
The Transcription Factor
Titration Effect Dictates
Level of Gene Expression
Robert C. Brewster,1,7 Franz M. Weinert,1,7 Hernan G. Garcia,2 Dan Song,3,4 Mattias Rydenfelt,5 and Rob Phillips1,6,*
1Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
2Department of Physics, Princeton University, NJ 08540, USA
3Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
4Harvard Biophysics Program, Harvard Medical School, Boston, MA 02115, USA
5Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
6Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
7Co-first author
*Correspondence: phillips@pboc.caltech.edu

http://dx.doi.org/10.1016/j.cell.2014.02.022
SUMMARY

Models of transcription are often built around a pic-
ture of RNA polymerase and transcription factors
(TFs) acting on a single copy of a promoter. However,
most TFs are shared between multiple genes with
varying binding affinities. Beyond that, genes often
exist at high copy number—in multiple identical
copies on the chromosome or on plasmids or viral
vectors with copy numbers in the hundreds. Using
a thermodynamic model, we characterize the inter-
play between TF copy number and the demand for
that TF. We demonstrate the parameter-free predic-
tive power of this model as a function of the copy
number of the TF and the number and affinities
of the available specific binding sites; such predic-
tive control is important for the understanding of
transcription and the desire to quantitatively design
the output of genetic circuits. Finally, we use these
experiments to dynamically measure plasmid copy
number through the cell cycle.
INTRODUCTION

Regulatory biology remains one of the most fertile areas for the

quantitative dissection of biological systems, with two broad

classes of examples coming from the study of cell signaling

and gene regulation (Lim, 2002; Ptashne and Gann, 2002; Bhat-

tacharyya et al., 2006; Kentner and Sourjik, 2010; Garcia et al.,

2010). With increasing regularity, these systems are examined

in tandem using both theoretical models with precise ‘‘governing

equations’’ and precision measurements whose ambition is to

explicitly test the validity of these models. The study of gene

expression in bacteria has enjoyed a close interplay between

the so-called thermodynamic models, which predict the mean

level of expression as a function of architectural parameters
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characterizing the regulatory motif of interest, and quantitative

measurements, which can now even be performed at the sin-

gle-cell level (Buchler et al., 2003; Vilar and Leibler, 2003; Dekel

and Alon, 2005; Ozbudak et al., 2004; Kuhlman et al., 2007; Kin-

ney et al., 2010; Daber et al., 2011; Garcia and Phillips, 2011).

Typically, suchmodels rely on the assumption that the number

of TFs is in excess with respect to the number of its binding sites

in the cell. There are many situations in which this assumption

might break down, such as those involving highly replicated viral

DNA (Luria and Dulbecco, 1949), genes expressed on plasmids

(Guido et al., 2006), genes existing in multiple identical copies on

the chromosome (Bremer and Dennis, 1996; Wang et al., 1999;

Navarro-Quezada and Schoen, 2002; Aitman et al., 2006; Ha-

nada et al., 2011) or even just genes controlled by ‘‘overworked’’

TFs with many available target genes (Busby and Ebright, 1999).

Additionally, this interplay between the number of TFs and the

number of its binding sites provides yet another tuning para-

meter with which to test and refine theoretical models of tran-

scriptional regulation as well as precisely control the output of

synthetic genetic circuits (Endy, 2005; Voigt, 2006; Mukherji

and van Oudenaarden, 2009; Elowitz and Lim, 2010). In fact, it

is common to explore regulatory architecture in the context of

multicopy plasmids (Guido et al., 2006; Cox et al., 2007; Kaplan

et al., 2008; Kinney et al., 2010). As a result, precise knowledge

of the role of plasmid copy number on the output levels of gene

expression is required. This interdependence of a given gene’s

input-output relation with the external environment in which

it exists has been termed ‘‘retroactivity’’ (Del Vecchio et al.,

2008; Kim and Sauro, 2011) and is treated in analogy to imped-

ance in electrical circuits. Some studies have explored this

interplay typically in the context of activation, with binding

competition stemming from molecular depletants (Ricci et al.,

2011) or binding arrays (Lee and Maheshri, 2012).

Here, we dissect the interplay between TF copy number and

the number of its target binding sites using the simple repression

regulatory architecture. Simple repression is a ubiquitous motif

in E. coli (Madan Babu and Teichmann, 2003; Gama-Castro

et al., 2011), which consists of a promoter with a single proximal
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Figure 1. Examples Examined in This Study of Transcriptional Regulation with Competition for the TF

(A) Single chromosomal copy of the gene of interest.

(B and C) Competition from multiple identical genes in the simple repression regulatory architecture when the promoters are (B) placed on a high copy number

plasmid or (C) integrated in multiple chromosomal locations.

(D) The chromosomal reporter construct competes with competitor plasmids that have binding sites for the repressor but do not code for the reporter gene. In this

particular case, the competitor binding sites can have a different affinity than the regulated gene.
repressor binding site such that when a repressor is bound, no

transcription ensues (Schlax et al., 1995; Rojo, 2001; Sanchez

et al., 2011). In particular, we focus on simple repression by

Lac repressor (LacI), which has been extensively studied in

the context of theoretical models of transcriptional regulation

(Oehler et al., 1994; Vilar and Leibler, 2003; Ozbudak et al.,

2004; Bintu et al., 2005a; Kuhlman et al., 2007; Daber et al.,

2011; Garcia and Phillips, 2011). Using video fluorescence

microscopy, we simultaneously measure both the absolute

number of repressors and the rate of expression of a reporter

fluorescent protein in single cells as they progress through

the cell cycle. This method is used to examine several cases of

simple repression in which the TF-binding sites are placed in

multiple locations, shown schematically in Figure 1. In particular,

these include transcription from a plasmid at several distinct

copy numbers (Figure 1B), transcription from multiple identical

copies integrated in the chromosome (Figure 1C), and transcrip-

tion from a single chromosomal copy that competes for the

repressor with plasmids also containing a specific binding target

(Figure 1D).

One major outcome of this study is that, when a TF is shared

amongmany binding sites, either due tomultiple identical copies

of a gene regulated by that TF or due to unrelated genes that

also independently bind the TF, the correlation in occupancy

between thebinding siteswill lead to acomplexdosage response

to that TF (Lee andMaheshri, 2012; Rydenfelt et al., 2014). At low

copynumbers (relative to thenumberof binding sites), this essen-

tially buffers the transcriptional level to the presence of the TF,

and at high copy numbers, the response of the fold-change is

similar to that seen for a single isolated copy of the gene with

no binding competition. The sharpness of the transition between

these regimes is predicted to depend explicitly on the relative

strength of the specific binding site on the gene of interest

compared to the specific sites with which it competes. However,

we find that the width of the plasmid distribution inside of the

population of cells can also play a role in flattening the transition,

and the distribution must be taken into account to accurately
predict gene expression when the plasmid distribution itself

becomes wider than the transition region in the fold-change

curve, which tends to occur for stronger binding operators.

Building on the success of the predictive model, we then

exploit it as a tool for measuring plasmid copy number

throughout the course of the cell cycle. The average number of

plasmids per cell increases as the cell cycle progresses, with a

time-averaged mean value that is consistent with our indepen-

dent bulk qPCR measurements of the mean copy number.

RESULTS

Thermodynamic Model
Our results are based upon time-lapse fluorescence microscopy

(Figure 2) in which we measure the level of gene expression

by looking at the rate of production of a fluorescent reporter

(i.e., dP=dt, where P is the fluorescent protein number per cell).

Specifically, we measure the fold-change given by

fold-change=

dP

dt
ðRs0Þ

dP

dt
ðR= 0Þ

; (1)

which compares the rate of production in the presence of repres-

sors R to the rate of production in their absence. This should be

contrasted with bulk measurements, which typically measure

the steady-state level of the gene product in cell populations.

However, we can demonstrate the relationship between the

fold-change data from steady-state measurements, in which

expression is quantified as levels of fluorescence reporter, P,

and that obtained using video microscopy by observing the rate

of production of a fluorescent reporter, dP=dt. In the limit that

degradation of the measured product is slow, the equivalence

of these methods can be derived (see Extended Experimental

Procedures section ‘‘Equivalence of fold-change in steady-state

measurements and video microscopy’’ available online),
Cell 156, 1312–1323, March 13, 2014 ª2014 Elsevier Inc. 1313



A B Figure 2. Experimental Methods for the

Single-Cell Dissection of Regulatory Archi-

tectures

(A) Genetic circuit employed in this work. The

expression of the LacI-mCherry fusion is induced

by the small molecule aTc. The repressor acts on a

promoter expressing a YFP reporter gene.

(B) Individual cells are observed through a division

event. The fluctuations in the partitioning of the

LacI-mCherry between the daughters are used

to calibrate the signal such that the mCherry

fluorescence measurement in each cell can be

expressed as an absolute number of repressor

molecules. In addition, the rate of YFP production

is measured over the cell cycle.
fold-change=

dP

dt
ðRs0Þ

dP

dt
ðR= 0Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

video microscopy

=
PðRs0Þ
PðR= 0Þ|fflfflfflfflffl{zfflfflfflfflffl}

steady-state microscopy

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{experiments

=
pboundðRs0Þ
pboundðR= 0Þ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{theory

;

(2)

suggesting that a direct comparison between the bulk measure-

ments and those presented here is admitted as is the compari-

son to thermodynamic models.

The basic idea of the thermodynamic model of transcriptional

regulation is to enumerate the possible configurations of the

molecular players among the available specific and nonspecific

binding sites and calculate the probability of finding RNA

polymerase bound at the promoter of interest. These models

predict the fold-change in gene expression defined as the ratio

of the level of gene expression in the presence of TF to the level

of expression in its absence. In particular, the fold-change for

simple repression in the case where the gene and corresponding

TF specifically bind only at the reporter gene (Figure 1A) is

(Bintu et al., 2005b)

fold-change=
1

1+
R

NNS

e�De=kBT

; (3)

where R is the number of repressors present in the cell, NNS

is the size of the nonspecific binding reservoir (which we

take here to be the whole E. coli chromosome such that

NNS = 53106), and De is the binding energy of repressor to its

operator. In Rydenfelt et al. (2014), thismodel has been extended

to the case of simple repression frommultiple identical copies of

the gene, schematically shown in Figures 1B and 1C. In this

case, the fold-change is predicted to have the form,

fold-change=

XminðN;RÞ
m= 0

R!

ðNNSÞmðR�mÞ!
�
N
m

�
e�bmDeðN�mÞ

N
XminðN;RÞ

m= 0

R!

ðNNSÞmðR�mÞ!
�
N
m

�
e�bmDe

;

(4)

where the only new parameter isN, the copy number of the gene.

Finally, the model predicts the regulatory outcome of a single
1314 Cell 156, 1312–1323, March 13, 2014 ª2014 Elsevier Inc.
gene copy regulated by simple repression with a binding affinity

De in the presence of competing binding sites with a distinct

affinity Dec (Figure 1D). In this more complex case, the fold-

change is given by

fold-change=
Zu

Zb +Zu

; (5)

where Zb andZu are the partition functions for the casewhere the

repressor is bound or unbound to the chromosomal promoter,

given by,

Zu =
XminðNc ;RÞ

k =0

R!

Nk
NSðR� kÞ!

�
Nc

k

�
e�bDec ; (6)

Zb =
XminðNc ;R�1Þ

k = 0

R!

Nk
NSðR� k � 1Þ!

�
Nc

k

�
e�bðkDec +DeÞ; (7)

where Nc is the copy number of the plasmid containing the

competing binding site and no reporter gene. The extension of

thismodel toN copies of the genewithNc competitors is detailed

in the Extended Experimental Procedures section ‘‘Accounting

for chromosome replication in competitor theory.’’

One feature of the theoretical predictions in Equations 4 and

5 is that, in the limit that R[N (Equation 4) or R[Nc (Equation

5), these expressions immediately simplify to Equation 3 (see

Extended Experimental Procedures section ‘‘Thermodynamic

model in the limit R[N’’ for details), meaning that the multiple

promoters are independent in this limit. Between all of these

situations, there are relatively few parameters: the number of

TFs (R), the size of the nonspecific reservoir ðNNSÞ, the strength

of binding sites ðDe;DecÞ, and the copy number of the gene (N)

or of the competing binding site plasmid ðNcÞ. Interestingly,

many of the same parameters arise within each of the different

scenarios that we are considering, and a critical test of the

theoretical understanding is the self-consistency of those re-

sults. Once these quantities are determined, the theory gener-

ates falsifiable predictions without any free parameters for all

remaining experiments. In the following paragraphs, we discuss

how these parameters were determined from independent

measurements, with the ultimate objective of performing a

stringent test of the thermodynamic models, in general, and

of the impact of gene copy number on regulation, in particular.



Figure 3. Simple Repression of a Single Chromosomal Construct

Fold-change of simple repression construct located on the chromosome as

a function of Lac repressor copy number. The solid lines correspond to

Equation 3, with values for De from steady-state measurements of expression.

The data from steady-state measurements (Garcia and Phillips, 2011) are

shown as open symbols. The data from our experiments (filled symbols) are

both consistent with the model with no free parameters (curves) and with

expression data obtained from the same construct in steady-state measure-

ments. The shaded regions on the curves represent the uncertainty from the

errors in the measurement of the binding energies. For the solid points, error

bars in fold-change measurements are SEM, and error bars in LacI copy

number are the quadrature summed errors from the calibration factor and the

inherent resolution limit of LacI detection.
Fluorescent Measurements of Gene Expression
and Absolute TF Copy Number
We consider a number of distinct regulatory landscapes (Fig-

ure 1), all of which involve a rich interplay between the gene

copy number and the copy number of the transcription factor

controlling that gene. To test the expressions for fold-change

given in Equations 3–5, we need to simultaneously measure

both the rate of gene expression and the absolute number

of TFs. To that end, as shown in Figure 2B (and in greater

detail in Figure S1A), our cells harbor two important fluores-

cent proteins: one to mark the TF and one to mark the gene

product.

We use the partitioning statistics of the repressor TF, a LacI-

mCherry fusion, during cell division to determine the absolute

TF copy number from the arbitrary mCherry fluorescence

intensity in a given cell (Rosenfeld et al., 2005, 2006; Teng

et al., 2010). We find that, at maximum induction, no secondary

effects to the physiology (as measured by global transcription

rate; Figure S2) are observed with 1,000 repressors per cell

(Figure S3C). We also find that our lower resolution limit is 3�5

repressors per cell (Figure S3E). See Extended Experimental

Procedures section ‘‘Calibrating LacI-mCherry intensity to

absolute copy number’’ and Figure S3 for details on this method.

Simultaneously, we determine the level of gene expression by

measuring the rate of YFP production.
Gene Copy Number Measured by qPCR
We determine gene copy number using qPCR to measure the

average number of plasmids in a cell. In this study, we use plas-

mids based off the ColE1 Drom origin of replication from Lutz

and Bujard (Lutz and Bujard, 1997; Lee et al., 2006a, 2006b).

We also have made a version in which the Rom protein, respon-

sible for regulating the plasmid copy number, is inserted back

into the ColE1 Drom origin to arrive at an origin functionally

similar to the wild-type ColE1 origin (Twigg and Sherratt, 1980;

Cesareni et al., 1982; Stueber and Bujard, 1982; Lutz and Bujard,

1997). Though previous measurements locate the copy number

of ColE1 Drom plasmid in the range of 50–70 (Lutz and Bujard,

1997), the addition of the Rom protein should result in a reduced

average plasmid copy number (Twigg and Sherratt, 1980). We

find that the ColE1 plasmid has an average copy number of

52 ± 5, whereas the ColE1 Drom plasmid has a copy number

of 64 ± 11 (error bars are SD from triplicates). These values for

the copy number show up as either N or Nc in the predictions

generated by Equations 4 and 5, respectively. One obvious naive

aspect to this approach is that the plasmid copy number is

treated as a single static value. In any population of cells, the

copy number is subject to cell-to-cell variability, and thus the

copy number is more accurately represented as a distribution

rather than a single value (Wong Ng et al., 2010). Additionally,

plasmid copy numbers are bound to increase as the cell

progresses through its cycle under steady-state conditions

(Paulsson and Ehrenberg, 2001). We will examine the conse-

quences of these simplifications in a later section.

Determining Sequence-Dependent TF-Binding Energies
Finally, the affinities De and Dec of Lac repressor to its specific

binding sites (Oid, O1, O2, and O3 from strongest to weakest)

have been previously determined using bulk measurements

(Oehler et al., 1994; Vilar and Leibler, 2003; Garcia and Phillips,

2011). Thus, we know all parameters in Equations 3, 4, and 5

in order to predict the fold-change in gene expression for every

one of the regulatory cases considered in this paper (Figure 1).

Effectively, this means that we can predict the fold-change

as a function of the number of repressors without any free

parameters at all.

Simple Thermodynamic Model Predicts Expression
Level of Single Integrated Gene Copy
Our approach has several facets that require deeper examina-

tion. One possible confounding factor in comparing to other

measurements on the same architecture is that the fusion of

LacI to a fluorescent protein might affect its function as a TF,

thus changing its binding properties with DNA. A second point

is that it is not immediately clear that a comparison of expression

rate from cells grown under a microscope on a flat surface is

comparable to steady-state measurements grown in bulk media

(Oehler et al., 1994; Kuhlman et al., 2007; Garcia and Phillips,

2011).

To assess these issues, we compare our video microscopy

method against the outcome of previous bulk steady-state re-

sults performed using wild-type Lac repressor (Oehler et al.,

1994;Garcia andPhillips, 2011; Brewster et al., 2012). In Figure 3,

we show the result of measuring fold-change in expression of a
Cell 156, 1312–1323, March 13, 2014 ª2014 Elsevier Inc. 1315
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Figure 4. Fold-Change of Multiple Identical Gene Copies

(A) Fold-change as a function of Lac repressor copy number for two distinct plasmids with the O1 simple repressionmotif on a high copy number (ColE1) plasmid

with (blue) andwithout (red) the Romprotein. Measurements are performed at themiddle of the cell cycle. The blue and red solid lines are the theory from Equation

4 using the average copy number measured by qPCR and known binding energies from earlier steady-state measurements, as in Figure 3. The shaded regions

represent the combined uncertainty in the copy number measurement and the binding energy measurement. For reference, the green symbols and line are the

data and theory prediction from Figure 3 for simple repression with the O1 binding site for a single chromosomal copy. The inset shows the predicted scaling

(lines) and measured fold-change (points) for three distinct repressor copy numbers, as the number of promoter copies is varied.

(B) Fold-change as a function of concentration of Lac repressor for multiple gene copies on the chromosome. The red symbols are measurements of the

fold-change in expression at the end of the cell cycle of a strain with the Oid simple repression motif integrated into five unique sites on the chromosome. We

expect ten copies of the gene at the end of the cell cycle. The red line is the theory prediction for multiple identical gene copies with N=10, from Equation 4. The

shaded region represents the uncertainty from the measured value of De. The blue symbols and line are the data and theory prediction for simple repression with

the Oid binding site from Figure 3. In both cases, the fold-change is�1 when the copy number of the repressor is less than the copy number of the gene. At high

repressor copy number, the curve coincides with simple repression from the chromosome, with a sharp transition between these two regimes.

Error bars in fold-change measurements are SEM. Error bars in LacI copy number are the quadrature summed errors from the calibration factor and the inherent

resolution limit of LacI detection. Error bars in promoter copy number reflect uncertainty in the qPCR measurement of average plasmid copy number.
single chromosomal copy of our simple repression construct as a

function of the number of repressors per cell for different binding

sites (filled symbols) using the dilution method and video micro-

scopy advocated here. The limits of our measurement both at

low repressor numbers and at low fold-change (wherein

repressed YFP production becomes small) are discussed in the

Extended Experimental Procedures. The lines are the theory

predictions from Equation 3 for each operator without any fit

parameters, with a shaded region representing the uncertainty

in De. One assumption in this simple theory of Equation 3 is

that the copy number of the gene is exactly one. In reality, the

copy number of our single integrated copy varies between 1

and 2 over the course of the cell cycle (Bremer and Dennis,

1996). However, the predicted expression for two chromosomal

copies, Equation 4 with N= 2, is identical to Equation 3 when

R[N. Thus, the promoters will express independently, and

we can ignore this small correction (see Figure S5). The data

from Garcia and Phillips (2011) are shown as open symbols in

the figure. These results lead to the interesting conclusion that

single-cell measurement of the expression rates agrees precisely

with previous bulk measurements of steady-state expression.
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Predicting Expression Levels from Plasmid Constructs
as a Function of Gene Copy Number
We now wish to compare the predictions of the thermodynamic

theory against the more complicated cases involving TF binding.

In this section, we compare the predictions of Equation 4 to

measurements of expression from plasmid, as illustrated in

Figure 1B.

To begin, we measure the expression of an O1 simple repres-

sion construct placed on either the ColE1 or ColE1 Drom plas-

mids, akin to Figure 1B (for details on plasmid construction,

see Figure S6). The fold-change in gene expression as a function

of Lac repressor copy number is shown for both plasmids in

Figure 4A. The data shown here are taken from the chronological

middle of the cell cycle; the effect of the evolution of the copy

number throughout the cell cycle on expression will be ad-

dressed later. The solid lines in the figure are plots of the predic-

tions from Equation 4, with no adjustable parameters. The

shaded region accounts for the standard deviation in N from

our qPCR measurements of the average copy number and the

uncertainty in the binding energy De. For reference, the green

points and line are the chromosomal data and theory for the



O1 operator from Figure 3. The theory predicts the fold-change

in expression and captures the major features observed in our

data. When the repressor copy number is much larger than the

gene copy number, the fold-change is relatively unchanged

with respect to the single-copy chromosomal case, as predicted

for the case R[N. However, when the repressor copy number

is less than the gene copy number, the effect of the repressors is

largely buffered away and the repressors have little effect on the

fold-change. Between these two regions, the transition is sharp

and switch-like. An alternative way to look at the data and its

agreement with the theoretical predictions is to plot the fold-

change as a function of the promoter copy number for a defined

number of repressors. The inset to Figure 4A shows these data

for three distinct repressor copy numbers (8 black, 64 violet,

256 cyan). The distinct values for promoter copy number, N,

are obtained by taking data from the simple repression O1

construct taken at the end of the cell cycle ðN= 2Þ in addition

to the plasmid data with and without Rom (N= 52 and 64,

respectively).

Simple Thermodynamic Model Predicts Expression
Levels from Multiple Integrated Chromosomal
Gene Copies
Plasmids can differ from the chromosome in their relative distri-

bution throughout the cell, the accessibility to TFs, and their

segregation mechanisms (Ebersbach and Gerdes, 2005; Ghosh

et al., 2006; Kuhlman and Cox, 2012). However, the effect of

the interplay between repressor and gene copy number is not

exclusive to constructs located on plasmids. The same regu-

latory features can be seen at low gene copy numbers from

multiple copies of the gene located on the chromosome. We

measure gene expression using a strain that has the Oid simple

repression construct integrated into the chromosome in five

different locations, as schematically shown in Figure 1C. To

avoid uncertainty in the copy number of the gene, we examine

expression near the end of the cell cycle (the last 15 min before

division). We expect that each of the five chromosomal copies

will have fully replicated (the D period of the cell cycle, the time

between replication completion and division, is roughly 27 min

at our growth rate [Bremer and Dennis, 1996]). Therefore,

the copy number of the gene should be ten, resulting from

two sets of five copies, one on each completed chromosome

(Bremer and Dennis, 1996; Michelsen et al., 2003). The resulting

fold-change data for this construct are shown in Figure 4B as red

symbols. The red curve is the prediction from Equation 4 for

N= 10 and the Oid binding energy with, once again, no fit para-

meters. The shaded region in the fit comes from the uncertainty

in De for the Oid binding site. For reference, the blue curve and

symbols are the theory and data (from Figure 3) for the Oid

construct integrated at a single copy in the chromosome. The

observed behavior of this construct is qualitatively comparable

to that observed for genes on plasmids (Figure 4A). Additionally,

the same theory predicts its quantitative features without any

free parameters. Once again, there is a sharp drop in fold-

change when the number of repressors equals the gene copy

number before rejoining the predictions (and measurements)

for fold-change from a single gene copy. The genetic locations

of integration and a discussion of the distribution and uncertainty
in the measurement of gene copy number can be found in the

Extended Experimental Procedures section ‘‘The copy number

of multiple chromosomal integrations strain’’ and Figure S4.

Predicting Expression Levels in Complex TF-Binding
Landscapes
Finally, a common situation that results in competition for TFs

occurs when different genes share the same TF. For example,

in the regulatory databases of RegulonDB for E. coli (Gama-

Castro et al., 2011), three-quarters of TFs are listed as having

specific interactions with more than one operon. In fact, many

of these TFs target dozens of operons (and it is worth noting

that these databases are far from complete and represent only

a partial list of binding interactions, implying that these numbers

will continue to grow). In this case, the competing specific bind-

ing sites that do not modulate the gene of interest may out-

compete the gene copy when TFs are limiting.

To examine this competition scenario, we measure the

expression from a single copy of the O1 simple repression

construct integrated on the chromosome (identical to the O1

construct from Figure 3) in a cellular context containing com-

petitor binding sites. These binding sites are carried in a high

copy number ColE1 Drom plasmid that does not express a

gene product, illustrated schematically in Figure 1D. In Figure 5A,

we show the measured fold-change of the chromosomal O1

construct in the case in which the competing plasmid has

a weaker O2 binding site (green symbols), equal strength O1

binding site (red symbols), or a stronger Oid binding site (black

symbols). The theory curves stemming from Equation 5 are

shown in the corresponding color, with the shaded region corre-

sponding to the uncertainty in the theory stemming from the

uncertainty in Nc;De, and Dec (see Extended Experimental

Procedures section ‘‘Determining errors in theoretical predic-

tions’’). The stronger binding sites shift and sharpen the transi-

tion of the gene of interest with respect to LacI copy number.

Once the repressor copy number exceeds the number of

competitors, the gene finally gains access to the repressor

and becomes regulated. In contrast, when the competitors are

weaker, the position of the transition is shifted toward lower

LacI numbers. This simple example illustrates how the regulatory

behavior of a gene can be indirectly controlled through identical

competitor plasmids. This effect is, however, more general, as in

wild-type genes, the competition will come from a spectrum of

binding sites each controlling a specific gene. The thermody-

namic model can produce predictions for any such specific

arrangement of binding sites with the theoretical infrastructure

demonstrated here.

The Influence of Plasmid Distribution on the Repressor
Titration Curves
One unsatisfactory feature of Figure 5A is that the observed tran-

sition for strong binding sites (Oid and, to a lesser extent, O1) is

not as sharp as predicted by the theory. Furthermore, the blue

bars in Figure 5C show the resulting fit values for the mean

competitor plasmid copy number if Equation 5 is fit to the data

in Figure 5A. The plasmids used in each of these three measure-

ments are nearly identical. The only difference between them is

the strength of their LacI-binding sites. Thus, we would expect
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Figure 5. Effects of Repressor Competition on Expression

(A) Fold-change as a function of concentration of Lac repressor for the O1 simple repression construct integrated into the chromosome in competition with a

ColE1 Drom plasmid containing a stronger (Oid; black symbols), equal (O1; red symbols), or weaker (O2; blue symbols) Lac repressor binding site. For reference,

the green symbols and line are the data and theory prediction from Figure 3 for simple repression with the O1 binding site without the competitor plasmid.

(B) The same data from (A), but now the solid lines represent the plasmid distribution theory assuming a normal distribution. The parameters are found by

fitting the Oid (black) data for N, the average copy number, and the CV, and these parameters are plotted for each binding energy, i.e., the red and blue curve

are parameter free. Error bars in fold-change measurements are SEM. Error bars in copy number are the quadrature summed errors from the calibration factor

and the inherent resolution limit of LacI detection.

(C) Fitted means of all three plasmid copy numbers for both the theory in Equation 5, which assumes a single static copy number for plasmid (blue bars,

NOid
c = 112;NO1

c = 90;NO2
c = 75), and the same theory in which the plasmid distribution is normal with CV, as determined from fitting the Oid data (red bars,

NOid
c = 73;NO1

c = 70;NO2
c =68). All three plasmids in this case have the same origin of replication and differ only by a few bases, which alter Lac repressor affinity

to their binding sites. As such, we expect all three plasmids to have identical copy numbers. This is observed for the theory with plasmid distribution (red bars);

however, the theory without a plasmid distribution systematically overestimates the copy number for stronger binding (blue bars). Error bars in mean copy

number are the results of bootstrap sampling the expression measurements of individual cells.
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the mean copy number to be unchanged in the Oid, O1, or O2

strain. However, it is clear that stronger binding sites systemati-

cally predict a higher copy number, showing that, in this case,

the model lacks internal consistency.

These discrepancies, both in the fit to the sharpness of the

transition region and in the measured copy number between

similar plasmids, likely stem from the theory not accounting for

the fact that there is a distribution of plasmids in the population

of cells (Guido et al., 2006; Ghozzi et al., 2010; Wong Ng et al.,

2010). This distribution will result in a less sharp transition in

the fold-change curve. To see intuitively how a distribution of

plasmid copy numbers alters the fold-change curve, we imagine

the situation of a simple distribution in which cells have a single

chromosomal YFP gene, with half of the cells having N and the

other half having 3N competing plasmids. Further, assume that

the binding site on these competing plasmids has an extremely

high affinity. The average plasmid copy number is 2N, and it is

at this value that the thermodynamic model predicts a sharp

transition in the fold-change curve. However, when the number

of repressors is R= 2N, all of the cells with N plasmids are

repressed by free repressors and produce very little YFP

because all of the competing plasmids are saturated. On the

other hand, the cells with 3N plasmids will still not be repressed

because the competing plasmid can buffer the 2N available re-

pressors. Hence, for the entire population, the fold-change is

no less than 1/2. Only when the repressor copy number reaches

3N will repression in every cell ensue and begin to show a steep

drop on a log scale. This simple argument provides the intuition

for why a distribution of plasmids is required in the theory when

thinking about the strong operator limit on the competitor

plasmids.

Generically, a distribution of plasmid copy number in a popu-

lation of cells will move the location of the switch-like transition to

repressor numbers above the mean plasmid copy number, and

the transition will be softened. This effect is stronger as the

copy number distribution becomes wider than the width of the

transition region in the fold-change curve. Therefore, we expect

that, the stronger the plasmid binding site, the worse the simple

single copy number theory will fit. This is observed for the data in

Figure 5A wherein O2 fits well to the simple theory, O1 fits worse,

and Oid fits even worse.

It is relatively simple to account for a distribution of plasmids in

the thermodynamic theory; however, the derivation is left to the

SI. In the case of identical copies of the gene, Equation 4 must

be modified such that the fold-change in the presence of a

distribution, fold-changedist, is related to the fold-change of the

fixed copy number fold-change by,

fold-changedist =
XN
n= 0

pðnÞ n

hni fold-changeðnÞ; (8)

where pðnÞ is the probability that any cell in the population

has n plasmids with hni=PN
n= 0npðnÞ the average number of

plasmids in the population. Finally, fold-changeðnÞ is calcu-

lated using Equation 4 for any given value of n. Similarly, the

theory for competitor binding sites on a plasmid can be

adjusted for a plasmid distribution in a similar fashion. In this

case, we find,
fold-changedist =
XN
n=0

pðnÞfold-changeðnÞ; (9)
where now fold-changeðnÞ refers to Equation 5 with n plasmids.

To exploit these ideas in the context of our data, we propose

a simple phenomenological distribution for the plasmid copy

number, a normal distribution with a fixed coefficient of variation

(SD over mean). We have chosen a normal distribution for

simplicity, as we do not expect the exact details of the distribu-

tion to have a major effect, given that a plasmid distribution will

always dull the sharp transition of the fold-change repressor

titration curve. We fit the Oid competitor data from Figure 5A

to the distribution, treating the mean copy number ðNcÞ and co-

efficient of variation (CV), s=Nc of the distribution as fit parame-

ters. We find that the best fit mean is Nc = 72 with CV = 0:6; the

resulting fit is shown in Figure 5B as the solid black line. We

also plot the data from the O2 and O1 plasmid with the same

values for the mean and standard deviation.

The theory, which was fit to the Oid data, now describes the

data from all three operator sites very well. This is an important

sanity check, as we do not expect the strength of a LacI-bind-

ing site far from the origin of replication to effect the plasmid

copy number or its distribution. This is further demonstrated

in Figure 5C, wherein we plot the mean plasmid copy number

measured by either fitting the simple no distribution model

to our data or fitting the mean copy number while holding

the width of the distribution fixed, with CV= 0:6. The point is

illustrated in these bar graphs. When the transition is not sharp,

as in the O2 data (and, to a lesser extent, the O1 data), the

fixed Nc single-parameter theory fits well and with a copy

number consistent with what we expect. However, as the

competitor binding gets strong and the fold-change response

curve is expected to get sharp compared to the distribution

of plasmids, the single parameter fixed Nc theory fits poorly,

and Nc goes from being descriptive of the actual copy number

to merely a phenomenological fit parameter. However, the fit

to the mean copy number for the three operators remains

consistent when the distribution of plasmids is accounted for

in the model.

Cell-Cycle Dependence of the Plasmid Copy Number
and the Resulting Expression
To this point, we have varied the copy number of competing

binding sites or gene copy number by comparing the fold-

change of different constructs at similar points in the cell cycle.

However, it is clear that, over the course of the cell cycle, all

genetic material in the cell must double. As a result, we examine

the time dependence of the copy number by binning the data

according to when in the cell cycle each measurement is

made. In this metric, the time of birth of the cell is represented

as 0, and the time of its subsequent division is 1. In Figure 6A,

an example of the fold-change curves obtained are shown for

the O1 simple repression chromosomal integration with the

Oid competitor plasmid. In this case, each time bin is fit to Equa-

tion 9 for the copy numberNc, keeping the coefficient of variation

fixed; the resulting copy number for that point in the cell cycle is

written in the legend. As expected, the measured average

plasmid copy number increases as the cell cycle progresses.
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Figure 6. Variation of Plasmid Copy Number throughout the Cell Cycle

(A) Fold-change as a function of LacI copy number for the O1 simple repression construct integrated into the chromosome in the presence of a competing ColE1

Drom plasmid bearing anOid site for different time points in the cell cycle. The ‘‘cell cycle’’ parameter is the average fraction of the total cell lifetime fromwhich the

binned data are taken, with 0 representing birth and 1 representing the cell division. The plasmid copy number is fit to Equation 9 at every time point, keeping

CV= 0:6 fixed, and the resulting value forN is listed. Error bars in fold-changemeasurements are SEM. Error bars in LacI copy number are the quadrature summed

errors from the calibration factor and the inherent limit of LacI detection.

(B) Plasmid copy number versus the cell cycle. The plasmid copy number is measured by fitting the copy number parameter in the theory to the data from all of our

experiments binned by time in the cell cycle. Error bars in plasmid copy number are the results of bootstrap sampling the expression measurements of individual

cells. The horizontal dashed lines and matching shaded regions are our qPCR measurements for average copy number of ColE1 (blue dashed line) and ColE1

Drom (black dashed line).
In addition, the copy on the chromosome will double. The

operator associated with this copy will affect our measurement

of Nc; however, the addition of one extra operator in the pres-

ence of dozens of copies on plasmid results in only a very small

change to the predicted fold-change. The exact details of the

size of this effect are discussed in the SI section ‘‘Accounting

for chromosome replication in competitor theory.’’ Repeating

this process for all plasmids with the proper theory equations

(Equation 8 for identical plasmids expressing YFP, Equation 9

for the competitor plasmid data), we plot in Figure 6B the

measured plasmid copy number versus fractional cell cycle for

each. The horizontal dashed lines and corresponding shaded

region represent our qPCR measurements of the average copy

number for ColE1 and ColE1 Drom. It should be noted that

the cell-cycle parameter relates to when the measurement

itself was made; due to fluorophore maturation, the actual mea-

surement may represent a time period earlier in the cell cycle.

DISCUSSION

Recent experimental and theoretical efforts have focused on un-

derstanding the role of regulatory architecture in transcriptional

decisions. In these studies, the details of isolated regulatory

architectures (number, location, and strength of binding sites

and TF copy number) are varied systematically, and the tran-
1320 Cell 156, 1312–1323, March 13, 2014 ª2014 Elsevier Inc.
scriptional output is compared to corresponding theoretical

predictions (Buchler et al., 2003; Bintu et al., 2005a, 2005b).

However, it is rarely the case that TFs act on only one promoter.

As a result, the study of transcriptional decisions at individual

promoters without taking into account the rest of the regulatory

network might be insufficient. In particular, the presence of

multiple targets for the same TF can result in a competition

that reduces the available free TFs for the gene of interest

(Rydenfelt et al., 2014).

In this paper, we explored the interplay between the binding

sites for a transcription factor at a gene of interest and competing

binding sites regulating other genes in the context of the well-

studied simple repression architecture (Garcia and Phillips,

2011). We show that the presence of competing binding sites

not only changes the effective amount of available TF, but also

can affect the input-output relation by introducing a sharp tran-

sition. This transition separates the regime in which the repressor

is depleted compared to the number of available binding sites

and the regime in which the repressor is in excess of the number

of binding sites. The width of this transition is controlled by the

strength of the binding sites. The theory also predicts that

the width of this transition, in a population of cells, depends on

the size of cell-to-cell fluctuations in binding site copy number;

larger fluctuations in the number of available competitor binding

sites (or number of identical genes) tends to flatten this transition.



We find that, when a very strong transition is predicted, the

measured transition is considerably dulled, which we attribute

to the copy number variability in the population.

The quantitative consequences of binding site competition

can be predicted using thermodynamic models without any

free fitting parameters. Previously, these models had been suc-

cessful in predicting transcription output for the simple repres-

sion architecture in the absence of binding site competition

(Garcia and Phillips, 2011). By measuring binding site copy

numbers using qPCR, we show that an extended version of

these models accounting for the presence of multiple binding

sites (Rydenfelt et al., 2014) describes our data precisely, with

no fit parameters for a wide range of binding site copy numbers

and strengths.

Building on the success of the theory in quantitatively predict-

ing the regulatory outcome of the various architectures consid-

ered here, we fit the theory to the fold-change curve at different

points in the cell cycle as a way to measure the time evolution of

the plasmid copy number during the course of the cell cycle.

One noteworthy feature of this method is that the reporter fluo-

rescence molecule need not be expressed by the measured

plasmid; it only requires that a TF be shared between an unre-

lated chromosomal copy and the plasmid for the copy number

of the competitor to be measured. This can be of benefit, as it

requires only inserting a binding site on the plasmid of interest.

Additionally, this approach prevents possible changes in cell

physiology due to starvation or phototoxicity from overexpres-

sion and measurement of a fluorescent reporter protein ex-

pressed from a high copy plasmid.

The ability to measure absolute numbers of both binding site

and input TF copy number is key for contrasting our experi-

mental data with the theoretical predictions stemming from

thermodynamic models of transcriptional regulation (Bintu

et al., 2005a, 2005a). In this paper, we have made use of a

recently introduced fluctuation method for taking the repressor

census and thereby checking the governing equation for the

simple repression regulatory motif in a wide array of situations

in which the TF was in demand frommultiple sources (Rosenfeld

et al., 2005; Teng et al., 2010). We find that this dilution method,

a form of video microscopy, gives quantitatively compatible

results to more traditional steady-state snapshots and bulk

measurements (Garcia and Phillips, 2011). However, there are

numerous advantages of the dilution method. This method pro-

vides a single-cell readout of the number of repressors in each

cell. The fact that no new repressors are produced ensures

that this ‘‘input’’ level of repressors is held constant through

the entire measurement. The single-cell nature of this method

certainly increases our resolution as compared to measuring a

bulk sample in which the possible distribution of repressors

from cell to cell can have a wider distribution than the feature

we wish to illuminate—akin to the issues that we see when the

plasmid distribution is wider than the sharp transitions that we

wish to study, seen in Figure 5A. Finally, this method allows

one to probe particular regions of the titration curve with varying

degrees of resolution—a feature that was essential when trying

to distinguish sharp features of the repressor titration curve at

10 repressors for the chromosomal case and >100 repressors

in the plasmid case.
As our characterization of cellular decision making becomes

more quantitative, so must our theoretical description of

this process. The quantitative and predictive control of such

decisions allows one to probe their molecular details at a level

that escapes any qualitative description. In addition to expand-

ing our understanding of regulation, quantitative models give

us the ability to control regulatory output by predictive design.

In fact, synthetic biology has focused on the development of

standardized regulatory units with known input-output functions

(Endy, 2005; Voigt, 2006). The modification of these input-output

functions to have, for example, a particular shape usually re-

quires the re-engineering of the regulatory architecture at

the DNA level (Rosenfeld et al., 2005; Guido et al., 2006; Cox

et al., 2007). Our work provides a complementary approach

to controlling input-output functions, as the introduction of

competing binding sites for a TF into a cell makes it possible to

tune regulatory response in a predictive fashion, without the

need for any modifications at the DNA of the gene of interest.

EXPERIMENTAL PROCEDURES

Gene Expression Measurements

Cultures are grown overnight in 2ml of LB at 37�C andwere diluted� 1 : 104 in

M9 + 0:5% glucose minimal media with antibiotics and 1, 2, 3, 4, 6, 8,

100 ng/ml anhydrotetracycline (aTc) to induce the production of various levels

of LacI-mCherry that cover the full repressor range (for induction curve, see

Figure S1). The diluted cultures are grown at 37�C until they reach an

OD600z0:2� 0:4 and then they are washed twice with fresh M9 media

(without aTc) to remove the inducer and halt the production of LacI-mCherry.

They are then diluted to give several cells per field of view (at 1003magnifica-

tion) when placed on a 2% low melting point M9+ 0:5% glucose agar pad. An

automated fluorescent microscope simultaneously records multiple fields of

view for each concentration of aTc. In addition, one pad contains cells without

the repressor construct whose expression measurements serve as the de-

nominator of our fold-change measurements. Growth of cells is observed by

fluorescence microscopy at 37�C for 2.5 hr (at 7.5 min per frame) while

measuring CFP (used for segmentation), YFP (reporter of gene expression),

and mCherry (reporter of TF copy number) intensities.

Data Analysis

Data analysis was performed using the Matlab code ‘‘Schnitzcells’’ kindly pro-

vided byMichael Elowitz (Rosenfeld et al., 2005). This code segments cells in a

movie and tracks their lineages, providing full information of fluorescent inten-

sity of all three channels for each cell at each time point in themovie. The rate of

gene expression is calculated between each time step by taking the difference

in consecutive YFP signals (once corrected for autofluorescence, bleaching,

and crosstalk). The TF concentration is calculated from the total mCherry

signal in any given cell.

SUPPLEMENTAL INFORMATION
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