate the dynamical equations un-
der a continuously changing cX(t̄) and illustrate the re-
sult in Fig. 25, where we analyze the response of a coher-
ent feed-forward loop operating as an XOR gate. In this
setting, we numerically define the timescale of effector
concentration variation tc as the time it takes for pXact(cX)
to change from 0.2 to 0.8 or vice versa. tc indicates the
time it takes for the switch to be flipped on or off, as
regulated by the effector concentration cX . When the
effector concentration cX(t̄) is tuned rapidly as shown in
Fig. 25(A), with t̄c ≈ 0.24, we observe a large delay in the
output Z̄(t̄) on the OFF step and almost no delay on the
ON step, consistent with the step function dynamics dis-
cussed previously. In contrast, when cX(t̄) varies slowly,
as depicted in Fig. 25(C), with t̄c ≈ 5.18, both the feed-
forward loop and the simple regulation trajectories be-
come dominated by their respective steady states. They
simply track their steady states dictated by cX(t̄). As a
consequence, the responses to ON and OFF steps must
be symmetric, as there is exactly one steady state corre-
sponding to a specific cX . Interestingly, the OFF delay is
preserved, while for the ON step the feed-forward loop re-
sponse is accelerated compared to simple regulation. The
magnitude of the ON step acceleration is similar to that
of the OFF step delay, as required by symmetry. We note

that the magnitude of the acceleration/delay depends on
the choice of Ȳ in simple regulation.
Nevertheless, for all choices of Ȳ , the feed-forward

loop accelerates the ON step and delays the OFF step
when the concentration of effector cX is slowly tuned.
Between the two limits, the feed-forward loop response
smoothly transitions as the tuning rate of cX decreases.
An example in this regime is shown in Fig. 25(B), with
t̄c ≈ 1.65, where we begin to observe the ON step ac-
celeration, despite its magnitude being smaller than in
Fig. 25(C). These results demonstrate that the dynamics
of feed-forward loops under continuously varying effector
concentrations are governed by the timescale of input
change: rapid tuning reproduces the asymmetric ON-
and OFF-step delays seen with step inputs, whereas slow
tuning yields symmetric responses where ON-step accel-
eration balances OFF-step delay.

V. DISCUSSION

The history of modern molecular biology has been a
dazzlingly successful exploration of the way in which
genes dictate the function and dynamics of the cells mak-
ing up organisms of all kinds. One of the greatest success
stories of that history is the development of our under-
standing of how genes are connected together in genetic
circuits [14], giving rise to an array of stereotyped regula-
tory motifs such as switches, oscillators, double negative
networks and feed-forward networks, to name but a few
examples [74]. We note that despite all of this progress,



31

there remain gaping holes in our knowledge of how most
genes are regulated. Even in our best understood organ-
isms such as E. coli, we lack any knowledge of how more
than 60% of its genes are regulated [76]. As a result,
we expect that with the advent of the high-throughput
era in biology, ever more genetic circuits like those we
discussed here will be discovered.

In addition to our ignorance of the genetic circuits
themselves, our understanding of the proteins that me-
diate those circuits is also very limited. In particular, we
often don’t know how effector molecules alter the activity
of the transcription factors that control these genes [77].
The key point here is that the action of proteins such as
transcription factors is often altered through the binding
of effector molecules, which induce allosteric conforma-
tional changes that in turn change the state of activity
of those transcription factors. However, for many genes,
we still remain ignorant of which effector molecules effect
those changes. The central thesis of this paper is that,
in fact, most gene circuits have their activity tuned by
precisely these kinds of effector molecules and as a result,
we need to revisit the theoretical analysis of such circuits
to account for the effect of allosteric induction.

In parallel with the impressive progress in molecular
biology and the dissection of the rules of regulation, huge
progress was made in the study of the behavior of dynam-
ical systems in contexts of all kinds [68], and with special
reference to genetic circuits themselves [42]. However,
when theorists have used dynamical systems frameworks
to explore the behavior of such circuits, they have largely
adopted an approach in which those circuits are tuned in
abstract terms using model parameters such as degra-
dation rates γ, mRNA production rates r and binding
constants Kd. As was so importantly discovered in the
1960s, typically these parameters are in fact “tuned” in
the context of living cells through the action of allosteric
transitions of transcription factors between active and in-
active conformations as a result of the binding of effector
molecules[33–40]. The history of dynamical systems in
these problems largely leaves the all-important effector
molecules out of this story, only considering them im-
plicitly. In this paper we have undertaken a systematic
analysis of the role of such effectors in governing the func-
tion and dynamics of a variety of fundamental genetic
regulatory motifs.

The overarching theme of the work described here is
that whereas typical dynamical systems approaches to
genetic networks feature the number of transcription fac-
tors such as A(t) for activator concentrations and R(t) for
repressor concentrations, the variable that the cell actu-
ally “cares about” is the active number of activators and
repressors. There are a variety of well-defined statisti-
cal mechanical approaches that allow us to compute this
active fraction by multiplying the total number of tran-
scription factors by the function pact(c) as dictated by
the Monod-Wyman-Changeux model, for example, and
highlighted in Eqn. 4. The power of this approach is that
now the parameters governing properties such as bista-

bility in genetic circuits will be tuned by experimentally
and biologically accessible parameters such as the con-
centrations of effector molecules.

Throughout the paper, we have shown how the tuning
variable of effector concentration makes it possible for the
dynamical systems describing genetic circuits to range
across their phase portraits. We began with perhaps
the simplest of such circuits, the auto-activation motif,
and showed how tuning effector concentration narrows
the range of possible behaviors relative to those found
in an unconstrained dynamical system perspective. We
also availed ourselves of the opportunity to compare and
contrast the conventional Hill function approach to tran-
scription factor-DNA binding and the more mechanisti-
cally detailed thermodynamic models that we systemat-
ically explore throughout this work.

One interesting conclusion of this comparison between
models based on the full set of states and weights de-
manded by thermodynamic models and the more phe-
nomenological Hill function is that, for certain parame-
ter regimes, each approach will display dramatically dif-
ferent circuit dynamics (i.e., monostability vs. bistabil-
ity). This insight emphasizes the need to carefully dissect
the quantitative parameters underlying the description of
gene regulatory architectures in order to justify whether
a Hill function description, which is a limiting case of the
thermodynamic description, is warranted.

We also used the auto-activation motif as an oppor-
tunity for a careful analysis of the temporal relaxation
of these genetic circuits to their terminal steady state.
That analysis revealed that for initial conditions that
are not “far” from the stable fixed points, the relaxation
to steady state is exponential with a time constant dic-
tated by the derivative of the nonlinear protein degra-
dation/production function evaluated at the fixed point.
For initial conditions that start near to the unstable fixed
point, the dynamics are richer.

With the description of the induced auto-activation cir-
cuit in hand, we turned to the very important mutual
repression motif which is ubiquitous in prokaryotes and
eukaryotes alike. Here, again, the capacity to indepen-
dently tune the effector concentration for each repressor
revealed a large flexibility in how cells and synthetic bi-
ologists alike can decide to tune the dynamical behavior
of this genetic circuit from dictating its steady state be-
havior to the dynamics of the repressors as they converge
to those steady state values.

Finally, we undertook a dissection of the ubiquitous
feed-forward loop. Our analysis shows that the dynamic
behavior typically associated with feed-forward loops in
response to input effector signals is more nuanced and
parameter-dependent than previously appreciated [52].
For the coherent feed-forward loop, we analytically con-
firm the presence of delay in output response compared to
simple regulation. However, we show that both the mag-
nitude and the sign-sensitivity of these delays depend on
system parameters such as dissociation constants, pro-
duction rates and cooperativity. This rich range of qual-
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itatively distinct behavior remains true even within the
different categories of logic gates that can emerge from
special combinations of these parameters. Conversely, in-
coherent feed-forward loops accelerate output responses
compared to simple regulation and can generate transient
pulses—again only in certain regions of parameter space.

Within this analysis of feed-forward loops, we demon-
strate the crucial roles of effector concentration in our
models. The leakiness of pact(c), for example, influences
key metrics such as delay time. We also highlight how the
sigmoidal shape of pact(c) enables a continuous change in
effector concentration to be translated to a sharp signal
when tuning the probability of transcription factors be-
ing active. Overall, while the dynamical behaviors of
feed-forward loops can be rich, they are not always guar-
anteed. This emphasizes how behavior emerges from a
delicate interplay of biochemical parameters rather than
rigid circit logic alone, and underscores the need for
further experimental and theoretical efforts toward un-
derstanding the functions and dynamics of feed-forward
loops.

All told, our efforts demonstrate that there is great
flexibility inherent in the endogenous signaling modali-
ties adopted by living cells to be contrasted with the way
in which model parameters are artificially tuned in many
dynamical systems approaches to these same problems.
We are excited for experimental efforts to make a sub-
stantial push to solve the huge puzzle of the allosterome,
opening the door to more realistic analyses of genetic
circuits from a dynamical systems perspective.
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Appendix A: Thermodynamic model equivalence to
description with polymerase

In this section, we demonstrate the equivalence of the
thermodynamic models used throughout the paper in
which we essentially ignored the presence of RNA poly-
merase (RNAP), to those that explicitly incorporate reg-
ulatory interaction with the RNA polymerase. To illus-
trate the comparison between those that explicitly treat
polymerase and those that do not, we begin by examining
the auto-activation switch with which the paper opened.

1. Coarse-graining the auto-activation model

The statistical mechanical model for autoactivation de-
picted in Fig. 2 implicitly accounts for interaction be-
tween the activator and polymerase. Fig. 26 represents
the complete accounting of the thermodynamic states,
weights and rates, now explicitly accounting for all of
the possible polymerase bound states and denoting the
interaction energy between polymerase and activator as
εap. In light of this complete set of states, weights and
rates, We can write the dynamical equation for the num-
ber of activators as

dA

dt
= −γA+

P
KP

[r0 + 2r1e
−βεap pact(c)A

Kd
+ r2e

−2βεapω(pact(c)A
Kd

)2]

Z
, (A1)

where P is the number of copies of polymerase present
and KP is the dissociation constant for P . Z is the parti-
tion function obtained by summing the statistical weights

of all of the states in Fig. 26, which we define as

Z =
P

KP

[
1 + 2e−βεap

pact(c)A

Kd
+ e−2βεapω

(pact(c)A
Kd

)2
]

+

[
1 + 2

pact(c)A

Kd
+ ω

(pact(c)A
Kd

)2
]
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Figure 26: The auto-activation regulatory circuit. (A) A schematic of the circuit operation. Polymerase binding at
the promoter (blue) transcribes the gene (encoded in the green region), producing a protein that can activate its
own expression at a sufficient concentration. In our model, an activator can bind at two possible sites to enhance
gene transcription. (B) The thermodynamic states, weights, and rates for the auto-activation motif including
polymerase binding explicitly. The parameter ω denotes the binding cooperativity between two activators.
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Note that our goal at this point is to see if by defining
the various “constants” that appear in Eqn. A1 we can
show that it is equivalent to Eqn. 8 in which we ignored
polymerase altogether. In particular, we need to find
effective versions of the parameters Kd, ω, r0, r1 and r2
that have all the polymerase dependence hidden within
them. To re-express Z0 as a sum of states with implicit
dependence on polymerase, we note that if we define

Keff
d =

1 + P
KP

1 + P
KP

e−βεap
Kd, (A3)

and

ωeff =
(1 + P

KP
)(1 + P

KP
e−2βεap)

(1 + P
KP

e−βεap)2
ω (A4)

then the denominator will have the same form as the
denominator of Eqn. 8. Next, we see that if we redefine
the rate parameters as

reff0 =
P
KP

1 + P
KP

r0, (A5)

reff1 =
P
KP

e−βεap

1 + P
KP

e−βεap
r1, (A6)

reff2 =
P
KP

e−2βεap

1 + P
KP

e−2βεap
r2, (A7)

we recover an equation that is equivalent to the dynami-
cal equation as described in Eqn. 8. Note that for conve-
nience, in Eqn. 8 we have everywhere dropped the super-
script “eff” because the notation is way too cumbersome
to carry throughout the paper. The key point is that we
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see that the two approaches are formally equivalent.
However, it is important to always bear in mind that

the rate parameters, cooperativity, and dissociation con-
stant used in the reduced representation of the paper are
thus effective parameters that implicitly depend on the
concentration of polymerase present (P ), the strength of
polymerase binding to the DNA (KP ), and the strength
of interaction between activator and RNAP (εap). In a
very real sense, this description will lead to a description
of the auto-activation switch in which the polymerase
serves as a hidden variable. This analysis is extremely
interesting because it shows that there is a way to rig-
orously leave explicit treatment of the polymerase out of
the problem.

2. Coarse-graining the mutual repression model

In the main body of the paper, just as we did for the
auto-activation motif, we treated the mutual repression
motif without making explicit reference to RNA poly-
merase. We now consider the full set of states, weights
and rates illustrated in Fig. 27. The states and weights
shown here should be contrasted with those shown in
Fig. 14 where all reference to RNA polymerase is absent.
We now demonstrate the equivalence of these two de-
scriptions of the mutual repression switch following pre-
cisely the same kind of strategy we followed above in the
context of the auto-activation switch.

Under this expanded thermodynamic model, the gov-
erning equations for the dynamics of R1 and R2 prior
to non-dimensionalization can be read off directly from
Fig. 27 yielding

dR1

dt
= −γ1R1 +

r P
KP

1 + P
KP

+ 2pact(c2)R2

K2
+ ω2

(
pact(c2)R2

K2

)2

(A8)
and

dR2

dt
= −γ2R2+

r P
KP

1 + P
KP

+ 2pact(c1)R1

K1
+ ω1

(
pact(c1)R1

K1

)2 .

(A9)
These equations can be algebraically manipulated by fac-
toring out (1 + P/KP ) from the denominator, resulting
in the forms

dR1

dt
= −γ1R1+

r
P

KP

1+ P
KP

1 + 2 pact(c2)R2

K2(1+
P

KP
)
+ ω2(1 +

P
KP

)

(
pact(c2)R2

K2(1+
P

KP
)

)2 ,

(A10)

dR2

dt
= −γ2R2+

r
P

KP

1+ P
KP

1 + 2 pact(c1)R1

K1(1+
P

KP
)
+ ω1(1 +

P
KP

)

(
pact(c1)R1

K1(1+
P

KP
)

)2 .

(A11)

This formulation reveals that the original equations

given in Eqns. 18 and 19 can be recovered through a
simple transformation of parameters in which we once
again define effective parameters. The effective mRNA
production rate is given by

reff =
P
KP

1 + P
KP

r, (A12)

the two Kds for transcription factor-DNA binding are
given by

Keff
1 = (1 +

P

KP
)K1 (A13)

and

Keff
2 = (1 +

P

KP
)K2 (A14)

and the two cooperativities are written in effective form
as

ωeff
1 = (1 +

P

KP
)ω1 (A15)

and

ωeff
2 = (1 +

P

KP
)ω2. (A16)

This demonstrates that polymerase binding can be ab-
sorbed into effective parameters, yielding a reduced
model equivalent to the one presented in the main text,
with renormalized production rate, dissociation con-
stants, and cooperativities. Once again, the polymerase
copy number P and binding strengthKP are hidden vari-
ables in the context of the bare model, but the results are
exact - this is not an approximation valid only in the limit
of weak promoters, for example. Note also that as in the
case of the auto-activation switch, in the main body of
the paper we do not carry around the cumbersome “eff”
notation, electing instead to simply use the parameters
r, K1, K2, ω1 and ω2 with the convention that those
parameters include the hidden variables associated with
polymerase.

Appendix B: Minimal bounds on cooperativity and
rates for the existence of bistability in

auto-activation

The auto-activation system can exhibit bistability,
meaning that it can reach different steady states depend-
ing on the initial condition. However, this behavior arises
only within a restricted range of parameter values, shown
in Fig. 11 as the red region. To investigate the condi-
tions for which multiple different steady states are possi-
ble, we derive analytic bounds in parameter space. Set-
ting dĀ/dt̄ = 0 and re-expressing in standard polynomial
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Figure 27: The mutual repression regulatory circuit. (A) Schematic of the operation of the circuit. When the gene
for repressor 1 is expressed, the resulting protein downregulates the expression of the gene for repressor 2. Repressor
2, in turn, downregulates the expression of the gene for repressor 1. (B) Thermodynamic states, weights, and rates
for expression of repressor 1 including the action of the inducer which tunes the number of active repressors. In our
model, a repressor can bind non-exclusively at one of two possible sites within the target promoter region to
suppress gene transcription. The parameter ω2 denotes the cooperative strength between two bound repressors R2.
(C) Thermodynamic states, weights, and rates for expression of repressor 2 including the action of the inducer which
tunes the number of active repressors. The states and weights for the regulation of the promoter responsible for the
production of repressor 2 are analogous to those shown for repressor 1. However, the dissociation constant of
repressor 1 in this case is given by K1, and the cooperativity term for the interaction of two repressor 1 molecules
bound to the DNA is ω1.

form, Ā must satisfy

ωp2actĀ
3 + pact(2− ωr̄2pact)Ā

2 + (1− 2r̄1pact)Ā− r̄0 = 0.
(B1)

If the system exhibits bistability, the corresponding
polynomial must have three real roots, as a third-order
polynomial cannot have exactly two. Physically, these
roots correspond to two stable steady states and one un-
stable steady state. Further, the presence of only one real
root indicates that the system is monostable, as discussed
in Appendix C.

To identify conditions for bistability, we search for

combinations of ω, r̄0, r̄1, r̄2, and effector concentration
c that produce three positive real roots of the polyno-
mial—corresponding to the red region in Fig. 11. We
may bound this bistable region of parameter space ana-
lytically using Descartes’ rule of signs, which states that
for a single-variable polynomial with real coefficients, the
number of positive roots of the polynomial is equal to the
number of sign changes between consecutive non-zero co-
efficients minus an even number. In our case, the polyno-
mial in Eqn. B1 must then have either one or three sign
changes. Therefore, three sign changes are necessary for
the system to allow bistability. Evaluating Eqn. B1, we
observe that the coefficient of Ā3 is strictly positive and
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the constant term is strictly negative. Thus, three (con-
secutive) coefficient sign changes are only possible if the
second term of Eqn. B1 is negative, and the third term of
that same equation is positive. Specifically, the condition
on the second term implies that

pact(c)
(
2− ωr̄2pact(c)

)
< 0 =⇒ pact(c) >

2

ωr̄2
, (B2)

while the condition on the second term leads to

1− 2r̄1pact(c) > 0 =⇒ pact(c) <
1

2r̄1
. (B3)

Thus, these two conditions can be combined to yield

2

ωr̄2
< pact(c) <

1

2r̄1
. (B4)

1. Necessary condition for bistability at some
effector concentration c

Note that if the above condition were to be true at
all possible effector concentrations c, the system would
always be bistable. Rather, we are more specifically in-
terested in the conditions that would allow bistability for
at least one value of effector concentration c0. In other
words, there exists a concentration such that

2

ωr̄2
< pact(c0) (B5)

and

1

2r̄1
> pact(c0). (B6)

If the inequality in Eqn. B5 holds true, then we also know
that

2

ωr̄2
< pact(c0) ≤ max

c∈[0,∞]
[pact(c)]. (B7)

This result itself then directly requires the existence of
some effector concentration for which Eqn. B5 is true. We
can prove this by considering two possible cases. First, if

2

ωr̄2
< min

c∈[0,∞]
[pact(c)] < max

c∈[0,∞]
[pact(c)], (B8)

then we know that Eqn. B5 holds true for all concentra-
tions c ≥ 0. Otherwise, if

min
c∈[0,∞]

[pact(c)] <
2

ωr̄2
< max

c∈[0,∞]
[pact(c)], (B9)

then Eqn. B5 is true for all non-negative effector concen-
trations smaller than a threshold concentration

c∗ = p−1
act

( 2

ωr̄2

)
, (B10)

(derived from the inverse of Eqn. B5) because pact is a
continuous and monotonically decreasing function.

Applying similar logic to the inequality in Eqn. B6, we
may thus rewrite the necessary conditions for bistability
in Eqns. B5 and B6 as

2

ωr̄2
< max

c∈[0,∞]
(pact(c)) =

1

1 + e−βε
, (B11)

1

2r̄1
> min

c∈[0,∞]
(pact(c)) =

1

1 + e−βεK̄2
c

, (B12)

and

ωr̄2 > 4r̄1, (B13)

where we have recalled the saturation (maximum) and
leakiness (minimum) of pact(c) defined in Eqns. 6 and
7. Note that we are in a setting where effector bind-
ing stabilizes the inactive form of the activator such that
K̄c = KA/KI > 1. This fixes the values of saturation and
leakiness, which would otherwise be switched if Kc < 1.
After some algebra, we can re-express Eqns. B11 and
B12 such that the necessary conditions for bistability are
given by

ωr̄2
2

> 1 + e−βε, (B14)

1 + e−βεK̄2
c > 2r̄1, (B15)

and

ωr̄2 > 4r̄1. (B16)

Following a similar procedure as in the previous section,
in the next section we derive a necessary condition for
bistability that depends on the concentration of effector
c. For fixed parameter values, this condition defines a
bounded range of effector concentrations outside of which
the system is guaranteed to be monostable.

2. Necessary condition for bistability for a fixed
concentration of effector c

We consider the case where the activation probability
pact(c) is a decreasing function of the effector concentra-
tion c, as seen in Fig. 5. This monotonicity condition,
which requires the derivative of the probability function
to be negative for all possible c, depends on the param-
eters of the model, particularly the ratio of dissociation
constants K̄c. The derivative of pact(c) with respect to c
is given from Eqn. 4 by

dpact
dc

= −2(1 + c/KA)e
βε(−1 + K̄c)(1 + c/KI)

((1 + c/KA)2eβε + (1 + c/KI)2)
2 , (B17)

which is negative for all c > 0 if and only if K̄c > 1.

Recalling the previously-derived necessary condition
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for bistability,

2

ωr̄2
< pact(c) <

1

2r̄1
, (B18)

we now investigate what constraint this condition im-
poses on the effector concentration c, assuming the pa-
rameters of the system are fixed. First, the inequality

pact(c) <
1

2r̄1
(B19)

can be re-expressed equivalently using the explicit ex-
pression of pact(c) in Eqn. 4 as

g(c) =

(
c

KA

)2
1

1 + e−βε

[
1

2r̄1
− 1

1 + e−βεK̄2
c

]
+ 2

c

KA

1
2r̄1

(1 + e−βεK̄c)− 1

(1 + e−βε)(1 + e−βεK̄2
c )

+

[
1

2r̄1
− 1

1 + e−βε

]
1

1 + e−βεK̄2
c

> 0. (B20)

Similarly, the condition

pact(c) >
2

ωr̄2
(B21)

is equivalent to requiring that

h(c) =

(
c

KA

)2
1

1 + e−βε

[
2

ωr̄2
− 1

1 + e−βεK̄2
c

]
(B22)

+ 2
c

KA

2
ωr̄2

(1 + e−βεK̄c)− 1

(1 + e−βε)(1 + e−βεK̄2
c )

+

[
2

ωr̄2
− 1

1 + e−βε

]
1

1 + e−βεK̄2
c

< 0.

We can now apply Descartes’ Rule of Signs to the poly-
nomials g(c) and h(c) to determine when the inequalities
are satisfied. Since we are working under the assumption
that K̄c > 1, this means that,

pmax
act =

1

1 + e−βε
>

1

1 + e−βεK̄c
>

1

1 + e−βεK̄2
c

= pmin
act .

(B23)
For the polynomial g(c), three cases then arise. First, if

1

2r̄1
>

1

1 + e−βε
, (B24)

then all coefficients of g(c) are positive and g(c) > 0 for
all c ≥ 0, so Eqn. B21 is always satisfied. Second, if

1

2r̄1
>

1

1 + e−βεK̄2
c

, (B25)

then all coefficients are negative, and the condition is

never satisfied for any c. Finally, if the intermediate case

1

1 + e−βεK̄c
>

1

2r̄1
>

1

1 + e−βεK̄2
c

(B26)

holds, then the coefficient of the term proportional to c2

in g(c) is positive, while those of the remaining terms
proportional to c1 and c0 are negative. This results in
exactly one sign change, so by Descartes’ Rule of Signs,
the polynomial g(c) has exactly one positive root. This
defines the minimal concentration for bistability, denoted
cmin
bistab(r̄1), and given by

cmin
bistab(r̄1) = KA

e−βεK̄c + 2r̄1 − 1 +
√

e−βε(1 + K̄c)2(2r̄1 − 1)

e−βεK̄2
c − 2r̄1 + 1

.

(B27)

Under these conditions, the inequality g(c) > 0 holds for
all c > cmin

bistab(r̄1).
We now turn to the polynomial h(c). If

2

ωr̄2
>

1

1 + e−βε
, (B28)

then all coefficients are positive and the polynomial is
strictly positive for all c, meaning that the condition in
Eqn. B21 is never satisfied. Conversely, if

2

ωr̄2
<

1

1 + e−βεK̄2
c

, (B29)

then all coefficients are negative and the condition is al-
ways satisfied. Lastly, in the intermediate case

1

1 + e−βεK̄c
>

2

ωr̄2
>

1

1 + e−βεK̄2
c

, (B30)

Descartes’ Rule of Signs again implies exactly one pos-
itive root of h(c), corresponding to the upper bound of
the bistable region. This upper concentration threshold
is denoted cmax

bistab(ωr̄2) and given by

cmax
bistab(ωr̄2) = KA

e−βεK̄c +
ωr̄2
2

− 1 +
√

e−βε(1 + K̄c)2
(ωr̄2

2
− 1

)
e−βεK̄2

c − ωr̄2
2

+ 1
.

(B31)

Under these conditions, the inequality h(c) < 0 holds
for all c < cmax

bistab(ωr̄2).
Summing up the case-by-case analysis, we derive an

effector concentration-dependent necessary condition for
bistability. The full set of conditions allowing for bistabil-
ity in different ranges of effector concentrations is given
by

cmax
bistab > c > cmin

bistab if 1
1+e−βεK̄2

c
< 2

ωr̄2
< 1

2r̄1
< 1

1+e−βε ,

cmax
bistab > c if 1

1+e−βεK̄2
c
< 2

ωr̄2
< 1

1+e−βε < 1
2r̄1

,

c > cmin
bistab if 2

ωr̄2
< 1

1+e−βεK̄2
c
< 1

2r̄1
< 1

1+e−βε ,

c ≥ 0 if 2
ωr̄2

< 1
1+e−βεK̄2

c
< 1

1+e−βε < 1
2r̄1

,

no bistability if 2
ωr̄2

> 1
1+e−βε or 1

1+e−βεK̄2
c
> 1

2r̄1
.

(B32)
As noted, the parameter r̄0 does not enter into these

Descartes-based bounds and thus does not influence the
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existence of bistability in this analysis. From these ex-
pressions, we recover the necessary conditions for bista-
bility, stated in the previous section as

2

ωr̄2
<

1

1 + e−βε
, (B33)

1

1 + e−βεK̄2
c

<
1

2r̄1
, (B34)

and

2

ωr2
<

1

2r̄1
. (B35)

and re-expressed in Eqns. 10- 12. These conditions can
equivalently be rewritten as

ωr̄2 > max
(
2(1 + e−βε), 4r̄1

)
(B36)

and

r̄1 < min

(
1 + e−βεK̄2

c

2
,
ωr̄2
4

)
. (B37)

From Eqn. B32, we identify necessary conditions under
which the system displays bistability for all effector con-
centrations above a minimal threshold. This corresponds
to being in either the third or fourth case of Eqn. B32.
These cases are captured by the inequality

ωr̄2 > 2(1 + e−βεK̄2
c ), (B38)

which implies that, for a sufficiently large product ωr̄2,
the system permits bistability across a semi-infinite range
of effector concentrations.

To complement the analytical results summarized in
Eqn. B32, we compare the derived necessary conditions
for bistability with numerically computed bistability re-
gions across different parameters. As shown in Fig-
ure 28, the analytically predicted bounds—represented
in orange—are in close agreement with the numerically
determined region of bistability—shown in red—near the
onset of bistability. For larger values of the cooperativ-
ity parameter ω or the activation rate r̄2, as well as for
smaller values of the intermediate rate r̄1, the analyt-
ical bounds significantly overestimate the true bistable
region. This discrepancy arises because the analytical
bounds are necessary but not sufficient conditions, and
therefore do not capture the full behavior of the system.
Nevertheless, these bounds offer a valuable predictor of
the minimal and maximal effector concentrations that
can support bistability under a given set of parameters.

Appendix C: Fixed point structure of the
auto-activation system as a gradient flow

The auto-activation dynamical system defined in
Eqn. 9 is a dynamical system that derives from a gra-
dient. Indeed, we can write this equation as

dĀ

dt̄
= −dV

dĀ
, (C1)

with

−dV

dĀ
=

P (Ā)

1 + 2pact(c)Ā+ ω(pact(c)Ā)2
, (C2)

and

P (Ā) = r0 + (r12pact(c)− 1)Ā (C3)

+ (r2ω(pact(c))
2 − 2pact(c))Ā

2 − ω(pact(c))
2Ā3

= ωp2act(c)(Ā− Ā1)(Ā− Ā2)(Ā− Ā3),

where (Ā1, Ā2, Ā3) ∈ R, if there is bistability.

Given Eqn. C2, our goal now is to determine the land-
scape V (A) itself. To that end, we need to integrate
Eqn. C2. We invoke the strategy of separation of vari-
ables, resulting in

−dV = dĀ · 1 + 2pact(c)Ā+ ω(pact(c)Ā)2

ωp2act(c)(Ā− Ā1)(Ā− Ā2)(Ā− Ā3)
. (C4)

To make progress with this integral, we express the right-
hand side using partial fraction decomposition. This
yields

1 + 2pact(c)Ā+ ω(pact(c)Ā)2

ωp2act(c)
∏3

i=1(Ā− Āi)
=

3∑
i=1

Ci

Ā− Āi
. (C5)

We find the coefficients C1, C2, and C3 by multiplying
through by the common denominator and evaluating at
Ā = Āi, for i ∈ {1, 2, 3}. The resulting expressions are

C1 =

1
p2
act(c)ω

+ 2
pact(c)ω

Ā1 + Ā2
1

(Ā1 − Ā2)(Ā1 − Ā3)
,

C2 =

1
p2
act(c)ω

+ 2
pact(c)ω

Ā2 + Ā2
2

(Ā2 − Ā1)(Ā2 − Ā3)
,

C3 =

1
p2
act(c)ω

+ 2
pact(c)ω

Ā3 + Ā2
3

(Ā3 − Ā1)(Ā3 − Ā2)
.

(C6)

We can then write the potential function V (Ā) as

V (Ā) = C1 ln |Ā− Ā1|+ C2 ln |Ā− Ā2|+ C3 ln |Ā− Ā3|.
(C7)

Since the auto-activation system derives from a gradi-
ent, we can apply classical results from one-dimensional
gradient dynamics: namely, that the number of stable
steady states is equal to the number of unstable steady



39

minimal cooperativity necessary
for bistability

region of 
bistability

analytical 
bound of 
region of 
bistablity

10–5 10–2 102
10–2

10–1

100

101

101 101100 100104 104

A

c

mRNA expression rate r2mRNA expression rate r1cooperativity ω

eff
ec

to
r 

co
nc

en
tr

at
io

n,
 c

 (M
) 

ω

Figure 28: Minimal and maximal values of effector concentration between which the system is bistable. Given
baseline parameter values ω = 7.5, r̄0 = 0.1, r̄1 = 1, r̄2 = 20, each figure varies a different parameter, keeping all
others fixed. For each panel, the shaded region in red is the region of effector concentration for which there is
bistability. The shaded region in orange denotes the analytically-bounded region of bistability. The dotted line in
the first figure is an analytical lower bound for the minimal cooperativity required for bistability. Note that the
analytic approach discussed here, summed up in Eqn. B32, invokes a necessary but not sufficient condition for
bistability, and thus always encompasses a larger region of parameter space than the system’s observed region in red.

states plus one [68]. Indeed let’s assume that

dV (Ā)

dĀ
|Ā=Āi = 0 (C8)

at finitely many points i ∈ [1, n] and

d2V (Ā)

dĀ2
|Ā=Āi ̸= 0 (C9)

at those points (the stable points are not degenerate).
We take Ā1 < ... < Ān. With two minima in V , the
function must then reach a local maximum between the
two to transition between these minima. We therefore see
that the local minima and maxima of V must alternate.
A last key point is why that the first and last extrema
of V must be minima. If the first extremum of V were a
maximum—corresponding to an unstable steady state—a
small perturbation toward smaller Ā would drive the sys-
tem toward the boundary of the domain, where no min-
imum of V exists and no steady state is defined. This
would render the system ill-posed. A similar reasoning
can be applied to understand why the last steady state
also has to be a minimum. So we can apply this to our
system. Intuitively, imagining our dynamical system as
a one-dimensional energy landscape, two stable steady
state “valleys” must be connected by an unstable steady
state “hill.” Therefore, bistability implies that our sys-
tem has three steady states, two stable and one unstable.

Appendix D: Auto-activation : No bistability at
high cooperativity and rate r̄2.

As shown in Fig. 11, for sufficiently large values of
ω and r̄2, the system does not exhibit bistability for
any effector concentration c. In this section, we support
this observation using bi-dimensional numerical parame-
ter sweeps and provide analytical arguments explaining
its origin.
In Fig. 29, we report the maximal cooperativity ω

above which the system is monostable for all values of
effector concentration. The rate parameters are var-
ied two at a time while keeping the third fixed. For
each triplet (r̄0, r̄1, r̄2), we sample all effector concen-
trations by sweeping over values of pact between leaki-
ness and saturation. We then determine the maximal
value of ω for which the system is bistable for at least
one value of c. These parameter sweeps reveal a fi-
nite—but potentially large—upper bound on coopera-
tivity beyond which bistability is lost. The yellow re-
gions in Fig. 29(A–B) indicate that no upper bound was
found within our sampled cooperativity range (101 to
109); this absence does not imply the bound does not ex-
ist, but rather reflects the limits of our numerical explo-
ration, which did not extend beyond 109 due to sampling
choices and diminishing biophysical relevance. However,
since a finite bound exists in other parts of parameter
space, we hypothesize that such a bound also exists in
these regions. In the next section, we confirm this ana-
lytically. Interestingly, the appearance of yellow regions
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Figure 29: Parameter space exploration of the maximal cooperativity ωbistable
max above which the system becomes

monostable for all effector concentrations. The cooperativity ω is sampled over the interval ω ∈ [101, 109]. Effector
concentrations are effectively scanned from 0 to ∞ by sweeping pact between its biologically constrained bounds: the
leakiness level pmin

act = 1
1+e−βεK̄2

c
and the saturation level pmax

act = 1
1+e−βε , with fixed parameters βε = 4.5 and

K̄c = 2.6× 102. Three two-dimensional parameter sweeps are performed. In panel (A), (r̄1, r̄2) are varied in
[r̄0, 10

5]× [r̄0, 10
5] with r̄0 = 0.1 held constant. In panel (B), (r̄0, r̄2) are varied in [10−5, r̄1]× [r̄1, 10

5] with r̄1 = 1
fixed. In panel (C), (r̄0, r̄1) are varied in [10−5, r̄2]× [10−5, r̄2] with r̄2 = 20 fixed. Regions shaded in gray
correspond to parameter combinations that violate the auto-activation condition r̄0 ≤ r̄1 ≤ r̄2, and for which the
system no longer functions as an auto-activating unit. In regions where no maximal cooperativity values for
bistability are reported, the system remains monostable across the entire range of cooperativity values sampled.

in Fig. 29(A–B)—where no numerical upper bound on
cooperativity is observed—correlates with increasing val-
ues of r̄2, consistent with the fact that raising r̄2 initially
promotes bistability. While these bounds appear only at
very high cooperativities (typically ω > 102), and may
exceed biologically plausible values, they nonetheless de-
pend on the system’s rate parameters and could be lower
in other settings.

We explain this behavior analytically. As discussed
in Appendix B 2, bistability can be assessed by examin-
ing the number of non-negative roots of the steady-state
polynomial Eqn. B1. To be bistable, the system has to
admit more than one steady state, which corresponds
to the polynomial having three real non-negative roots.
A necessary condition for this, is that the polynomial
has three real roots, regardless of their sign. While this
condition does not guarantee bistability—since some of
the roots may be negative—it is nonetheless governed di-
rectly by the sign of the polynomial’s discriminant. For
a general cubic polynomial

Q(x) = ax3 + bx2 + cx+ d, (D1)

the discriminant is given by

∆ = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd. (D2)

If ∆ > 0, the polynomial has three distinct real roots; if
∆ < 0, it has only one real root; and if ∆ = 0, it has at
least one repeated root.

For the auto-activation system, letting pact(c) = p, the
discriminant of the steady-state polynomial can be writ-

ten as

∆ = p2
[
4 + 32p r̄0 + 16p r̄1(−1 + p r̄1) (D3)

+ 4ω(−1 + 2p r̄1) (1 + 9p r̄0 + 4p r̄1(−1 + p r̄1))

− 4ωp (1 + 4p(3r̄0 + r̄1(−1 + p r̄1))) r̄2

− 4ω3p4r̄0 r̄
3
2

+ ω2p2
[
−27 r̄20 + (1− 2p r̄1)

2 r̄22 + 6r̄0 r̄2 (3− 6p r̄1 + 4p r̄2)
] ]

.

We now study the asymptotic behavior of this discrim-
inant in the limits of infinite ω, r̄2, and r̄0. We do not
consider the limit of infinite r̄1, since, according to the
bounds in Eqns. 10- 12, a necessary condition for bistabil-
ity is that r̄1 remains below a threshold set by the other
system parameters. Therefore, in this limit, the system
is necessarily monostable.

In each of the asymptotic limits, we derive the leading-
order term of the discriminant and infer the discriminant
diverges negatively. Respectively for ω,∆ ∼

ω→∞
−4p6r̄0r̄

3
2ω

3,

lim
ω→∞

∆ = −∞,
(D4)

for r̄2, ∆ ∼
r̄2→∞

−4p6r̄0r̄
3
2ω

3,

lim
r̄2→∞

∆ = −∞,
(D5)

and for r̄0,
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∆ ∼
r̄0→∞

−27ω2p4r̄20,

lim
r̄0→∞

∆ = −∞.
(D6)

These asymptotic results indicate that bistability be-
comes impossible in the limit of arbitrarily large ω, r̄2,
or r̄0.

Since a negative discriminant implies that the poly-
nomial admits only one real root, the system is neces-
sarily monostable in these asymptotic regimes. This an-
alytically supports the existence of upper bounds on ω
and r̄2 observed in Fig. 29 and Fig. 11(A,D), consistent
with the scaling behaviors shown in Eqns.D4 and D5.
Moreover, the symmetric structure of these leading-order
terms highlights the seemingly interchangeable roles of ω
and r̄2 in promoting bistability. The loss of bistability for
large r̄0, as seen in Fig. 11(B), is similarly explained by
the negative divergence of the discriminant in Eqn. D6.

Appendix E: Conditions for activation in
auto-activation circuit

We define the range of parameters on which we will
focus in the setting of the study of auto-activation. In
this framework, the production term in Eqn. 9, which we
will refer to as y(Ā), must be monotonically increasing.
In other words, we want dy/dĀ ≥ 0 for all Ā ≥ 0. To
simplify the computation, let x = pact(c)Ā. We then
have

dy

dx
=

1

pact(c)

dy

dĀ
, (E1)

and the condition thus becomes dy/dx ≥ 0 for all x ≥ 0.

Writing down the expression of y(x),

y(x) =
r̄0 + 2r̄1x+ ωr̄2x

2

1 + 2x+ ωx2
, (E2)

we compute the derivative

dy

dx
=

2
(
r̄1 − r̄0 + xω(r̄2 − r̄0) + x2ω(r̄2 − r̄1)

)
(1 + x (2 + xω))

2 . (E3)

For this expression to be non-negative for all x, it must
be non-negative for x = 0 and for x → ∞. This then
requires that r̄2 ≥ r̄1 and r̄1 ≥ r̄0, further implying that
r̄2 ≥ r̄0. This is enough to assert that y(x) is an increas-
ing function of x as its derivative is always non-negative
for all x ≥ 0.

Appendix F: Auto-activation: Supplement for the
comparison between Hill and thermodynamic model

In this section, we provide support for some of the
claims made in the discussion comparing thermodynamic
models and the Hill function approach in the context of
auto-activation in Sec. III A 2.

First, we address the claim that the Hill function for-
mulation produces similar probabilities of state of tran-
scription factor binding. In Fig. 30, we illustrate such
probabilities as a function of active activator concentra-
tion Āact = pact(c)Ā. For example, the probability of no
activator bound in the thermodynamic model is given by

1

1 + 2Āact + ω(Āact)2
. (F1)

Here, we treat the Hill function as approximating away
the state where one activator is bound, and only allows
zero or two activators to be bound. We observe that the
probability of no activator bound (blue curve) and the
probability of two activators bound (green curve) have
similar shapes in both models. The two models differ
slightly in the region where the green and blue curves
intersect which signifies the transition region of the ge-
netic switch. In the thermodynamic model, the green
and blue curves typically intersect at a lower probability
due to the existence of the state where one activator is
bound, and the Āact at which they intersect can be tuned
by ω. Nevertheless, it is difficult to intuit the drastic dif-
ferences in bifurcation curves between the two models as
described in the main text from this picture, as the qual-
itative features of the probabilities of states in the two
models resemble each other.

Second, in the main text (Fig. 12(B)), we illustrated
the behavior of the Hill function formulation using a rep-
resentative example with Hill coefficient n = 2. To sup-
port the generality of the observation that the critical ef-
fector concentration c—captured by the half-maximal ef-
fective concentration EC50—remains approximately fixed
across Hill coefficients, we include in Fig. 31 additional
bifurcation curves for n = 2, 5, 10. These curves demon-
strate that EC50 varies little with n for Hill curves. By
contrast, in the thermodynamic model, the location of
EC50 is sensitive to parameters such as r̄1 and ω, as
shown in Fig. 12(B).

Appendix G: Auto-activation : Bistability is possible
for non cooperative systems (ω = 1).

1. Definition of the effective Hill coefficient

We first recall how to compute the Hill coefficient of
an activating Hill function with constitutive expression,
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Figure 30: Comparing probabilities of activator binding states as a function of active activator concentration Āact in
the thermodynamic and Hill model. (A) Thermodynamic model with cooperativity ω = 1. (B) Thermodynamic
model with ω = 100. (C) Hill function model with Hill coefficient n = 2. Blue curve corresponds to the state with
no activator bound. Orange curve corresponds to the state with one activator bound. Green curve corresponds to
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denoted g(x), defined by

g(x) =
r̄0 + r̄2x

n

1 + xn
. (G1)

Its log-derivative is

d ln g

d lnx
= n · xn(r̄2 − r̄0)

(1 + xn)(r̄0 + r̄2xn)
. (G2)

Let us define x∗ such that

g(x∗) =
r̄2 + r̄0

2
. (G3)

This holds for x∗ = 1. Evaluating the derivative at this
value then gives

d ln g

d lnx

∣∣∣∣
x=x∗

=
1

2
n · r̄2 − r̄0

r̄2 + r̄0
, (G4)

and solving for n, we obtain

n =
d ln g

d lnx

∣∣∣∣
x=x∗

· 2 r̄2 + r̄0
r̄0 − r̄2

. (G5)

We now define a similar expression for a thermody-
namic model w(x) given by

w(x) =
r̄0 + 2r̄1pactx+ ωr̄2p

2
actx

2

1 + 2pactx+ ωp2actx
2

. (G6)

We observe that w(x) can be written as ŵ(pactx) with

ŵ(x̂) =
r̄0 + 2r̄1x̂+ ωr̄2x̂

2

1 + 2hx̂+ ωx̂2
, (G7)

where h = 1 in our case. Since d lnw/d lnx =
d ln ŵ/d ln x̂ when h = 1, the effective Hill coefficient does
not depend on pact. The derivative of ŵ is

d ln ŵ

d ln x̂
=

2(1 + hx̂)

1 + x̂(2h+ ωx̂)
− 2(r̄0 + r̄1x̂)

r̄0 + x̂(2r̄1 + ωr̄2x̂)
. (G8)
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Letting x̂∗ be defined by ŵ(x̂∗) = r̄2+r̄0
2 yields

x̂∗ =
−hr̄0 + 2r̄1 − hr̄2

(r̄0 − r̄2)ω
+
√
S, (G9)

where

S =

h2r̄20 − 4hr̄0r̄1 + 4r̄21 + 2h2r̄0r̄2
− 4hr̄1r̄2 + h2r̄22 + r̄20ω − 2r̄0r̄2ω + r̄22ω

(r̄0 − r̄2)2ω2
. (G10)

This then gives the derivative at x̂∗ as

d ln ŵ

d ln x̂

∣∣∣∣
x̂=x̂∗

=
r̄2 − r̄0
r̄2 + r̄0

· (h(r̄0 + r̄2)− 2r̄1)u+ t

(2hr̄2 − 2r̄1)u+ t
, (G11)

with
α =

√
(−2r̄1+h(r̄0+r̄2))2

(r̄0−r̄2)2
+ 4ω,

u = −2r̄1 + h(r̄0 + r̄2) + (−r̄0 + r̄2)α,

t = 4(r̄0 − r̄2)
2ω.

(G12)

We defined ŵ with an extra parameter h to allow a
mapping between the thermodynamic model and the Hill
function. For the Hill case, we set h = 0, r̄1 = 0, and
ω = 1. In our thermodynamic model, h = 1 and the
expression of Eqn. G11 becomes

d ln ŵ

d ln x̂

∣∣∣∣
x̂=x̂∗

=
r̄2 − r̄0
r̄2 + r̄0

· (r̄0 + r̄2 − 2r̄1)u+ t

(2r̄2 − 2r̄1)u+ t
, (G13)

with 
α =

√
(−2r̄1+r̄0+r̄2)2

(r̄0−r̄2)2
+ 4ω,

u = −2r̄1 + r̄0 + r̄2 + (−r̄0 + r̄2)α,

t = 4(r̄0 − r̄2)
2ω.

(G14)

To ensure consistency with the Hill model case, we
therefore define the effective Hill coefficient as

neff =
d lnw

d lnx

∣∣∣∣
x=x∗

· 2 r̄2 + r̄0
r̄2 − r̄0

(G15)

for

w(x) =
r̄0 + 2r̄1pactx+ ωr̄2pactx

2

1 + 2pactx+ ωpactx2
(G16)

and x∗ defined such that

w(x∗) =
r̄2 + r̄0

2
. (G17)

We note that for the auto activation system, in which
r̄0 ≤ r̄1 ≤ r̄2, having an effective Hill coefficient larger
than unity (neff > 1) is equivalent to

ω >
(r̄1 − r̄0)(r̄2 − r̄1)

(r̄2 − r̄0)2
. (G18)

Therefore, depending on the parameters of the system,
the effective Hill coefficient can be larger or smaller than
one, despite the activator having two binding sites.

2. Numerical sweep for minimal cooperativity
above which there is bistability.

To better understand how the parameters of the auto-
activation system constrain the emergence of bistability,
we explore the minimal cooperativity ωbistable

min required
to observe bistability across a broad range of rate pa-
rameters. Specifically, we perform numerical parameter
sweeps over (r̄0, r̄1, r̄2), systematically enforcing the auto-
activation condition r̄0 ≤ r̄1 ≤ r̄2. Regions where this
condition is violated are shaded in gray. For each valid
triplet, we determine the minimal value of ω for which
bistability occurs over a finite range of effector concen-
trations.
Fig. 32(A) illustrates the numerical method used to

identify this minimum cooperativity. The resulting val-
ues are displayed in Fig. 32(B), where we observe that
the required cooperativity varies significantly across pa-
rameter space. Notably, bistability can be achieved even
in the case where ω ≤ 1. Particularly where r̄2 is suf-
ficiently large relative to r̄1 and r̄0. This includes cases
where ω < 1, which corresponds to anti-cooperative be-
havior—i.e., where the binding of the first activator de-
creases the likelihood of a second one binding and cases
where ω = 1, which corresponds to no cooperativity.
While cooperativity in the strict thermodynamic sense

may not be required, the system still exhibits an ef-
fective nonlinearity sufficient to support bistability. To
assess this, we compute the effective Hill coefficient of
the production term, derived with a thermodynamical
model, shown in Fig. 32(C).When the system is bistable,
the effectively Hill coefficient always exceeds 1, consis-
tent with theoretical expectations [78]. Furthermore, in
Fig. 32(D), we evaluate an effective cooperativity based
on the inequality ωr̄2/2 > 1, which serves as a necessary
(though not sufficient) condition for bistability. The con-
sistency of this bound with the numerically determined
ωbistable
min highlights its predictive value.
Together, these analyses reveal that bistability is not

strictly dependent on cooperative binding in the classi-
cal sense, but rather emerges from the combined effects
of system parameters—particularly the balance between
production rates. This underscores the importance of
kinetic tuning in biological systems and the potential
for bistable behavior even in regimes of weak or anti-
cooperative interactions.

Appendix H: Relaxation timescale to equilibrium for
the auto-activation system

We examine the relaxation timescales to steady state
in the auto-activation system as a function of the initial
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Figure 32: Parameter space exploration tracking the minimal cooperativity required for bistability over a range of
effector concentrations. The cooperativity ω is sampled over the interval ω ∈ [1, 105]. The condition r̄0 ≤ r̄1 ≤ r̄2 is
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5]2 with r̄0 = 0.1

fixed; (iii) (r̄0, r̄2) ∈ [10−5, r̄1]× [r̄1, 10
5] with r̄1 = 1 fixed. In regions where no minimal cooperativity values for

bistability are reported, the system remains monostable across the entire range of cooperativity values sampled.

concentration of activator A, denoted Ā0. To define the
timescale, we employ two different methods. The first
method, referred to as the threshold approach, involves
measuring the time it takes for the system to evolve from
the initial condition to a fixed fraction of its steady state.

We track the time-dependent trajectory Ā(t̄) and define
the relaxation timescale as the time t̄∗ such that

Ā(t̄∗)− Āi

Āf − Āi
= ϵ, (H1)
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Figure 33: Relaxation timescales as a function of the
initial concentration of gene A (Ā0). The parameters of
the system are fixed at the following values: ω = 7.5,
r̄0 = 0.1, r̄1 = 1, r̄2 = 20, and c = 2 · 10−5M. Timescales
are computed using two approaches: a threshold-based
method (orange curves) and exponential curve fitting
(blue curve). Each orange curve corresponds to a
different threshold value ϵ indicated as percentages in
the legend. The threshold timescale t̄∗ is the time
required for Ā(t̄) to reach a fraction ϵ of the total change
from initial condition Ā0 to steady state Ā∞. The blue
curve represents the relaxation time obtained from
exponential fits to Ā(t̄) trajectories. Vertical lines mark
positions of stable (solid lines) and unstable (dashed
line) fixed points. The horizontal black line indicates
the unity timescale as a reference for comparison.

where ϵ is the chosen threshold. In practice, since the sys-
tem is simulated numerically over N discrete time points,
the relaxation time is computed as the earliest sampled
time t̄i for which the normalized deviation exceeds ϵ,

t̄∗ = min
j∈[1,N ]

{
t̄j

∣∣∣∣ Ā(t̄j)− Āi

Āf − Āi
> ϵ

}
. (H2)

We report the relaxation timescale obtained using var-
ious values of ϵ in Fig. 33. All resulting curves exhibit
similar behavior, indicating that the precise value of the
threshold does not significantly affect the overall system
dynamics.

We compare these threshold-based relaxation
timescales with those obtained by fitting an expo-
nential function to the trajectory Ā(t̄). If Ā(t̄) followed
a purely exponential decay—as it does near stable fixed
points—then the timescale from the exponential fit
would match the threshold-based timescale for ϵ ≈ 0.63.
As shown in Fig. 33, the curve corresponding to the
exponential fit closely matches the threshold-based
curve with ϵ = 0.63, even when the initial condition
is far from the stable fixed points and the system is
not strictly exponential, as illustrated in Fig. 13(A).
Nevertheless, near the stable fixed points, we observe
that the threshold method reports a longer timescale.
This is because the initial condition is very close to that
of the stable fixed point, and the system takes longer

to cross the relative threshold. Therefore, we rely on
the timescale obtained from the exponential fitting, as
shown in Fig. 13(B).

Appendix I: Bistability regimes in the mutual
repression circuit

1. A necessary condition for bistability

In the mutual repression system at steady state, we set
the time derivatives to zero, leading to the equations

R̄1 =
r̄

1 + 2p2R̄2 + ω2(p2R̄2)2
(I1)

and

R̄2 =
r̄

1 + 2p1
R̄1

K̄
+ ω1

(
p1

R̄1

K̄

)2 , (I2)

where for convenience we define p1 = pact(c1) and p2 =
pact(c2). By substituting the expression for R̄1 of Eqn. I1
into the Eqn. I2 for R̄2, Eqn. I2 then becomes

R̄2 =
r̄

1 +
2p1

K̄

r̄

1 + 2p2R̄2 + ω2(p2R̄2)2
+ ω1

(
p1

K̄

r̄

1 + 2p2R̄2 + ω2(p2R̄2)2

)2
.

(I3)

We can rewrite Eqn. I3 in standard polynomial form,
M(R̄2) = 0, where

M(R̄2) =p42ω
2
2R̄

5
2 + p32ω2(4− r̄ω2p2)R̄

4
2 (I4)

+ 2p22(2 + ω2(1 + r̄(
p1

K̄
− 2p2)))R̄

3
2

+ 4p2(1 + r̄(
p1

K̄
− p2 −

ω2p2
2

))R̄2
2

+ (1 +
2p1r̄

K̄
+

ω1p
2
1r̄

2

K̄2
− 4p2r)R̄2 − r̄.

To assess whether the system is monostable, we ex-
amine the number of non-negative roots of the polyno-
mial M(R̄2). If the second derivative of M(R̄2) does not
change sign, then the polynomial can have at most two
real roots. In particular, if the polynomial is convex for
all non-negative values of R̄2, i.e., M ′′(R̄2) > 0, then
the system cannot be bistable. The second derivative of
M(R̄2) is given by

M ′′(R̄2) = 20p42ω
2
2R̄

3
2 + 12p32ω2(4− r̄ω2p2)R̄

2
2

+ 12p22

(
2 + ω2

(
1 + r̄

(p1
K̄

− 2p2

)))
R̄2

+ 8p2

(
1 + r̄

(p1
K̄

− p2 −
ω2p2
2

))
. (I5)

To guarantee that M ′′(R̄2) > 0 for all non-negative val-
ues of R̄2, we require that all coefficients in the polyno-
mial expression of M ′′(R̄2) remain strictly positive. This
condition translates into three distinct inequalities. First,



46

the positivity of the quadratic term, requires that

4− r̄ω2p2 > 0. (I6)

Next, positivity of the linear term imposes the constraint

2 + ω2

(
1 + r̄

(p1
K̄

− 2p2

))
> 0. (I7)

Finally, the positivity of the constant term yields

1 + r̄
(p1
K̄

− p2 −
ω2p2
2

)
> 0. (I8)

These conditions can be equivalently rewritten in terms
of upper bounds on p2 and combinations of p1 and p2,
yielding

p2 <
4

r̄ω2
, (I9)

2p2 −
p1
K̄

<
1

r̄

(
2

ω2
+ 1

)
, (I10)(

1 +
ω2

2

)
p2 −

p1
K̄

<
1

r̄
. (I11)

To ensure that the system remains monostable for all
values of effector concentrations c1 and c2, we require
that these inequalities hold for the maximum possible
values for the different functions of c1 and c2. Thus, we
obtain the sufficient conditions

pmax <
4

r̄ω2
, (I12)

2pmax −
pmin

K̄
<

1

r̄

(
2

ω2
+ 1

)
, (I13)(

1 +
ω2

2

)
pmax −

pmin

K̄
<

1

r̄
, (I14)

Finally, in the special case where K̄ = 1, a sufficient con-
ditions under which the system remains monostable for
all effector concentrations simplify, using Mathematica,
to

r̄ <
1

pmax − pmin + ω2pmax/2
. (I15)

Taking the contrapositive, we obtain a necessary con-
dition for the system to exhibit bistability at some value
of the effector concentration

r̄ >
1

pmax − pmin + ω2pmax/2
(I16)

The bound stated in Eqn. I16 depends on both ω2 and
r̄, again, similarly to the auto-activation system, acting
together to determine wether bistability can be accessed
or not.

For K̄ = 1 the two cooperativities play a symmetric

role. Therefore necessary conditions for bistability are

r̄ >
1

pmax − pmin + ω2pmax/2
(I17)

and

r̄ >
1

pmax − pmin + ω1pmax/2
. (I18)

From Eqns. I18 and I17 a necessary condition for bista-
bility for K = 1 is that

r̄ > max(
1

pmax − pmin + ω2pmax/2
,

1

pmax − pmin + ω1pmax/2
).

(I19)

which simplifies to

r̄ >
1

pmax − pmin +min(ω2, ω1)pmax/2
. (I20)

2. Effective Hill coefficient of the production terms

In the case of auto-activation, analyzing the effective
Hill coefficient provided insight into how bistability can
arise even in non-cooperative systems—ω > 1 is not a
necessary condition for bistability, but from our numeri-
cal sweeps displayed in Fig. 32, neff > 1 is. Motivated by
this, we now examine whether a similar criterion might
help explain the restriction of bistability to specific zones
of parameter space in mutual repression circuits.
We defined (Eqn. G15, Eqn. G17) and derived an an-

alytical formula (Eqn. G14, Eqn. G13) for the effective
Hill coefficient for a general production term

w(x) =
r̄0 + 2r̄1pactx+ ωr̄2pactx

2

1 + 2pactx+ ωpactx2
, (I21)

in Appendix G1. In the mutual repression system, the
production terms of interest are the production of R1

driven by promoter 1 and regulated by R2

f1(R̄2) =
r̄

1 + 2(pact(c2)R̄2) + ω2(pact(c2)R̄2)2
(I22)

and the production of R2 driven by promoter 2 and reg-
ulated by R1

f2(R̄1) =
r̄

1 + 2(pact(c1)
R̄1

K ) + ω1(pact(c1)
R̄1

K )2
. (I23)

With r̄0 = r̄, r̄1 = 0, and r̄2 = 0, pact ≡ pact(c2) for
f1(R̄2) and pact ≡ pact(c1)/K for f2(R̄1); we see that
those two production terms fall in to the more general
from w(x) of Eqn. I21. We can therefore apply the rea-
soning and algebra derived in Appendix G1. The corre-
sponding effective Hill coefficients are given by

n1 = 2−
√
1 + 4ω2 − 1

2ω2
, (I24)
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for the production term f1(R̄2) and

n2 = 2−
√
1 + 4ω1 − 1

2ω1
, (I25)

for the production term f2(R̄1). We see that the two
expressions of the effective Hill coefficients have the same
functional form. Therefore showing that n1 > 1 for all
ω2 > 0, implies that n2 > 1 for all ω1 > 0. We therefore
establish that n1 > 1 for all ω2 > 0, and n2 > 1 for all
ω1 > 0 then follows. This amounts to showing

2ω2 >
√
1 + 4ω2 − 1. (I26)

Adding 1 to each side and squaring both sides gives(
2ω2 + 1

)2
> 1 + 4ω2. (I27)

Expanding the square and canceling identical terms
leaves

4ω 2
2 > 0, (I28)

which is true for every ω2 > 0.
We therefore showed that the effective Hill coefficients

of the production terms are always greater than one in
this system. As a result, while this observation is consis-
tent with conventional expectations [78], it provides little
discriminatory power for identifying regions of bistability,
since the condition is satisfied across parameter space.

3. Effect of cooperativity on the bistability region

Fig. 34(A)(i) shows how the geometry of the bistable
region evolves as the cooperativity of repressor R2 (ω2) is
varied, while ω1 = 7.5, K̄ = 1, and r̄ = 2 are held fixed.
This corresponds to a symmetric case where both repres-
sors bind their respective promoters with equal affinity.
At low ω2, the system is monostable for all inducer con-
centrations, which is consistent with the known require-
ment for a minimal degree of nonlinearity to enable bista-
bility. As ω2 increases beyond a threshold, bistability
emerges, but initially in a constrained region where the
tunability is mostly limited by c1. When ω2 lies approx-
imately between 2 and 5, a nonzero concentration of c1
is required to inactivate a portion of the repressors R1,
thereby reducing their ability to bind DNA efficiently. In
this regime, we are still in a setting where ω1 > ω2, mean-
ing that R1 binds more strongly to the DNA than R2—as
they have equal binding constants, the difference in bind-
ing arises solely from the cooperativity parameters. To
support two distinct expression states—one with high R1

and low R2, and another with the reverse—the binding
strength of R1 must be reduced. This enables a more
balanced competition between the two repressors, mak-
ing it possible for both stable states to coexist. When
ω2 becomes large (e.g., ω2 ≳ 20), the situation reverses:
the bistable region in the (c1, c2) phase space becomes

constrained along the c2 axis, as higher concentrations
of inducer are required to counteract the strong DNA
binding of R2.

For intermediate values of cooperativity, approxi-
mately between 5 and 20, the (c1, c2) phase space is less
constrained. In this regime, the concentrations of c1 and
c2 need to be small enough to maintain repression by
R1 and R2. If either inducer concentration becomes too
high, the system is not repressed anymore and only has
a unique steady state with high concentrations of both
repressors.

While increasing ω2 initially expands the bistable re-
gion and enhances its robustness, we find that beyond a
certain threshold, further increases in cooperativity be-
gin to shrink the bistable domain. This reflects a general
principle also observed for the parameter K̄: pushing
the system too far in one direction strongly constrains
bistability. In the case of ω2, overly strong cooperativity
amplifies the binding of R2 and therefore the repression
of R1, so the system commits to one state, thereby reduc-
ing the range of inducer concentrations for which multiple
steady states coexist.

Fig. 34(A)(ii) explores the impact of tuning ω2 in an
asymmetric setting, where K̄ = 0.7, ω1 = 7.5, and r = 2
are fixed. In this case, repressor R1 binds more tightly
to its promoter than R2 does, breaking the symmetry
observed in Fig. 34(A)(i). At low values of ω2, the sys-
tem is monostable, consistent with insufficient nonlinear-
ity to support multiple steady states. As ω1 increases,
bistability appears, but the geometry of the bistable re-
gion is notably skewed. Compared to Fig. 34(A)(i), it is
interesting to note that the bistability region at higher
cooperativity is larger than in the symmetric case for the
range of inducer concentrations considered. Finally in
Fig. 34(B), we tune the cooperativity ω1 instead of ω2 as
was done in the previous panel. Therefore the roles of c1
and c2 are mirrored.

Appendix J: Separatrix for mutual repression

We recall the differential equations governing the mu-
tual repression system,

dR̄1

dt̄
= −R̄1 + r̄

1

1 + 2pact(c2)R̄2 + ω2

[
pact(c2)R̄2

]2
= F (R̄1, R̄2), (J1)

dR̄2

dt̄
= −R̄2 + r̄

1

1 + 2pact(c1)
R̄1

K̄
+ ω1

[
pact(c1)

R̄1

K̄

]2
= G(R̄1, R̄2). (J2)

The separatrix is defined as the curve R̄2(R̄1) that sat-
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Figure 34: Bistability regimes in mutual repression as a function of cooperativity. Colored regions denote distinct
bistable phase space geometries, defined by whether bistability occurs at very small c1 (c1 = 10−7 M), very small c2
(c2 = 10−7 M), both, or neither. (A) Evolution of the geometry of the bistability phase space, sweeping on inducer
concentrations (c1, c2), for fixed ω1 = 7.5 and r̄ = 2 and respectively K̄ = 1 and K̄ = 0.7 for (i) and (ii), when the
parameter ω2 is varied. (B) Evolution of the geometry of the bistability phase space, sweeping on inducer
concentrations (c1, c2), for fixed ω2 = 7.5, r̄ = 2 and K̄ = 0.7, when the parameter ω1 is varied.

isfies the differential equation

dR̄2

dR̄1
=

G(R̄1, R̄2)

F (R̄1, R̄2)
, (J3)

which tracks the trajectory along which the system tran-

sitions between the basins of attraction of the two stable
steady states.
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Appendix K: Coherent feed-forward loop response
to a step function signal

1. Analytical solution for the output Z̄(t̄)

We now rewrite the dynamical equations of the coher-
ent feed-forward loop. In particular, we introduce a sim-
plifying notation for the activation terms for gene prod-
ucts Y and Z. The reason such a definition is useful is
that these terms are independent of Y and Z themselves
and depend only upon X itself and the concentration of
inducer. To that end, we write the dynamical equations
for Y and Z as

dȲ

dt̄
= −Ȳ + fY (t) (K1)

dZ̄

dt̄
= −Z̄ + fZ(t), (K2)

with the simplifying notation

fY (t̄) =
r̄0Y + r̄1Y pXact(cX(t̄))X̄

1 + pXact(cX(t̄))X̄
, (K3)

and

fZ(t̄) =
r̄0Z + r̄1Z(X (t̄) + Y(t̄)) + ωr̄2ZX (t̄)Y(t̄)

1 + X (t̄) + Y(t̄) + ωX (t̄)Y(t̄)
. (K4)

We recall that the bar indicates quantities where time
is measured in units of 1/γ, and where concentration
and dissociation constants are measured in units of KXY .
The rates are then in units of γKXY . The notations X
and Y and are defined as X (t̄) = pXact(cX(t̄))X̄/K̄XZ and
Y(t̄) = pYact(cY )Ȳ (t̄)/K̄Y Z . We study the response of the
coherent feed-forward loop to a step function in effector
concentration acting on X, namely,

cX(t̄) =

{
ciX if t̄ ≤ 0,

cfX if t̄ > 0.
(K5)

The step in the active concentration of X and the
rescaled concentration X are themselves subject to a step
and can be written as

X (t̄) =


Xi =

pXact(c
i
X)X̄

K̄XZ
if t̄ ≤ 0,

Xf =
pXact(c

f
X)X̄

K̄XZ
if t̄ > 0.

(K6)

The concentration of effector acting on Y , cY (t̄) is taken
to be constant cY (t̄) = c0Y . Our goal here is to solve
for the feed-forward dynamics analytically and obtain in-
sights into the system on the basis of such a solution.
Such a solution is possible because Eqns. 25 and 26 have
a simple form, the time derivative of a variable equals

the negative of itself plus a function of time,

dG(t)

dt
= −G(t) + f(t). (K7)

Such equations can be solved in their most general form
as

G(t) = e−t
(
G(0) +

∫ t

0

et
′
f(t′)dt′

)
. (K8)

In the cases of interest here, G(t) is either Ȳ (t̄) or Z̄(t̄),
and f(t) correspondingly is either fY (t̄) or fZ(t̄), the
activation terms for Y and Z, respectively, in Eqns. K2
and K1.

We first solve Eqn. K1, because its dynamics is not
coupled to Z̄(t̄). Notice that for t̄ > 0, fY (t̄) is constant.
Referring to Eqn. K8, we see that Ȳ evolves from initial
to final state purely exponentially according to the time
evolution

Ȳ (t̄) = −∆Ȳ e−t̄ + Ȳf . (K9)

Here ∆Ȳ = Ȳf − Ȳi is the difference between the final
and initial concentration of Ȳ . We write the explicit ex-
pression of those initial and final steady states hereafter,

Ȳi =
r̄0Y + r̄1Y pXact(c

i
X)X̄

1 + pXact(c
i
X)X̄

(K10)

Ȳf =
r̄0Y + r̄1Y pXact(c

f
X)X̄

1 + pXact(c
f
X)X̄

. (K11)

As pYact(cY (t̄)) = pYact(c
0
Y ) is constant, Ȳ → Y is a

proportional mapping. Therefore, like Ȳ (t), Y(t̄) also
evolves exponentially in time by the similar form

Y(t̄) = −∆Ye−t̄ + Yf , (K12)

with Yf/i = pYact(c
0
Y )Ȳf/i/K̄Y Z and ∆Y = Yf−Yi. Given

this expression for Y(t̄), we now know the full time de-
pendence of fZ(t̄) in Eqn. K2. Next, we can solve for
the dynamics of Z̄ by substituting fZ(t̄) into the general
solution Eqn. K8. By evaluating the integral, we find
that

Z̄(t̄) = Z̄ie
−t̄ +

(
e−t̄

∫ t̄

0

et
′
fZ(t

′)dt′
)

= Z̄ie
−t̄ +

(
Z̄f (1− e−t̄) + Θ(t̄)

)
= Z̄simple(t̄) + Θ(t̄),

(K13)
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with

Θ(t̄) = −Φ∆Y
S2

e−t̄ log

(
Set̄ −∆Y(1 + ωXf )

S −∆Y(1 + ωXf )

)
,

Φ = ωX 2
f (r̄2Z − r̄1Z) + ωXf (r̄2Z − r̄0Z)

+ (r̄1Z − r̄0Z),

S = 1 + Xf + Yf + ωXfYf ,

(K14)

as shown in the main text. The solution of Z̄(t̄) cleanly
splits into two parts. The first two terms describe the
exponential behavior one expects from simple regulation

Z̄simple(t̄) = Z̄ie
−t̄ + Z̄f (1− e−t̄) (K15)

with Z̄i and Z̄f , respectively the initial and final steady
state concentration of the output Z̄. Their explicit ex-
pression is given by

Z̄i =
r̄0Z + r̄1Z(Xi + Yi) + ωr̄2ZXiYi

1 + Xi + Yi + ωXiYi
(K16)

Z̄f =
r̄0Z + r̄1Z(Xf + Yf ) + ωr̄2ZXfYf

1 + Xf + Yf + ωXfYf
. (K17)

We see that Θ(t̄) accounts for the difference between the
feed-forward trajectory Z̄ and the simple regulation tra-
jectory Z̄simple. As a sanity check, we see Θ(t̄) = 0 when
t̄ = 0 and t̄ → ∞, confirming that the feed-forward loop
and the simple regulation trajectory have the same initial
and final state, as expected.

2. Derivation and sign of the average delay ⟨∆t̄⟩

From the analytical expression of Z̄(t̄), we can then
also derive the average time delay from the offset Θ(t̄)

⟨∆t̄⟩ = 1

Z̄f − Z̄i

∫ ∞

0

Θ(t̄)dt̄. (K18)

With Eqn. K14, we can analytically evaluate the inte-
gral and obtain the following expression for the average
delay

⟨∆t̄⟩ = Φ(Z̄f − Z̄i)
−1

S(1 + ωXf )
log

(1 + Xf + Yi + ωXfYi

S

)
.

(K19)

As a reminder, ⟨∆t̄⟩ signifies the average time difference
between the feed-forward loop response and the simple
regulation response. The sign of ⟨∆t̄⟩ indicates whether
the feed-forward loop delays (⟨∆t̄⟩ < 0) or accelerates
(⟨∆t̄⟩ > 0). From Eqn. K19, we can analytically deter-
mine whether the feed-forward loop delays or accelerates
by treating the contribution from each component. To
begin with, we have S > 0 and 1 + ωXf > 0 as con-
centrations are strictly non-negative. For the coherent
feed-forward loop, we have Φ ≥ 0 as r̄2Z ≥ r̄1Z ≥ r̄0Z

since both X and Y activate Z. The term (Z̄f − Z̄i)
depends on the direction of the step. For an ON step,
(Z̄f − Z̄i) > 0 and for an OFF step, (Z̄f − Z̄i) < 0. Fi-
nally, the logarithm also depends on the direction of the
step. For an ON step, we have

1 + Xf + Yi + ωXfYi ≤ 1 + Xf + Yf + ωXfYf = S

(K20)

=⇒ log
(1 + Xf + Yi + ωXfYi

S

)
≤ 0, (K21)

since Xf ≥ Xi and Yf ≥ Yi. Combined with the effect of
other terms, we find ⟨∆t̄⟩ ≤ 0 for an ON step. Similarly,
for the OFF step, we have

1 + Xf + Yi + ωXfYi ≥ 1 + Xf + Yf + ωXfYf = S

(K22)

=⇒ log
(1 + Xf + Yi + ωXfYi

S

)
≥ 0. (K23)

Together with other terms, we find ⟨∆t̄⟩ ≤ 0 for the OFF
step as well.

We have shown that the average time difference ⟨∆t̄⟩
is negative for both the ON and OFF steps. To complete
the analysis, we will further demonstrate that the time
difference ∆t̄(Z̄), defined in Sec. IVA, has the same sign
for any concentration Z̄. This amounts to saying that the
feed-forward trajectory and the simple regulation trajec-
tory never cross each other. We can show this by proving
that Θ(t̄) has the same sign for any t̄ > 0. In Eqn. K14,
we observe that the time dependence in Θ(t̄) appears in
e−t̄ and in Set̄ inside the logarithm. e−t̄ > 0 for any t̄,
thus only the logarithm term might change its sign as
time evolves. However, we observe that

S −∆Y(1 + ωX ) = 1 + Xf + Yi

+ωXfYi > 0. (K24)

In other words, S > ∆Y(1 + ωX ). Since et̄ > 1 for
any t̄ > 0, it is always true that Set̄ > ∆Y(1 + ωX ).
Therefore, the sign of the logarithm does not change with
time. Thus, we have proven that ∆t̄(Z̄) has the same sign
as ⟨∆t̄⟩ for any concentration Z̄.

3. Logic gates analysis in coherent feed-forward
loop

In this appendix section, we will prove that for the
XOR gate in the coherent feed-forward loop, the OFF
step delay is always greater than the ON step delay. In
the XOR limit, ω = 0. Eqn. 38 simplifies to

⟨∆t̄⟩ = 1

(Z̄f − Z̄i)

r̄1Z − r̄0Z
1 + Xf + Yf

log
( 1 + Xf + Yi

1 + Xf + Yf

)
.

(K25)
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The time delay ⟨∆t̄⟩ is different for ON and OFF steps
because X and Y values at t̄ = 0 and t̄ = ∞ are different
for ON and OFF steps. Specifically, for ON step, Xf =
Xmax and Yf = Ymax; while for OFF step Xf = Xmin

and Yf = Ymin. Let’s now compare the time delay ⟨∆t̄⟩
for ON and OFF steps by taking their ratio

The ratio between ⟨∆t̄⟩ for OFF and ON steps is then

∣∣∣∣ ⟨∆t̄⟩OFF

⟨∆t̄⟩ON

∣∣∣∣ =
∣∣∣∣∣∣1 + Xmax + Ymax

1 + Xmin + Ymin

log
(

1+Xmin+Ymax

1+Xmin+Ymin

)
log

(
1+Xmax+Ymin

1+Xmax+Ymax

)
∣∣∣∣∣∣

=
1 + Xmax + Ymax

1 + Xmin + Ymin

log
(

1+Xmin+Ymax

1+Xmin+Ymin

)
log

(
1+Xmax+Ymax

1+Xmax+Ymin

)
(K26)

Note that 1 +Xmax + Ymax ≥ 1 +Xmin + Ymin, and that

1 + Xmin + Ymax

1 + Xmin + Ymin
≥ 1 + Xmax + Ymax

1 + Xmax + Ymin
, (K27)

because for any fraction a/b where a ≥ b > 0, a/b ≥
(a+ c)/(b+ c) for any c ≥ 0. Here, a = 1+Xmin +Ymax,
b = 1+Xmin+Ymin, and c = Xmax−Xmin. As logarithm
is an increasing function, this means

log
1 + Xmin + Ymax

1 + Xmin + Ymin
≥ log

1 + Xmax + Ymax

1 + Xmax + Ymin
(K28)

Therefore, the ratio |⟨∆t̄⟩OFF/⟨∆t̄⟩ON| ≥ 1. We have
demonstrated that for the XOR gate, the OFF step delay
is larger than the ON step delay. We cannot say much
analytically about the magnitude of the ratio of delay.
As we see in Fig. 22(A), this ratio can range anywhere
from close to 1 to a large number.

From here, we might be tempted to argue that for the
AND gate, the ratio always satisfies |⟨∆t̄⟩OFF/⟨∆t̄⟩ON| ≤
1. However, Fig. 22(B)(iii) provides a counter example.
The statement for AND gate is thus false.

4. Analytic solutions of other feed-forward loop
networks.

In any feed-forward loop, X regulates Y and Z, and Y
regulates Z. As there are three regulatory interactions,
there exist 23 = 8 different regulatory logics. For the
dynamical equation of Ȳ , if X activates Y , then

dȲ

dt̄
= −Ȳ +

r̄0Y + r̄1Y p
X
act(cX)X̄

1 + pXact(cX)X̄
. (K29)

Otherwise, if X represses Y , then

dȲ

dt̄
= −Ȳ +

r̄0Y
1 + pXact(cX)X̄

. (K30)

There exist 4 different possibilities for how X and Y reg-
ulate Z. In the main text, we showed the case where X
and Y both activate Z, and the case where X activates
Z but Y represses Z. If X represses Z, but Y activates
Z, we have

dZ̄

dt̄
= −Z̄ +

r̄0Z + r̄1ZY
1 + X + Y + ωXY

. (K31)

If both X and Y represses Z, then

dZ̄

dt̄
= −Z̄ +

r̄0Z
1 + X + Y + ωXY

. (K32)

Using the procedures described in the main text, we can
similarly find analytic solutions describing all the other
regulatory logics of the feed-forward architectures. Note
that for a step function signal in cX and cY , we can
always write

Y(t̄) = −∆Ye−t̄ + Yf . (K33)

Thus, we can compute the analytic expression of Z̄ with-
out worrying about how Y is regulated. We find that the
solutions all have the same form, except with a different
Φ for each architecture of logic. Specifically, we have

ΦXY = ωX 2(r̄2Z − r̄1Z) + ωX (r̄2Z − r̄0Z) (K34)

+ (r̄1Z − r̄0Z)

ΦX = −(r̄1ZX + r̄0Z)(1 + ωX ) (K35)

ΦY = r̄1Z(1 + X )− r̄0Z(1 + ωX ) (K36)

Φ0 = −r̄0Z(1 + ωX ), (K37)

where the subscript on Φ indicates which TF activates Z.
X = Xf is the value of X after the step function jump.
Interestingly, we can write these expressions as

ΦXY = ωX (1 + X )r̄2Z +ΦX +ΦY − Φ0 (K38)

ΦX = −r̄1ZX (1 + ωX ) + Φ0 (K39)

ΦY = r̄1Z(1 + X ) + Φ0 (K40)

Φ0 = −r̄0Z(1 + ωX ). (K41)

A way to interpret this is that Φ gets a new term asso-
ciated with a weight of a state when that state changes
from no expression to expression.

Appendix L: Functionality condition comparison

In Sec. IVB, we mentioned that besides the time de-
lay, another helpful criterion for a functional feed-forward
loop is the existence of a large difference between the
maximum and minimum steady state values of Z. Let’s
define ∆Z̄ = |Z̄f−Z̄i|. We want this to be big so that the
dynamical change between low and high concentrations
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Figure 35: Systematic sweep to find region of large ∆Z̄ = Z̄max − Z̄min. For every logic gate, we sweep across
(K̄XZ , K̄Y Z) ∈ [10−3, 103]× [10−3, 103] and inspect the region of large relative ∆Z̄. (A) XOR gate. (B) AND gate.
(C) OR gate. The XOR gate parameters are r̄0Y = r̄0Z = 0, r̄1Y = r̄1Z = 2, and ω = 0. The AND gate parameters
are r̄0Y = r̄0Z = r̄1Z = 0, r̄1Y = r̄2Z = 2, and ω = 10. The OR gate parameters are r̄0Y = r̄0Z = 0, r̄1Y = r̄1Z = 2,
r̄2Z = 10, and ω = 1. These are the same as in Fig. 22.

is meaningful. The steady state concentrations Z̄f and
Z̄i have expressions given by

Z̄i =
r̄0Z + r̄1Z(Xi + Yi) + ωr̄2ZXiYi

1 + Xi + Yi + ωXiYi
(L1)

Z̄f =
r̄0Z + r̄1Z(Xf + Yf ) + ωr̄2ZXfYf

1 + Xf + Yf + ωXfYf
. (L2)

We observe that both Z̄i and Z̄f scale linearly with the
rate parameters r̄iZ for i = 0, 1, 2. For this reason, in the
theoretical setting, a large ∆Z̄ can always be obtained by
tuning the rate parameters high. Therefore, we did not
include the discussion of this criterion in the main text.
Nevertheless, it might be worthwhile to demonstrate the
dependence of ∆Z̄ on the dissociation constants K̄XZ

and K̄Y Z . We perform similar sweeps as Fig. 22, ex-
cept we plot ∆Z̄ for each choice of (K̄XZ , K̄Y Z). The
result is shown in Fig. 35. We employ the same logic
gate parameters as in Fig. 22. We observe that the re-
gion of large relative ∆Z̄ tends to have an L-shape. The
XOR and AND gate have regions of large ∆Z̄ that ex-
tend in opposite directions. While XOR gate tends to
prefer weak binding, the AND gate benefits from strong
binding. The OR gate shape is a superposition of the
XOR and AND gate, which is perhaps not surprising
since XOR and AND gates are in a sense the limit cases
of OR gate. Note that the difference between the magni-
tude of ∆Z̄ across logic gates is artificial. The absolute
magnitude of OR gate ∆Z̄ is large only because r̄2Z = 10.
We verify the previous claim that ∆Z̄ scales linearly with
production rates.

Regarding the average time delay ⟨∆t̄⟩, we demon-
strate computational evidence for the existence of an up-
per bound on ⟨∆t̄⟩, given a step in pXact(cX) (fix the high
and low values of pXact). The full set of tunable param-
eters of the system is r̄iY , r̄jZ , ω, X̄, K̄XZ , K̄Y Z , where
i ∈ {0, 1} and j ∈ {0, 1, 2}. They span a semi-infinite
9-dimensional parameter space. To sweep across this en-

tire space is computationally prohibitive. As a result, we
instead take a few 2-dimensional slices to illustrate the
existence of the upper bound on ⟨∆t̄⟩. Specifically, we
pair-wise tune 5 different parameters: r̄0 = r̄0Y = r̄0Z ,
r̄1 = r̄1Y = r̄1Z , r̄2Z , ω, and X̄. For each parameter
combination, we search in K-subspace (as in Fig. 22,
(K̄XZ , K̄Y Z) ∈ [10−3, 103] × [10−3, 103]) and find the
combination of (K̄XZ , K̄Y Z) that generates the maxi-
mum ⟨∆t̄⟩ and record the value of the largest time delay
as ⟨∆t̄⟩max. In Fig. 36, we plot ⟨∆t̄⟩max as a function
of 10 different pair-wise parameters. We find that all pa-
rameter combinations yield ⟨∆t̄⟩ < 5. ⟨∆t̄⟩ remains finite
when any parameter (when possible) is tuned towards∞.

Finally, we address the dependence of ⟨∆t̄⟩ on the
leakiness and saturation of pXact(cX). Here, we denote
the minimal pXact(cX) in a step as pmin and the maxi-
mal pXact(cX) as pmax. After many experimentation with
the numerics, we find that the saturation pmax plays a
smaller role in determining ⟨∆t̄⟩max. The limit pmax = 1
yields a similar ⟨∆t̄⟩max as pmax = 0.95, and decreasing
pmax only makes ⟨∆t̄⟩max smaller. Contrary to pmax, pmin

plays a much bigger role. We demonstrate this depen-
dency in Fig. 37. Here, we examine the OFF step delay
in the XOR coherent feed-forward loop, as from previous
sweeps in Fig. 22 and Fig. 36, we see that this tends to
be the setting that generates the largest amount of delay.
For a given pmin, we sweep across r̄1Y = r̄1Z = r̄1, X̄. For
each combination of r̄1 and X̄, we again perform another
sweep in (K̄XZ , K̄Y Z) ∈ [10−3, 103] × [10−3, 103] to find
largest ⟨∆t̄⟩. We see from Fig. 37 that as pmin decreases,
the maximal ⟨∆t̄⟩max increases. We note, however, that
⟨∆t̄⟩max still converges computationally for finite pmin.
Due to the constraint of the explicit effector function
pXact(cX), for any biological parameter pmin is finite. For
this reason, we demonstrate the maximum delay corre-
sponding to a biologically sensible set of parameters, and
investigate its significance in the main text.
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Figure 36: Systematically sweeping across all tunable parameters in coherent feed-forward loops to find the largest
⟨∆t̄⟩ for the step in pXact(cX) used throughout the feed-forward loop section, where cmax

X = 10−4 and cmin
X = 10−7.

We pick a default set of parameters: r̄0Y = r̄0Z = r̄0 = 0, r̄1Y = r̄1Z = r̄1 = 1, r̄2Z = 5, ω = 5, X̄ = 1. Note that we
set r̄0Y = r̄0Z and r̄1Y = r̄1Z to decrease the number of degrees of freedom in the parameter space without losing
too much information. For every colormap, we select a pair of parameters, and perform sweeps on a grid of values,
while the other parameters remain the default value. For each value pair, they are used to search in the space
(K̄XZ , K̄Y Z) ∈ [10−3, 103]× [10−3, 103], and the maximum ⟨∆t̄⟩ is recorded.

Appendix M: Technical details in incoherent
feed-forward loop

In this appendix, we will return to some technical de-
tails regarding pulses in the incoherent feed-forward loop,
as presented in Sec. IVC. To begin with, we discuss the
quantity ⟨∆t̄⟩ in incoherent feed-forward loops. In the co-
herent feed-forward loop, the definition of ⟨∆t̄⟩ in Eqn. 36

and Eqn. 37 are equivalent, allowing us to interpret it
as the average time delay across concentrations. Here,
when Z̄ does not exhibit a pulse, there is no difference
from the coherent case. However, Eqn. 36 becomes ill-
defined when Z̄ exhibits a pulse. This is because the
feed-forward loop response can reach Z̄ in a way that the
simple regulation curve cannot. A value can still be com-
puted for ⟨∆t̄⟩ using Eqn. 37, but it contains information
about the relative size of the pulse rather than acceler-
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Figure 37: The effect of leakiness of pXact(cX) on ⟨∆t̄⟩. We examine the dependence ⟨∆t̄⟩ on minimal pXact(cX) in a
step, pmin, in the XOR gate setting. Parameters used are r̄0Y = r̄0Z = 0, ω = 0. The value of r̄1Y = r̄1Z = r̄1 and X̄
are tuned to find the largest ⟨∆t̄⟩ in that parameter subspace. The detailed sweep process is identical to that in
Fig. 36.

ation. Because it has unit of time, we regard the direct
magnitude of the pulse Z̄max − Z̄f for an increasing Z̄
response in the main text.

Next, let’s derive the maximal average time acceler-
ation ⟨∆t̄⟩max when a pulse does not exist. The green
curve shown in Fig. 24(C) and (D) is the trajectory that
has the largest acceleration; denote this trajectory to be
Z̄step(t̄). Mathematically, Z̄step(t̄) = Z̄f for t̄ > 0. The
simple regulation curve is again

Z̄simple(t̄) = Z̄ie
−t̄ + Z̄f (1− e−t̄). (M1)

From Eqn. 37, we can then compute the maximal average
time acceleration as

⟨∆t̄⟩max =
1

Z̄f − Z̄i

∫ ∞

0

dt̄
(
Z̄step(t̄)− Z̄simple(t̄)

)
=

1

Z̄f − Z̄i

∫ ∞

0

dt̄
(
Z̄f − Z̄ie

−t̄ − Z̄f (1− e−t̄)
)

=
1

Z̄f − Z̄i

∫ ∞

0

dt̄(Z̄f − Z̄i)e
−t̄

=
Z̄f − Z̄i

Z̄f − Z̄i
= 1.

(M2)

Finally, we discuss the definition of strong pulse used in
Fig. 24. Numerically, we characterize a pulse to be strong
when the maximum concentration that the transient Z̄(t̄)
reaches, Z̄max, satisfies (Z̄max− Z̄f )/(Z̄f − Z̄i) > 0.05 for
an increasing Z̄ response. The threshold of 0.05 is an
arbitrary choice. Due to this threshold, there exists a
region of trajectories that are technically pulses but are
not strong enough to be considered. The trajectory in
Fig. 24(C) in fact belongs to this region. It exhibits a

pulse strictly speaking. Nevertheless, the magnitude of
the pulse is vanishingly small. Functionally, it acts in
the same manner as the trajectories that do not possess
a pulse.

Appendix N: Effect of Ȳ in continuous tuning

In Sec. IVD, we discussed the scenario where the signal
cX(t̄) is no longer a step function, but a continuous func-
tion in time. We mentioned that the comparison with
simple regulation in this case is subtle, as the arbitrary
choice of value Ȳ affects the shape of simple regulation
response. Here, we expand on Fig. 25 where we repeat
the numerical integration for three distinct values of Ȳ ,
as shown in Fig. 38. For the fast tuning case, different
choices of Ȳ have no effect on the simple regulation tra-
jectory. This is expected since in the limit case of a step
function signal in cX , the value of Ȳ strictly has no effect
on the shape of the trajectory. As the rate of tuning cX
slows down, the effect of Ȳ becomes more and more pro-
nounced. Specifically, as Ȳ increases, the rescaled simple
regulation curve “shrinks”. As a result, the magnitude
of apparent delay/acceleration between the feed-forward
loop and simple regulation response increases. Due to
the artificial nature of the choice of Ȳ in simple regu-
lation, we cannot make a claim about the magnitude of
delay/acceleration in the slow tuning limit. Neverthe-
less, our qualitative results stand. The choice of Ȳ does
not change the type of response to a step. For example,
even though Ȳ affects the magnitude of delay on the OFF
step, the feed-forward loop in this case always delays on
the OFF step.
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Figure 38: Demonstrating the how the arbitrary choice of Ȳ affects the simple regulation dynamics. We replicate
Fig. 25 with different choices of Ȳ . From top to bottom, Ȳ is set to be 0.01 in (i), 1 in (ii), which matches the
setting in Fig. 25, and 100 in (iii). From left to right, the rate of concentration is tuned the same way as in Fig. 25.
System parameters are also identical to those in Fig. 25.

Appendix O: Code availability

All Jupyter notebooks used to generate graphs in fig-
ures throughout this paper are available [79].
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