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For the classical diffusion of independent particles, Fick’s law gives a well-known relationship between the
average flux and the average concentration gradient. What has not yet been explored experimentally, however,
is the dynamical distribution of diffusion rates in the limit of small particle numbers. Here, we measure the
distribution of diffusional fluxes using a microfluidics device filled with a colloidal suspension of a small
number of microspheres. Our experiments show that (1) the flux distribution is accurately described by a
Gaussian function; (2) Fick’s law, that the average flux is proportional to the particle gradient, holds even for
particle gradients down to a single particle difference; (3) the variance in the flux is proportional to the sum
of the particle numbers; and (4) there are backward flows, where particles flow up a concentration gradient,
rather than down it. In addition, in recent years, two key theorems about nonequilibrium systems have been
introduced: Evans’ fluctuation theorem for the distribution of entropies and Jarzynski’s work theorem. Here,
we introduce a new fluctuation theorem, for the fluxes, and we find that it is confirmed quantitatively by our
experiments.

I. Introduction

Fick’s law, which describes the diffusion of atoms, molecules,
and particles, is important in many areas of science and is the
basis for engineering models of material transport. According
to Fick’s first law, the average particle flux is proportional to
the average concentration gradient:1

where 〈J〉 is the observed macroscopic flux and〈c〉 is the
concentration of particles. We use brackets here,〈...〉, to make
it explicit that this phenomenological expression deals with
averages over macroscopically large numbers of particles and
to indicate that only in macroscopic systems can the particle
concentration and flux be meaningfully represented as smooth
functions of space and time. Fick’s first law is the basis for
Fick’s second law, also known as the diffusion equation:

These equations have been verified extensively in bulk gases
and solutions with macroscopically large numbers of particles.2

Our particular interest here is in the “small-numbers” limit
of diffusion, where there are only a few particles in the system
and where the fluctuations can be large. Small particle numbers
and their fluctuations are important (a) in nanotechnology, (b)
inside biological cells, where the typical copy number of any

given type of protein is often less than a few thousand,3 and (c)
in single-molecule studies of ion channels, molecular motors,
and laser trap experiments,4-6 for example. Fick’s law describes
averages over a macroscopic number of particles; it does not
describe small-number fluctuational quantities, such as〈J2〉 -
〈J〉2, or other aspects of the flux distribution function. One of
our motivations for undertaking this work is a growing interest
in nonequilibrium dynamics in small-numbers systems. We
reasoned that a first step in examining the distribution of
microtrajectories in nonequilibrium systems would be to revisit
classical systems such as simple diffusion where the average
properties are well-established. Only recently has it become
possible to perform experiments on small-numbers diffusion and
to measure full dynamical distribution functions, based on
advances in nanotechnology, video microscopy, and microflu-
idics.

Does Fick’s law hold in the limit of small numbers of
particles? And, are there violations? That is, if Fick’s law
predicts flow to the right, due to a concentration gradient sloping
downward toward the right, does it ever happen that particles
flow instead to the left? Such situations have been called
“second-law violations”,7,8 or in classical thermal problems, they
are expressed in terms of “Maxwell’s demon”.9 Such fluctua-
tions are, of course, not real violations of the second law,
because the second law is only a statement about averages, not
fluctuations.10 In this article, we refer instead to such trajectories
that go “against the grain” asbad actors.

What dynamical distribution of rates would be expected from
theory? We describe below the results from a maximum-
entropy-like approach,11 called maximum caliber, based on the
work of E. T. Jaynes.12 Other approaches based on random-
flight modeling should lead to the same result. In short, if
particles are independent, diffusing in one dimension, and if
their jump rates are stationary in time, the distribution of particle
fluxes,P(J), at timet along anx-axis from one bin atx having
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N1 particles to an adjacent bin atx + ∆x havingN2 particles,
should follow the binomial distribution, or approximately a
Gaussian function:11

where∆N ) N1 - N2, N ) N1 + N2, 〈∆J2〉 is the variance in
the flux, J, andq ) 1 - p, with p being the probability that a
particle jumps in the time interval,∆t.

Various moments of the distribution function are readily
obtained from this approach. First, the model predicts that the
average net number of particles,J, that jump per unit time at
time t is11

wherej1 is the flux from bin 1 atx to bin 2 atx + ∆x andj2 is
from bin 2 to 1. This proportionality of the average flux,〈J〉, to
∆N simply predicts Fick’s law, where the diffusion coefficient,
D, is related top by D ) p∆x2/∆t, and where∆x is the bin size
and∆t is the unit time step.

For the flux fluctuations, that is, the second moment, the
model predicts

whereN ) N1 + N2 is the total number of particles associated
with the two bins of interest. Hence, the key prediction here is
that the flux fluctuations are proportional to the total particle
number,N.

We are also interested in the number ofbad actors,that is,
the number of trajectories that would lead to particle flows up
a concentration gradient, rather than down it. This quantity can
be derived from the flux distribution11 as

where the approximation holds for small values of

〈J〉/x〈(∆J)2〉. In the expression above, the next higher term
(the cubic term) is an order of magnitude smaller than the linear

term for the values of〈J〉/x〈(∆J)2〉 used in our experiments
(see Figure 3).

A. A “Flux Fluctuation Theorem’’. Recent work has led
to fluctuation theorems that have provided important insights
into nonequilibrium systems. Fluctuation theorems describe the
extent to which a system deviates from its dominant flow
behavior.8,13-16 In the diffusive dynamics case of interest here,
if the number of particles,N1, in bin 1 is greater than the number
of particles,N2, in bin 2, then particles, on average, will flow

from 1 to 2. Fluctuation theorems describe the amount of reverse
flow, that is, up the concentration gradient in this case. One
such theorem8,13 expresses such flows in terms of the prob-
abilities of entropy changes in the forward and backward
directions,P(∆S)/P(-∆S). And, the work theorems of Jarzynski
and Crooks express the probabilities,P[w/(kT)]/P[-w/(kT)], of
the work,w, in the two directions.17

Ours is a fluctuation theorem about the flux,J. We compute
P(J)/P(-J), the ratio of probabilities of fluxes in the forward
and backward directions, using eq 3:11

Thus, the quantity ln[P(J)/P(-J)] is predicted to be proportional
to the normalized flux,〈J〉/〈(∆J)2〉 × J. In situations having large
flux, the back-flow becomes exponentially negligible. We
subjected these predictions to experimental tests, described
below.
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Figure 1. Microfluidics experiment. Colloids corralled on one side of
a gate begin to diffuse at timet ) 0 by opening the gate. (a) Schematic
of the microfluidic chip (see text for details). (b) The geometry of the
microfluidic chamber (not drawn to scale).

Figure 2. Flux distribution function.1/2 ln(〈(∆J)2〉) + ln(P(J)) is plotted

against (J - 〈J〉)/x2〈(∆J)2〉, based on the form indicated by eq 3. The
circles indicate experimental points, and the line shows a quadratic fit
to the data. The coefficient of determination,R2, for the fit is also
reported. This demonstrates that the distribution function is Gaussian,
and we find that the coefficients are well predicted by eq 3.
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II. The Microfluidics Experiments

To study the dynamical distributions in diffusion, we devised
a microfluidics experiment. Using the techniques of soft
lithography, chip fabrication,18 and the Sylgard 184 Silicone
elastomer kit (Dow Corning Corporation), we made a microf-
luidics chamber having approximate dimensions of 400µm by
100µm, partitioned into two regions (see Figure 1a). The cross
section of this chamber is a segment of a circular disc, with a
maximum depth of 10µm (see Figure 1b). The chamber is filled
on one side with a solution containing about 200 colloidal, green
fluorescent polystyrene particles 0.29µm in diameter (Duke
Scientific, Cat. No. G300) (see Figure 1a). The beads are at an
optimized concentration so that the interactions are negligible19

while at the same time permitting sufficient statistics over a
wider range of∆N andN.

At time t ) 0, we open a microfluidic gate (i.e., a partition),
allowing particles to diffuse from one side to the other, taking
periodic snapshots under an Olympus IX71 inverted microscope.
(We performed the same experiment under equilibrium condi-
tions where the initial concentration was uniform across the
whole chamber (results not shown, see ref 20).) We take three
snapshots of the beads in the chamber every time interval of
∆t ) 10 s, for 6 h. Since there is a possibility that some particles
temporarily overlap and/or are out of focus in a single snapshot,
taking three snapshots of each minimizes that error to 1-2%,
which corresponds to 2-4 particles out of the 200. The
snapshots are taken using fluorescence microscopy with a SONY
DFW-V500 camera. (During the time when no snapshots are
taken, a shutter prevents the experimental chamber from being
exposed to the incident light, to prevent photobleaching and
heating the chamber.) We then determine the particle positions
at each snapshot using a computerized centroid tracking
algorithm.25

The time-dependent particle density is determined by dividing
the chamber into a number of equal-sized bins of value∆x each
along the longest dimension of 400µm and by computing the
number of particles in each bin as a function of time. Although
the microfluidic chamber is three-dimensional, it can be shown
that, in the case of weak particle-particle and particle-wall
interactions, the problem can be collapsed to a one-dimension
diffusion problem. Therefore, we bin only along thex-axis, the
direction of the concentration gradient.

As expected from the equations presented in the previous
section, eqs 3-7, the results presented below are independent
of the choice of the bin size for bin sizes that are reasonable
(i.e., clearly bins with a size compared to the entire chamber
are not useful). Indeed, different values for the bin size were
used for the data analysis, all producing results that agree with
the ones shown in section III. However, the choice of the bin
size affects the statistics for each combination ofN1 andN2 as
well as the range ofN and∆N themselves. If the bins are too
wide, then there will not be enough statistics and the range of
values forN will not include small numbers (since it will be
rare to have one or two particles in a single bin). On the other
hand, if the bin size is too small, we may not have a sufficient
range of values forN and∆N (since small bins will rarely have
more than a few particles). Also, if the bins are too small, a
particle may jump across multiple bins within the time interval,
∆t. Therefore, the optimal choice of the bin size was made on
the basis of the bead’s expected mean excursion within the time
interval, ∆t, which is x2D∆t. This is the only relevant
microscopic length scale. Here,D is the diffusion coefficient
for an individual bead given by the Stokes formula.26

For a bead of 0.29µm in diameter suspended in water at
room temperature, the Stokes formula gives a diffusion coef-
ficient, D, of approximately 1.5µm2/s. This value, within
experimental error, is equal to the one we obtain by fitting our
data of the concentration profile at different times to the one-
dimensional diffusion equation usingD as our fitting parameter
(i.e., D ) 1.3 ( 0.27µm2/s). This gives a bin size of∆x ≈ 5
µm. By observing all the consecutive bin pairs for all the frames
taken, we were able to obtain, on average, about 5000 points
for each combination ofN1 andN2. Given the bead concentration
in the microfluidics channel,N1 and N2 ranged from 0 to 6.
The choice of bin size determines the value of the jump
probability,p, as discussed in ref 21.

We can find the flux at a planei at a specific time interval
from the computed particle distribution statistics as a function
of positionx and timet mentioned above. Since the microfluidic
chamber is isolated, the total number of particles stays the same
from one frame to the next. As a result of this conservation in
particle number, the flux at planei + 1, Ji+1, that is, the plane
that separates binsi andi + 1, can be easily evaluated by using
the continuity equation:

where Ni is the number of particles in bini. Since the
microfluidic chamber is isolated, from our boundary conditions,
the flux J0 (flux at x ) 0) is zero at all times. Combined with
eq 9, we obtainJ1(t). Thus, from the analysis of these images,
we obtain complete sets of the values of{Ni(t)} and{Ji(t)} in
all of the bins and at all times of observation. Then, for each
pair of consecutive bins with specific values ofN1 andN2, we
construct the histogram ofJ values. Upon normalization, the
histogram becomes the flux probability distribution,P(J).

III. Results

A. The Flux Distribution is a Gaussian Function. Figure
2 shows our observed particle flux distribution function at the
optimized concentration. All of the data fall on a single master
curve where〈J〉 and〈(∆J)2〉 have been calculated separately from
each combination ofN1 andN2. The quadratic form observed

Figure 3. Fraction of trajectories that are bad actors vs the deviation
from equilibrium as characterized by the normalized mean flux,〈J〉/
x〈(∆J)2〉. Experimental data are shown in squares, while the solid
line represents the fit to the data. The coefficient of determination,R2,
for the fit is also reported. The slope and intercept agree well with the
model.

Ni(t + ∆t) ) Ni(t) + (Ji(t) - Ji+1(t))∆t (8)

w Ji+1(t) ) -
Ni(t + ∆t) - Ni(t)

∆t
+ Ji(t) (9)
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on this log plot shows that the distribution function is given
accurately by a Gaussian. The theory predicts that (i) the
coefficient of the square term should be-1, (ii) the coefficient
of the linear term should be zero, and (iii) the constant term
should be ln(∆Jbin/x2π) ≈ -0.9, where∆Jbin is the bin size
used to obtain the histogram and is equal to 0.1 s-1, that is, one
particle per unit time. Consistent with these predictions, the
coefficient observed for the square term is-0.98, that for the
linear term is-0.0018, and that for the constant term is-0.94.
The coefficient of determination for the quadratic fit isR2 )
0.98.

Next, we analyze the bad actorssthe backward flowssin two
different ways.

B. The Bad-Actor Trajectory Counts are Well Predicted
by the Model. Equation 6 predicts that, for small values of〈J〉/
x〈(∆J)2〉, the fraction of bad actors should be linearly propor-

tional to 〈J〉/x〈(∆J)2〉. In good agreement, Figure 3 confirms
this linearity and gives the predicted intercept of 0.5. This means
that, as the system approaches equilibrium (i.e.,〈J〉 ≈ 0), about
half the trajectories involve flow down the vanishingly small
gradient and half the trajectories involve flow up that small
gradient. In the linear regime, the best fit line shows the slope
to be 0.37, which agrees well with the expected value of 1/
x2π ≈ 0.4 from eq 6. The coefficient of determination for the
linear fit is R2 ) 0.99. This figure shows that when the system
is more distant from equilibrium (as implied by a larger mean
flux), there are fewer bad actors. Expressed differently, far from
equilibrium, more trajectories are “potent”; they are able to
change the current state of the system.11

C. Testing the Flux Fluctuation Theorem.Figure 4 shows
ln(P(J)/P(-J)) versus the flux, normalized by〈J〉J/〈(∆J)2〉, to
account for different averages and variances of the flux
distribution. This rescaling leads to a linear master curve, as
predicted by eq 7. There are four outlying points which clearly
deviate from the linear curve. A possible explanation for these
outliers comes from the fact that the quantity plotted in they-axis
is a ratio and this results in error magnification. Therefore, one
needs very small error in the flux distribution itself in order to
minimize the error inP(J) andP(-J) and avoid uncertainties
in their ratio, P(J)/P(-J). Possible sources of error for the
deviant points can be the nonconservation in the particle number
and/or insufficient statistics. Both of these would lead to
inaccurate values ofP(J) and, thus, to outlying points. However,

these outliers do have sufficient statistics, so we believe that
they are the result of the nonconservation in the particle number.
In other words, the very construction of the variable plotted in
the y-axis makes it sensitive to the actual measurement unlike
the averages or the histogram shown in other graphs. However,
it is still clear from the plot that the experiments show the slope
to be 2.0, in perfect agreement with the predicted slope of 2
from eq 7, whereR2 ) 0.77. This and other fluctuation theorems
provide a compact way to quantitate the bad-actor microtrajec-
tories.

D. Fick’s Law Holds Even in the Small-Numbers Limit.
We compare the average flux between two neighboring bins,
〈J〉, with the difference in particle numbers,∆N ) N1 - N2.
This data is compiled from all the values ofN1 and N2 that
provide a given∆N value. Figure 5 shows that〈J〉 depends
linearly on the particle number gradient,∆N, even down to
“gradients” of zero or one particle, indicating that Fick’s law
holds in the small-numbers limit. The slope of the graph (0.03/
s) also gives us a value of the jump rate,p ) 0.3, which is in
good agreement with the theoretical estimate of 0.33 made in
terms of the bin size and the diffusion coefficient.21 As expected,
the intercept is close to 0 (see eq 4). The linear fit has a
coefficient of determination ofR2 ) 0.99.

E. The Second Moment of Particle Flux is Proportional
to the Sum of Particle Numbers.Equation 5 predicts that the
second moment of the flux should be proportional to the sum
of particle numbers in the two bins,N ) N1 + N2. Figure 6
confirms this dependence of〈∆J2〉 ) 〈(J - 〈J〉)2〉 on N. For the
optimized particle concentrations, the slope (0.0022/s2) is equal
to the expected slope of 0.0022/s2 for the value ofp ) 0.33,
with R2 ) 0.96. At higher particle concentrations (data not
shown), however, not surprisingly, systematic errors begin to
appear and the slope deviation is quite high compared to the
expected value. We performed Brownian dynamics simulations
that show the likely cause of these concentration-dependent
errors is nonconservation of bin counts, from particles that either
overlap or go out of focus in one snapshot and into focus in the
next (see previous section).

Figure 4. Flux fluctuation theorem. The plot shows ln[P(J)/P(-J)]
vs 〈J〉J/〈(∆J)2〉 for different values of〈J〉 and 〈(∆J)2〉 arising due to
different combinations ofN1 andN2. Experimental data are shown in
circles, while the solid line represents the fit to the data. The coefficient
of determination,R2, for the fit is also reported. The slope and intercept
agree with the prediction of eq 7.

Figure 5. Experimental support for Fick’s law, even down to few-
particle gradients. The average flux,〈J〉, is shown as a function of∆N,
the gradient in the particle number between two neighboring bins.
Experimental data are shown in circles, while the solid line represents
the fit to the data. The coefficient of determination,R2, for the fit is
also reported. The error bars shown are the variances due to the different
combinations ofN1 andN2 resulting in the same∆N. The slope and
intercept are in agreement with the expected theoretical values, based
on eq 4.
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IV. Conclusions

Whereas Fick’s law of average diffusion is well-established,
the distribution function of diffusional rates has not been so
widely studied. Recent advances in microfluidics now make it
possible to study diffusion in the limit of small particle numbers.
We describe here a microfluidics experiment with which we
determine the distribution of particle fluxes in few-particle
diffusion. We find that the flux is distributed according to a
Gaussian distribution function. With only a single parameterp,
which is essentially the diffusion constant, elementary theory
gives several results that are confirmed by the experiments. First,
we find that Fick’s lawsthe proportionality of average flux to
the gradient of average concentrationsholds even down to
concentration gradients as small as a single particle. Experiments
also confirm that the variance in the flux is proportional to the
total number of particles,〈J2〉 ∝ N1 + N2, with correct slopes
within experimental errors. In addition, we introduce a new flux
fluctuation theorem, that is found to be consistent with the data
in predicting an exponentially diminishing number of variant
trajectories, as a function of the deviation from equilibrium. It
is an analog of quantities of recent interest in other nonequi-
librium experiments.8,14-16 The model predicts the backward
flows, the bad actors, which are relatively infrequent situations
in which particles flow up, rather than down, their concentration
gradients. These experiments provide extensive data that go
beyond more traditional phenomenological average flux quanti-
ties and illuminate the nature of dynamical fluctuations in a
simple classical system.
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